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  Music  If you remember that we have been talking about the S matrix and we have
written  in terms of the reflection and the transmission coefficients and this was actually
written  as r t' and t r' where r' and r and t' and t are the reflection  and the transmission
coefficients corresponding to the left edge  and the right edge of the system which are
connected to the system is connected to leads.  So one corresponds to the left lead and the
other  corresponds to  the  right  lead    and I  sort  of  wanted to  give you a  little  more
information  on this S matrix and let us just try to understand this from a purely quantum
mechanical point  of view. So let us think of a potential and the potential is given by  V
of x and you have an amplitude going inward which is A and there is an amplitude going
outward which is B and similarly on the other side there are outgoing amplitude going as
C. These are the amplitudes of the waves,   and this is again which is inward that  is
moving towards the left which is given by D. Okay, so for a closed system which means
that it is not connected to the surrounding  and in more technical terms it means that it is
not a dissipative system, it is not connected to a bath.  We can assume that V of x is real.

 It is a real function and in which case S is a unitary matrix.  And the unitarity condition
is represented by this where S dagger S is equal to a unit matrix,  and the unit matrix
suppose I write a unit matrix in a 2 by 2 unit matrix,   then it should be 1 0 and 0 1. In 3
by 3 it will just go up in dimensions.  So you consider a scattering region and the wave
functions are represented by their amplitudes,   A, B, C and D which are respectively
moving towards  their  directions  in  which  they  are  shown   and I  can  write  down a
transmitted wave let's call it as a transmitted which is equal to the S which is the S matrix
of the incident wave  and this has been told that this is how the transmitted wave function
is connected to the incident  wave function and we can write this  as B, C, which are
respectively you know these are reflected and the transmitted waves, and these are S11,
S12, S21, S22 and these are A and D.

 So the B and C let me write it the way I wrote here inside a square bracket. So this is the
way this  B and C just  to  reiterate  these  are  outgoing amplitudes   and A and D are
incoming amplitudes. So this unitarity condition which is S dagger S is equal to 1, that
implies that we can write this as S dagger S. So S dagger S is equal to 1. So what does it



mean? So I can just simply write it as this S dagger S as S11 mod square, plus S12 mod
square, S11, S21 star plus S12, S22 star and S21 S11 star plus S22 S12 star and S22 mod
square plus S21 mod square.

 And this if it is unitary matrix so this is S dagger S  and if this is a unitary matrix then
this is equal to 1 0 and 0 1. Which immediately tells you that S11 mod square plus S12
mod square is equal to 1   and S22 mod square plus S21 mod square is equal to 1   and all
these other things so this is you can call it as equation number 1, and this as equation
number 2. It's also true that the off diagonal elements are 0,   which means that S11, S21
star plus S12, S22 star, this is equal to 0 and also the complex conjugate which are S21,
S11 star, plus S22, S12 star that's equal to 0 as well  and you can call this as equation
number 3 and this as equation number 4. So these are the properties of the S matrix and
these are the elements that follow these equations and so on. If you subtract you know 1
from 2 then what you get is the following that you have a S11 mod square minus S22
mod square this is equal to S21 mod square minus S12 mod square this is equal to 0 and
as well which tells you that S11 mod equal to S22 mod and S21 mod equal to S12 mod
and the reason that we write it with a modulus is because these are in general complex
numbers.



 So these are the terms or rather the elements of this matrix,   and their inter-dependencies
that we you know wish to talk about. So let's look at the eigenvalue of S, which are of the
form, So these eigenvalues of S are of the form, e to the power i phi1 and e to the power i
phi2 because these in general complex numbers.  So these phi1 and phi2 are real.  So they
are basically  known as phi1 and phi 2 are known as scattering phase shifts. So each
problem in quantum mechanics whether there is an incoming particle that's colliding with
a wall or scattering against a wall, wall means a potential barrier.

 These  are  all  called  as  scattering  problems  and  these  are  the  barrier  transmission
problems in its simple form. So these are the properties of the S matrix. The S matrix the
eigenvalues are complex in general while these phi1 and phi2 which are real quantities
are known as the phase shifts. So let us assume that  for a given case for V(x) equal to
V(-x) this means that the potential is even under parity. So what does it mean? It means
that if you change x to -x, V(x) doesn't change, and you have seen this kind of potential
for harmonic oscillator which is like half m omega square x square right.

