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  So  we will talk about mainly two concepts before we wind up the discussion on the
fraction  quantum hall effect and as well the course on quantum hall effects.  So, this the
first one of them is the composite fermions  and this was introduced by J.K.  Jain, okay.
So, this is an alternative approach to understand the fractional quantum Hall effect and
particularly   to  understand  the  even  denominator  fractions  that  are  observed
experimentally whereas,  the Laughlin states are valid for the odd denominators which
are of the form of 1 over  m where m being an odd integer.  So, particularly you know the
fractional feeling of nu equal to half was to be explained which  is one of the simplest
fractions, but of course, this cannot be explained with the concept  of the Laughlin wave
function, the Laughlin states which are for odd denominator, alright.

  So, this picture the composite fermion which we will call as CF as abbreviation.  So,
this  is  an  effective  picture  it  comprises  of  you  know  quasi  particles  which  are  the
electrons  they  are  carrying  even number  of  flux  quantum.   So,  they  absorb  the  flux
quantum from the external field and so they sort of are considered  as quasi particles and
these composite fermions drastically reduces the complexity of the  problem and one
actually gets starting from a very sort of strongly interacting fermionic  system which is
the nature of the quantum hall fluid we get a picture of non-interacting  fermions.  And so
this was a very nice idea and not only it is an idea, but it also has the implications  of
relevance on the experiments such as the Shubhnikov-de Haas oscillations and they also
verified  in  thermo  power  experiments  and  so  on.

  So, they are of course, ideas and in reality they are no the electrons do not sort of absorb
this even number of flux quantum, but it is a picture that aids us in understanding  the
fractional quantum hall effect, okay.  So, let us try to you know visualize this.  So, what
happens is  that  so these are  I  am drawing an electron to be really  large and  this  is
carrying two flux quantum.  So, let us call this as 2 CF and here they are 4 flux quantum.
So, let us call this as 4 CF and then there are say even larger number of flux quantum
which  are  say  the  6  of  them.

  So, this let us call it as 6 CF, okay.  As if it is a bound state of an electron and even
number of flux quantum.  So, that is the intuitive picture as I told you that it is not a real



picture, it really  does not happen that these fermions actually absorb even number of flux
quantum, but suppose  we assume that these are the there is a situation in sort of for the
fractional quantum fluid  that these fermions have absorbed or they are really carrying
this even number of flux  quantum.  So, of course, the picture changes the intuitively and
it gives rise to something that is quite  interesting and as I said that it has a relevance or
rather  it  conforms  to  the  experiments  that   are  you  know  made  or  rather  they  are
performed and these picture supports those experiments,  okay.  So, two sort of artifacts
happen.

  So, it is experiments there are others as well, but we have not  I have not written them
such as thermo power, SDH oscillations we have discussed this in  our earlier lecture,
Shubhnikov-de Haas oscillations etcetera  are supported by the CF picture.  Number 2, so
it of course, explains the fractional feeling  of the Landau levels and basically their and
their connection to FQHE and third and  probably the most important thing which I just
said is let me write it in the next page  3 and this is quite important.  So, this says that the
strongly interacting electrons  absorbing most of the flux quantum quanta rather become
weakly interacting electrons  in a weak magnetic field and this tells you that the latter
corresponds to the integer  quantum Hall effect which we have seen.  So, this picture of
FQHE this goes over to IQHE.  So, this is for fermions IQHE for composite fermions,
okay.

  So, this is a big simplification that occurs, okay.  So, let us see what happens and how it
happens and so on, okay.  So, we just said that you know the electrons actually absorb the



flux quanta.  So, the effective field is reduced.  So, let us write down the effective field
which we will call it as B star which is actually  reduced in the CF picture is given by.

  So, B star is equal to B which is an external field and then there are these even number
of flux quantum which we write as 2 p and then each one carrying a flux phi and the
density of the composite fermions.  So, B star of course, that is written.  So, let me write
B which is the external magnetic field, okay.  2 p even number of flux quantum phi 0 of
course, you know that that is a flux quantum which  is equal to h over e and rho density
of CF.  So,  this  tells  you that  the magnetic  field,  the effective  magnetic  field or the
reduced  magnetic field is given by this expression which is this B is the external field
and  now since these fermions have absorbed most of the flux from the external field.

  So, the field now remains as this and let us now see that what this means in terms of  the
electron filling.  So, the filling fraction for the CF let us call that as nu star in  keeping
with the B star which is equal to rho phi 0 divided by B star, okay.  And this is of course,
understood that the B is pointing in the z direction.  So, we should also mention that here.
So, B is in this direction, the external field is in this direction and let us call this  as
equation  1  and  this  as  say  equation  2.

  That is the definition of a filling fraction which is rho that is the density of the fermions
a composite fermions multiplied by phi 0 divided by the B star.  So, a putting 1 in 2 what
I mean is put this B star B minus 2 P  phi 0 rho in 2, one gets a nu star to be equal to rho
phi 0 divided by B minus 2 pi  phi 0 into rho, okay.  So, I write phi 0 as H over E and this



is E and this B minus 2 P phi 0 rho.  Now what I do is I take this rho also down and then
sort of rho H E to be down.  So, this is like a 1 divided by E over rho H and a B minus 2
P phi 0 rho and then little  bit of algebra.

  So, I take this in so it is a E B by rho H and a minus 2 P phi 0 rho into E by rho H.  So,
rho will cancel and E by H is 1 over phi 0.  So, that will cancel as well and we are left
with E B over rho H which is nothing but the  filling fraction of the original fermions,
okay.  So, this is the inverse of it rather.  So, it is 1 over nu minus 2 P and so on.

  So, this is the thing and so let us call this as equation 3 and then we can write down the
nu star in terms of this nu to be equal to nu minus 1 minus 2 P nu and let us call this  as
equation 4.  So, this is the expression for the filling of the composite fermions and its
relation  to the filling of the actual fermions which are there in the system and this P is
equal  to 1, 2, 3 and 2 P denotes the number of vortices or the number of flux quantum
which are actually  vortices I will just come to that, okay.  So, it can be actually inverted.
So, 1 over nu star this is equal to a plus minus.  So, this is equal to 1 over nu minus 2 P
and so this is the you know the filling fraction  relationship between the filling fraction
and just take a note that we have written  both plus and minus signs and they would you
know  give  rise  to  a  new  different  fractions.

  So,  to  say both signs  are  actually  allowed.   So,  plus  and minus signs  are  allowed
depending on whether B star is in the direction  of B or positive 8, okay.  So, this is let us
call it as 5 is it is same 4 and 5 are same is just written in a different  language and this
can again be written in another language in which you can see that.  So, if you write



down the nu in terms of nu star then it becomes equal to a 2 P nu  star plus 1 and this is
the equivalent expression where nu is the filling of the original problem  of the Hall
conductance or Hall resistance.  And so, for nu less than 1 which is what we are talking
about fractional filling  nu star is greater than 1, okay.

And when the nu star becomes large it corresponds to the or rather it is an integer, okay.
It is equal to 1 or greater than 1 and becomes an integer then it corresponds to the non-
degenerate   state  and the  non-degenerate  state  of  course,  would  correspond to  weak
interaction or no  interaction at all which means that we go to the case of IQHE, okay.
So, let me make this a little more clear because.  So, the filling factor is defined in the
following way.  It is also called as filling fraction.

  So, this is equal to a rho divided by a degeneracy, okay.  So, now, if rho that is a density
of electrons fermions that becomes equal to the degeneracy  which means that the integer
number of Landau levels  are  filled  and if  it  becomes 2 say  the rho is  twice  of the
degeneracy which means 2 Landau levels are completely filled and  this situation would
correspond to  exactly  what  we have  studied  in  the  context  of  IQHE  that  is  integer
quantum Hall  effect  and  the  system corresponds  to  non-degenerate  states   and  non-
degenerate scenario and that sort of should explain the non-interacting electrons  or very
weakly interacting electrons which we have studied in the context of IQHE, ok.  So, this
is  the  picture  that  emerges  out  of  this  composite  fermion  picture  and let  us   try  to
understand what is its relation to the Laughlin state.  This is quite a nice explanation.  So,
follow  me  carefully.