 So here V(x) equal to half m omega square x square or half kx square. Now if you
change the sin(x) because x square doesn't change sign,  V(x) will be equal to V(-x).
Okay now in this particular case, the S matrix takes a form which are r, t, t and r we are
talking about a single barrier. Barrier has of course I mean two ends. So r and t are the
complex reflection and the transmission coefficients.



  Okay and we know that the reflection amplitude which goes as mod small r square is
equal  to r and the capital T is equal to small t square. Now this S11 mod square, plus S12
mod square is equal to 1 is equivalent to r square plus t square  which is equal to 1 or R
plus  T  equal  to  1,  which  it  has  to  be  because  the  reflection  plus  the  transmission
amplitudes probabilities should add up to 1,   and this is precisely the coming from the
properties of the S matrix which is this. This is the equation that I am referring to.  Okay
this equation is it denotes R plus T equal to 1 capital R plus capital equal to 1.  Alright so
let us you know given these conditions let us assume that R equal to without any loss of
generality.  

 So let's assume that this is equal to phi r because capital R equal to small r mod square
I'm taking,  and small r is a complex quantity so this is capital  R is of course a real
quantity.   This  it's  root  over  R  and  exponential  i  phi  r,  where  phi  r  is  the  phase
corresponding to the reflected wave and similarly one can write down this relation which
is this is equal to t, which is 1 minus R and exponential i phi r. Okay  so this is the t so
unitarity  act  farther  tells  you that  the phase shift  under this  transmission,  I  mean the
transmission and the reflection coefficients will have a phase shift  which is pi by 2 which
is coming from this e to the i plus or minus i and if you remember your i is nothing but
exponential i pi by 2 because this is equal to cos pi by 2 which is 0 plus i sin pi by 2,
which is equal to 1. Okay so which means that this is equal to i. Okay this is a sort of
understanding so that's why the R and T can be written as  that and now of course your
S11 S21 star plus S12 S22 star this is equal to 0, which is coming from this equation that
we are talking about from which is coming from the off diagonal term of the S matrix and
from this what one can get is the following, that one can get a rt star plus a tr star should
be equal to 0, and in addition to these relationships which we have let me use another
color,  these  definitions  of  r  and  t  we  also  have  this  expression,  which  is  another
relationship between r and t.



 Okay alright, so now that tells that if I write these things properly using these relations
above, then I get 2 of mod r mod t which is equal to cosine of Phi R minus Phi T, that's
equal to 0 that tells you so this is equivalent to rt star plus tr star  and this is equivalent to
a Phi r minus a Phi t. So this is equal to plus minus pi by 2 is what I have told you earlier
that the reflected wave and the transmitted wave will be phase different will have a phase
difference  of either plus pi by 2 or minus pi by 2  either it will lead or lag and the
transmitted wave will either lead or lag. Okay now let's take a specific example okay let's
take a form for which is not too different than what we have talked about is equal to r
identity matrix plus a t Sigma x,  where Sigma x is a x component of the Pauli matrix,
which is written as 0 1 1 0 okay. So this is almost same as what you have seen earlier so
this  is  coming and as  an example  okay.  So I'm trying to  work out  the entire  barrier
transmission problem in in terms of the S matrix and the properties of the S matrix, this is
quite sort of pedagogical in dealing with a variety of generic potentials okay which in
terms of their reflection and transmission amplitudes.

  Now you know that each of the these Pauli matrices have eigenvalues equal to plus 1,
plus 1 or minus 1, so Sigma x has eigenvalues plus minus 1, this is true with Sigma y as
well as Sigma z. okay all have eigenvalues plus minus 1 they have other properties such
as you know each one of them square is equal to 1 for all i equal to xyz, it's not relevant
here but still I let me tell you this the determinant of each one of the Sigma i is equal to
minus 1, and the trace of each of the Sigma's Sigma I equal to 0 for all i and so on and
each one of them have eigenvalues plus minus 1.  So the eigenvalues of S is S is equal to
either r plus t,  or r minus t okay because of the identity of course identity matrix has



eigenvalues only 1. So it's r and then either +t or -t So if you define r plus t equal to
exponential i Phi 1, where Phi 1 is a phase of that and r minus t equal to exponential i Phi
2, then from this R becomes equal to exponential -i Phi 2 and divided by 2, and t becomes
equal to exponential i Phi 1 plus i Phi 2 divided by 2.  So in addition to this let us define a
Phi average, which is equal to Phi 1 plus Phi 2 divided by 2, and Delta Phi to be Phi 1
minus Phi 2 in this case your R becomes equal to which is a reflection amplitude which is
equal to R mod square it's equal to sine square  delta Phi and T becomes equal to t square
which is equal to cos square delta Phi okay.

  And to see basically how this makes sense if you take Phi 1 equal to Phi 2,  it means of
course that sine square delta Phi will have no reflection, so R is equal to 0 and the S
matrix will take a form, which is exponential I Phi 1 and a 1 0 0 1 and so on so forth
okay.   So  this  tells  you  that  if  there  is  no  difference  between  the  reflected  and  the
transmitted waves, then of course which means that there is no reflection that occurs and
the whole thing is transmitted, and we have used this so this actually corresponds to a
particular  kind  of  potential,  where  we have  started  with  the  S  matrix  instead  of  the
potential,  and have calculated the reflection and the transmission coefficients.  This is
precisely what we have done while calculating the conductance of a junction rather two
junctions and how this two junctions give rise to the conductance which is given by the
trace of t dagger t, where t denotes the transmission amplitudes okay.  Now this sort of
gives you a sort overall introduction about the conductance properties  of a mesoscale
systems or in systems where you have there are ballistic transport and they're not much of
inelastic collisions so the system is small and from here on let's go and talk about the Hall



effect.  We will like to start with the Hall effect and gradually want to go into quantum
Hall  effect which is the main topic of our discussion.

  So how is this previous discussion related to this discussion we are going to talk about
conductivity either in Hall effect or you know in the longitudinal conductivity that  one
gets that is as you pass current through a material in the direction of passing current  there
are there is a resistivity or a conductivity that develops and if you want to measure it  this
is the way to measure it which is what we have learnt in the last discussion that  we had
okay.  Now it's sort of talk about the discovery of Hall effect to begin with okay and let's
start with actually quantum Hall effect.  So we will come to classical Hall effect that you
all are familiar with in just some time.  So this is known very precisely you know I mean
the discovery of this thing occurred  in the night of 4th and 5th February in 1980 okay
and if you want to be precise about this, this happened at about 2 a.m. in the morning.
The name of the discoverer is K.V. Klitzing, Klaus von Klitzing and he discovered it and
in his notes on that night he actually said something very very interesting,  he said that he
actually gave the resistance which is a you know the benchmark of resistance and from
this  experiment  which  is  done  on  particular  type  of  system,  semiconductors  two-
dimensional semiconductor semiconducting systems, where the electron gases are mobile
only in  on a  plane,  and from there he actually  did the Hall  effect  experiment.   This
happened in Grenoble,  France,  and it  happened in a lab which has facilities  of large
magnetic fields, and by large magnetic fields what we mean is about maybe 10 Tesla or
even more,  5 to 15 Tesla say for example okay.  And how did he discover quantum Hall
effect,  the background story is that  he has been working closely with two gentlemen
called Dorda and Pepper,  okay who were engineers and who supplied samples to Klaus
von  Klitzing,  and  the  samples  to  study  the  mobility  of  silicon  MOSFETs  okay.

  So there is a semiconductor industry which was growing at that time,  and it is it was
quite  important  to  actually  get  very  high  mobility  samples.   So  they  were  trying  to
increase the mobility of the samples of the silicon MOSFETs, and that's how it got sort of
you know discovered, these are FET devices the field effect transistor devices,  which
were quite important to study in those days and still now.  So they supplied the samples
and  Klitzing  did  the  experiment  and  Klitzing  of  course  won  a  Nobel  Prize  for  this
discovery and incidentally I'll tell you about the details of the discovery,  and that will
discuss throughout this course.  This incidentally this discovery occurred about just about
100 years later than Edwin Hall who discovered Hall effect.  The Hall effect that you all
are  familiar  with  the  classical  Hall  effect  in  1879.

  So 1879 and 1980 with just about 101 years apart and that's where the interesting thing
came.  So what's the difference between classical Hall effect and quantum Hall effect that
we  that we are going to study?  The classical Hall effect is at room temperature and it's a



very low magnetic field, It's less than 1 Tesla or even less than 0.5 Tesla that we do in our
lab I'll discuss that experiment  that you one does in the undergraduate labs of any of this
institution, or any of the you know teaching colleges or other institutes that one has.  And
it was found that this experiment by Edwin Hall very accurately measures  the type of
semiconductors from the sign of what we call as a Hall coefficients, and it also gives a
nice order of estimate for the density of the carriers.  So the Hall resistivity, I will just
give you an example what Hall resistivity is or the Hall resistivity which is you know
defined by something like so the Hall resistivity let's call it as R just R, which is equal to
Hall voltage divided by the longitudinal current.