  So, remember the Jastrow factor and the Jastrow factor actually says that,  so there is a
Zi minus Zj, I might have written Zj and Zk, these are just indices which you  can take
according to your convenience.  So, there is this M and then of course it is multiplied by
the Gaussian.  Let us look at the Jastrow factor only.  You would sort of recognize that
for each electron, so Zs are the coordinates of the  Zi denote the coordinate of these
electrons and this is basically enforces the anti-symmetric  property by when M is you
know an odd integer and it also says that if Zi becomes equal  to Zj, this is not only 0, but
it is 0 M times because of the product that is involved here.  I hope this notation is clear.

  We write a summation by this and we write a product by this.  So, this is a sum and this
is a product, okay.  So, this product of all i, i is less than j and then it is a 0 of mth order
and that  is what comes out from the Jastrow factor and that is what is embedded in the
Laughlin  state.  Now, of course we need one 0 of those m zeros and one 0 we need
because of we want to enforce  the exclusion principle.  What happens to the m minus
one  zeros?   So,  these  m  minus  one  zeros  account  for  what  are  known as  vortices.

  So, let me write as one 0 ensures Pauli's exclusion principle.  The rest m minus one
zeros sort of account for the vortices and what are the vortices  or what is a vortex?  A
vortex is actually a sort of a topological excitation.  So, suppose a complex number, a
complex number z equal to r e to the power i theta all of  you are familiar with this polar
representation.  It has a vortex at the origin, okay.  So, which means that if a particle sort
of encircles this origin it picks up a phase  2 pi.



  So, that theta actually changes from theta to theta plus 2 pi and the complex number
remains unchanged in the sense that because you have a 2 pi i exponential 2 pi i is equal
to 1, okay.  So, that is the meaning and suppose these the FQHE wave function  contains
a factor z minus z 0 to the power 2 p, okay.  We are writing M as a 2 p in the sense that
these  are  just  to  make  p to  be  any integer   not  only odd integer.   So,  2  p will  be.

  So, a p could be any integer.  So, that 2 p is even, 2 p is an even integer.  So, you see
here you have these m minus 1 is an even integer because m is an odd integer.  So, m
minus 1 is an even integer and so we write that as 2 p.  So, this means that a fermion 1
sees fermion 2 to carry 2 p vortices or M minus 1 vortices,  okay.  And so basically this
means that even number of vortices which is what the this composite  fermion picture it
sort  of  you  know  proposes.

  So, let me tabulate a few p and nu p and nu with nu star to be an integer and I told  you
that this corresponds to the IQHE when nu star becomes an integer.  So, this is a p and a
nu which is equal to a nu star and which is equal to a 2 p nu star  plus 1 the formula that
we have written earlier and let me just show it for p equal to 1.  So, this gives rise to one
third, two fifth and three seventh and so on, okay.  For nu star to be an integer and for p
equal to this p equal to 1 here let us say p equal  to minus 1 we get other integers which
are two third, three fifth and five seventh and  so on.  And so 2 will give rise to 1 by 5
and  2  by  9  and  minus  2  will  give  rise  to  2  by  7  and   3  by  11.

  So, you see all these fractions have been seen in experiments they have been realized  in
experiments and that is why just having nu star to be you know a integer values with  p to



be plus minus 1 plus minus 2 you can extend it to plus minus 3 etcetera.  We are getting
all kinds of fractions which were not realized in the Laughlin wave function  I mean with
the with the Laughlin wave function which is only valid for 1 over m.  So, L's fraction 1
over m where m is a odd integer.  So, of course 1 by 3 is in that form, but none of these
other 1 by 5 is also of that  form, but none other are included in the Laughlin wave
function and these are called the non  Laughlin states.  So, let me show you a picture an
intuitive picture of this whole thing.

  So, we will draw so this 1, 2, 3, 4.  So, we will have this usual fermions and then the
composite fermion picture and sort of  where filling fractions will be compared.  So,
these are these fermions which are carrying these vortices of the flux quantum and this
corresponds to the original picture of fermions.  This is like this 4 of them in each of the 3
Landau levels and this corresponds to a  filling fraction to be nu equal to 3 by 7 okay.  So,
this is a fractional quantum Hall effect and when we go to the non interacting picture  or
the picture of so this  okay so this corresponds to nu star equal to 3 okay.  So, this is the
as a schematic plot this shows i Q H E with filling factor equal to 3 and  this corresponds
to the f Q H E with filling factor  equal to 3 by 7 okay.