  In fact a more familiar quantity is known as RH this is found to be like B over nq, where
B is the magnetic field and n is the density of the carriers, and q is the charge of the
carriers  carriers which of course we know that they are electrons and there is a quantity
which which is more familiarly used which is called as a Hall coefficient, which is R over
B which is equal to 1 over nq, because we do not know whether the carriers are holes or
electrons, that's why we want to leave it as q.  So this is one of the main findings is that
the Hall resistivity is proportional to B  which means that the Hall resistivity will grow
linearly with B like this okay and this slope is nothing but it's equal to 1 over nq.  Now
this slope whether it's a positive slope or you have a plot which goes like this that that
will tell you that the slope is has a positive sign or a negative sign, and this sign will
decide that what kind of carriers you have and the overall magnitude of the slope will tell
you that the what is n that is the density of the carriers in that particular material or the



semiconductor okay.  So this was the Hall experiment or Hall effect is all about so let me
try to make you give a feel that what actually is done in the lab.  So this is a classical Hall
effect setup  okay and let me make the drawing a little big and clear, such that you are,
okay so this is say a Hall sample this is the let's call this as width as W.

  Now this is drawn not in scale these samples are usually very thin samples almost flat,
close to two dimension but I am showing it with a width which is W and let's say the and
let's say the breadth of the sample is equal to d and you send a current which is jx here
and let me show the axes, this is x, this is y, and this is z axis. So there is a magnetic field
applied in this direction, because this is a z axis, and there is a current that is sent in this
direction, that is, the x-direction see the x-direction in the figure and now you want to
measure the voltage in the y-direction  and that's called as a Hall voltage okay.  So this is
where you measure the voltage by maybe a voltmeter or a multimeter and so on okay.  So
this is the setup that you have typical setup that you have in the labs, so these the top and
the bottom sort of planes are connected to a voltage measuring device  and this is so you
have  charges  here.   So  voltage  measuring  device  which  is  denoted  by  VH  which
measures the Hall voltage okay.

  So what happens is that so there are these charges which experience Lorentz force and
the Lorentz force these charges are moving because you are talking about almost like a
free electron system.  So the force is given by qv cross B, now your v if they are moving
along the x-direction  and then B is in the z-direction.  So they are of course going to get
deflected in the y-direction, which is a vertical direction here okay.  And I'll sort of do a
simple analysis now and then probably do a more refined analysis later, this is I am just
talking about a lab, how a lab undergraduate lab would look at this thing alright.  So at
equilibrium so what will happen is that all the charges will start migrating either in the
plus y-direction or minus y-direction depending on their sign, and then you have these
once the equilibrium is established, the motion of the charges will stop after  that okay.

  So what it means is that you have so this is a there is a qv cross B that is a Lorentz force
but there is also an electrical, so this is due to the magnetic field, this is due to an electric
field there is also a force which is proportional to or in the direction of the electric field.
So the total force on this is equal to FB plus FE,  the electric field is because you are
passing a current.  So you are there is a battery that is connected which I have not shown,
but that is there and that is why you have an electric force there.  So this is equal to q into
E plus v cross B, and this at  equilibrium is equal to 0 okay.  So understand that the
charges  cannot  move  due  to  these  two  fields  indefinitely  okay.

  They would eventually they would all the charges that are present in the system, will



either settle at the top plane or the bottom plane, once you know the apparatus is switched
on for quite some time, when the equilibrium will be established okay.  v denotes of
course the drift velocity of the carriers and so on, and then because of this there is a Ey,
that is going to be created because if you are measuring a Hall voltage,  there must be a
electric field due to the Hall voltage, which must be created which is equal to vBz,  which
is equal to Jx which is equal to v let me write it with a capital J.  So this is equal to Jx by
nq and B is only in the z-direction, so I do not have to write a Bz.  So this is Jx by nq and
then Bz.  So what you do is that here N is the charge density alright.

  So the ratio this Ey divided by a JxB this called as a Hall coefficient,  and let's write it as
with RH, capital H standing for Hall okay.  And what we have shown is that this RH is
equal to so this is Ey divided by Jx into B, this is equal to a VH d divided by I into B
where we have written the Jx to be the linear density of current, which is equal to I over
d, because Jx was in the denominator, so this is equal to I over d, d is the sort of width of
this current, I mean this sample that you see here okay.  So from this equation so this is
equal to 1 over nq, which is what I have said from this is it is very clear that this depends
on the type of carrier density, and also the density the actual N which is the density of the
carriers okay.  So this is the experimental setup and so on so you, how you actually apply
the magnetic field that is the question okay.  And what you do is that you put the sample
in presence or in between the pole pieces  of an electromagnet such that that direction
because if you put something in between an electromagnet the magnetic field is going to
penetrate  that  sample and that  becomes your z-direction which is  shown here in this
particular direction towards it okay.