  So, this is the problem of f Q H E becomes a problem of i Q H E of the composite
fermions  okay.  And let us do the last thing in this regard we still are missing a number
of fractions  okay even though we have been able to go beyond the Laughlin picture and
get a lot of other  fractions from this composite fermions, but we still are not have not got
all the fractions  that are experimentally observed okay.  And there is a hierarchy picture
which again is very subtle the idea is very  subtle though you know getting a lot of other
fractions are not too difficult.  So, this sort of you know relies on the fact that there are
other filling fractions that  are observed in experiments starting from some parent states
one can get Laughlin like  daughter states okay.  So, from a given parent state  so these
are Laughlin like daughter states okay.

 So, these Laughlin like daughter states  and a parent states which are very interesting
here and these fractions at any level another  important thing the fractions at any level  in
this  hierarchy scheme are denoted as continued fractions.   You might  have seen this
continued fractions even in school these the fractions carry on  and here we will have
these different at a given level of the parent state we will have  a multiple daughter state
emerging out and we will give a large number of these fractions  coming out and so on. It
is  not  that  all  the  fractions  are  seen  in  experiments  which  are   predicted  from this
hierarchy scheme, but quite a few of them have been observed okay.  And it is not that
you know at a given sort of Laughlin the daughter states at a given  sort of hierarchy of
the daughter states there could be many fractions and the probability  to observe these
fractions in actual experiments it seems to be the same whereas some of them  are just not
observed at all some of them are of course observed that tells you that  this of course
doesn't distinguish between one fraction at a given level from another  fraction.  Now
physical picture is necessary and the physical  picture really relies upon not the ground
state  which  we  have  been  talking  about  so   far,  but  it  relies  on  the  excited  state.



 And so you have a problem of you say a quantum  mechanical problem and you have a
Hamiltonian and you may be able to solve that Hamiltonian  exactly or maybe there are
you know mathematical difficulties or there are computational difficulties  and so on, but
it is very easy to understand that these quantum mechanical Hamiltonian  will have a
large number of states possible which are energy states that could be degeneracies  and so
on, but forgetting the degeneracies for the moment there are ground state there  are first
excited state and there are second excited states and so on rarely ever one needs  to go
very far away from the ground state in condensed matter physics because we always  talk
about  low lying  excitations  which  are  which  are  the  most  important  thing.   I  mean
something that's far away from the ground state may not be taking part in either  the
thermodynamic or the transport properties at all. So it's quite important that and we  are
sort of you know understanding that the Fermi level lies very close to the ground  state
okay and that's why the ground state is the most important thing. However in certain
scenarios you may have to go beyond the ground state and take into account excitations
and  these excitations in this fractional quantum Hall fluid are called as quasi particles
and  quasi holes depending upon the shortage of density or the excess of density.  So if
you  have  excess  of  density  of  particle  like  excitations  which  are  like  quasi  particle
excitations and if you have deficit then of course you have hole like or the quasi  hole like
excitations  okay.

 So Halperin wrote down so conjectured that these excited states  have a form okay which
are given by the psi of Z this is a P of Z K which is our usual  Jastrow factor I mean Z K
minus Z J product of that and so on so forth.  And then there is a Q which is again a
function of Z K and the ubiquitous these Gaussian that  would of course be there okay.
We are familiar with this, this is a Jastrow factor and  this accounts for quasi particle and
quasi hole excitations.  



And what did he proposed for these Q Z K? So the Q Z K he proposed to have a form
which  is equal to it is again a product of J less than K and then it just goes all the way up
to M and it is a Z J minus a Z K whole to the power plus minus 1 over M okay. We will
not go into the details that was the ansatz that was made by him and of course the P Z  K
that is the Jastrow factor of course has this form J less than K to the power M it  is a Z J
minus Z K to the power 2 P okay.

 So if you combine them then psi of Z so this  is the excitation above the Laughlin state
and the excitation has been included by these  this Q Z K term which of course you know
talks about either particle  or hole the excitations  of the system. So you know at the
middle of the plateau a quantum hall plateau the density  is uniform okay. And so there
are number of states that are pinned to a defect or an impurity.  Now as the magnetic field
is ramped up it is increased beyond a certain value of the  magnetic field these fields or
these states  actually  break  away from the impurity  and  they would  cause  a  density
imbalance. So if the density becomes larger we have a quasi  particle excitation and if the
density  falls  below then it  becomes  a  it  becomes  a  deficit   it  becomes  a  quasi  hole
excitation  okay.

 So this is the idea of this so total psi of Z  becomes the product it is J less than K and of
course it goes to m and then it is a Z  J minus a Z K whole to the power 2 P plus minus m
1 over m and then of course that Gaussian  thing will of course be there. So it is Z J
square divided by 4 l B square okay. So  that is a form of the wave function the excited
state wave function m is still an odd integer  which is what Laughlin had said. Now of
course you can understand that this gives you instead  of just m this gives you the total J



max. So J max the magnitude of that it becomes  equal to 2 P plus minus 1 over m and I
will have to multiply it by N because there are  N electrons okay and I am just talking
about  the  magnitude.

 So this is N electrons and  2 P plus minus 1 over m. So this filling fraction corresponding
to this scenario can be obtained  if we note that the area of the quantum Hall fluid is
given by a equal to so N then it  is 2 P plus minus 1 over M which is that J and then we
multiply it by the pi into a  2 m and l B square okay. So that is the area and the number of
states within an area A  is given by N curly N okay. So N is equal to a B A over phi 0
where A is given by this  which I just wrote so this is equal to phi over phi 0 this is equal
to 2 P plus minus  1 over m and m square N okay. 

So that is the number of states that you obtain and when  we get the number of states the
filling fraction is given by this.  So nu is equal to 1 by 2 P m square plus minus m okay
that  is  the  filling  fraction   and  this  filling  fraction  can  be  expressed  in  terms  of  a
continued fraction but importantly  it needs to be noted that there is a term which is this
which  is  in  addition  to  the   m  term  that  is  there  in  the  denominator.

 So the Laughlin state only had this m term  because Laughlin states only you know
remained in the ground state so it is a ground state  wave function. So the hierarchy so the
continued fraction or rather nu can be written.  In terms of the continued fraction as okay
so nu is equal to 1 divided by so this is  for you know for different values of P and
different values of m okay odd integer m  and different values of P. So this is equal to 1



plus m plus minus 1 divided by 2 P 1  plus minus 1 divided by 2 P 2 plus minus and so on
so forth okay. So this is the continued  fraction that we talked about and so this is like a P
is having all these values 1,  2, 3 etc.

 And m has values 3, 5, 7 etc. and then one can actually form these continued  fraction.
So let me show you one example of this continued fraction. So let us just write  for all the
P's let us call it a P j to be equal to 1 just to have a simple form.  So and m let us say
equal to 3 that is also simple. So at the third level  one has you know so nu becomes
equal to 1 divided by 3 plus minus 1 divided by 2 plus  minus 1 divided by 2 plus minus
and so on okay.

 So at the third level for corresponding  to this thing okay and I mean till the third level
then you can just drop everything out  here and then calculate what fraction is coming out
from this continued fraction. So let me  show you the picture for m equal to 3 and this P j
equal to 1. So the picture is like  this so we have this so at the third level so this there is
one so this is the parent  state is equal to 1 over 3 okay. So m equal to 1 over 3 and there
are two branches that  come out from the plus and the minus sign. So let us write the plus
branch  here  on  the   left  and  the  minus  branch  on  the  right.

 So at the P 1 level so this is P j equal to 1  so P 1 level at the all the P j is equal to 1 but
you can have other fractions where P  1 equal to 1 and P 2 equal to say 2 and so on so
forth okay. So this is equal to 7 by  2 that comes out from the positive branch okay that is
like 1 over 3 and plus so this  is how it is coming is that 1 over 3 and then you have a plus
and a minus and 1 over 2 okay.  So this becomes equal to so there are 1 by 3 plus 1 half
that is giving you the 7 by  2 branch and then you know so that is the plus branch and the



minus branch is coming  out as 3 minus half and that is that branch gives you 5 by 2. So
these are the fractions  that are there and let me go to another level so this plus branch
here that gives you a  5 over 17 and of course there is a 5 over 13 from the minus branch.
Now this one will  have a plus branch and the minus branch as well and this is coming
out as 11 by 3 do  it carefully and 7 by 3 coming from the plus branch and the minus
branch.

 So at the third  level so starting from one Laughlin fraction we get so many non Laughlin
fractions coming  out of this you know the hierarchy picture okay and it gives you of
course a large number  of fractions not all of them are seen and at the same level it sort of
even though it  predicts that the probability of getting this fraction should be same but
that does not  happen. 

Okay I wish to close the discussion of this course here so if you wish me to you  know go
back and talk about what has been done so far and so we have started with you  know
mesoscopic systems. So this two-dimensional electron gas is a mesoscopic system and
then  we have talked about Landauer formula then we have talked about in the related
context  we have talked about S matrix and we have talked about the discovery of the
Hall effect  the classical Hall effect as well as the quantum Hall effect and how Hall
effect has a very  important thing as metrology in determining the unit of the resistance
okay and of course  we have talked about classical Hall effect and this trajectory of the
charged particles  etc and so on so these are all part of these classical Hall effect. Then
we came  to  this   quantum Hall  effect  it's  of  course  discovery  Landau  levels  filling



fraction  and when I   say QHE I  really  mean the integer  quantum Hall  effect  filling
fractions etc inclusion  of you know spin electric field magnetic field into the problem
that  is  Zeeman  electric   and  magnetic  fields  and  we  have  talked  about  the
incompressibility  of  the  quantum Hall   fluid,  is  a  very  important  thing  in  fact  these
plateaus actually at the plateaus the this mu doesn't even if you change the number of
particles it mu remains constant and so on  and then of course we have talked about the
chiral this properties of this QHE so these  are chiral edge modes edge states and so on
we have talked about SDH oscillation which  is an oscillation of the magnetization and so
on in presence of the magnetic field and  then we have talked about so SDH oscillations,
Kubo  formula.

 Then we had gone to this you  know QHE in a crystal lattice. So first we have talked
about square lattice and it's  quite important to understand so all these things are in 2D
electron gas and then first  we have talked about square lattice and we have learnt how
Peierl’s coupling sort of modifies  the hopping term there in the across the one from one
site one lattice site to another  then we have talked about the you know the topological
invariant which is the Chern number  in this particular case and then very importantly we
have talked about graphene in reasonable  amount of details what happens to the Landau
levels in graphene and how they are different  from the 2D electron gas and what's the
quantization like for the Hall plateaus in graphene and  they are significantly different
than that of the 2D electron gas. We have also done  Hofstadter butterfly these are fractal
structures that are shown by the energy as a function  of the field and then we have talked
about importantly we have talked about spin Hall  effect and so graphene is thought to be
a candidate however because of extremely small  Rashba spin-orbit coupling that is quite
difficult  to  observe so this  is  a non-dissipative  spin transport  and its  applications  to
spintronics this  has been touched in brief.



 And finally we have done fractional quantum Hall effect.  And there we have started
with you know the symmetric gauge now this is by no means complete  this particularly
this part of fractional quantum Hall effect because of the lack of  time I had to skip many
important things such as the fractional statistics the great statistics  and then you know
the many of these other things such as the topological quantum computation  etc. those
are definitely very interesting however, quite advanced topic as well so this  is symmetric
gauge we have done then we have of course here I think we should also say  that we have
done the BHZ model  in the context  of  a quantum spin Hall  insulator  the symmetric
gauge we have done and then we have done the Landau levels then we have done the
Laughlin  states properties plasma analogy with plasma rather  plasma analogy composite
fermions and the hierarchy picture.  So with this I end the course hope you have enjoyed
as much as I  did these some of these  are slightly advanced topics and you need to
supplement it with a literature a number  of literature has they have been cited along with
but there are more now finding out a  relevant literature is not a problem with this internet
being so fast and you know so  resourceful I hope that you learn more going beyond the
course  and  take  this  course  as   a  sort  of  the  first  level  course  in  understanding  the
quantum Hall effect of course there are  other things such as anomalous quantum Hall



effect etc. we did not do in this course which  will be done in another course related to
topology and condensed matter physics. 