  And then you sort of pass a current in a in a one of the other two directions, call that as a
x-direction and measure the voltage in the third direction, let's call that as a y-direction.
So once you do that and these electromagnets as we have in the labs in almost all labs
that are having these experiments at the undergraduate or even at the MSc level,  The
magnetic field is not large, about 0.3 or 0.4 Tesla, anything between 0.2 to 0.4 Tesla and
so on.  So these magnetic field is applied so that the electrons they drift along the y-
direction  and you measure the voltage okay.

  So  from the  direction  of  the  current  and  the  magnetic  field  one  can  estimate  the
direction  and accumulation of the charge carriers in this y-direction okay.  And connect
one of the voltage probes that is Hall voltage probes, which is shown here okay.  So that
is a Hall voltage probe and then such that you actually by connecting say a voltmeter  and
so connect  the other  voltage probe to the other  side of the voltmeter,  or may be the
ammeter and leave this connection the way that it is.  Now you record in this experiment
you record the voltages record four sets of readings  okay and these readings are you
measure the voltage by this voltage probe or these Hall voltage probe which is either a
mili-voltmeter or an ammeter and so on.  So you measure it for a given magnetic field
and current okay let us call this as V1.

  Okay so let's call this BI that is B applied in a particular direction, which is say the plus
z-direction, and I which is along the plus x-direction let us call that as V1.  Now you
change the direction of current okay by changing the pole pieces of the battery  that is
driving the current let's call that as V2.  Now you calculate a minus B and I that is you
change  the  in  the  electromagnet,  you reverse  the  pole  pieces  and calculate  which  is
known as V3, and then finally you have a minus B minus I, which let us call it as V4
okay.  So this V3 is for the reverse field, and V4 is the reverse field and the current and
this is the reverse current and so on okay.  So now using these data that you have in the
lab, your VH in terms of this V1, V2 etc  can be written as V1 minus V2 minus V3 minus
plus V4 and so on okay and divided by V1 minus V2 minus V3 and plus V4, and so this
is the expression for the Hall voltage, and you note down the Hall voltage and once you
get the Hall voltage, you can put it into the formula that had been discussed, that once
you get this Hall voltage you know the current or  and you know the dimensions of the
system  which  is  D  and  I,  and  you  also  know  the  magnetic  field.

  So  you  can  get  RH  which  is  nothing  but  1  over  nq  okay  and  you  repeat  the
measurements with whatever values of magnetic field and current that are available to
you and usually the width of the sample,  that is d is of the order of is about maybe
around 5 mm and W is around  W is very small this is around 0.5 mm okay.  So this is the



like or the length of the sample, and the width of the sample which is the thickness of the
sample so to say is a 0.5 mm which is you know these are samples that are available  and
now you can draw suitable graphs, and as a function of B and VH and then you can
actually calculate from the slope, you know what are the sign of the charge carriers, that
is whether they are electrons or whether they are holes and the fact remains at the end
that your RH or R is proportional to B. So the R versus B is a straight line is what I mean
okay.

Now when von Klitzing did this experiment he found something very unusual and this
unusual  things  give  rise  to  a  lot  of  interesting  phenomena,  he  found  that  the  Hall
resistivity, we will write it as R or we will write it as rho, it has a structure like this and
there is a very rough drawing, but and so on and then you know this there is a bit of so
this is as a function of B and the experiment is done at, I will show you better pictures of
this but right now is just a schematic drawing, and why did I not show this kind of step
like structure, because this is the region where the classical Hall effect is the experiment
is done at very small B where it is almost like a straight line okay which I did not show of
course showed it with a freehand drawing, which is and just to show that there is no
plateau structure there, so this plateaus actually through a lot of surprise and why should
there  be  plateaus   and what  happens  which  means  that  the  Hall  resistivity  does  not
increase in this region  as you increase the magnetic field.  You have to understand that
why should Hall resistance would increase with the magnetic field, okay a very simple
sort of calculation would show you this that you know when you when you change the
magnetic field you actually change the carrier density and how you change the carrier



density, you change it because your this is like 0 to mu, so this is your carrier density is
equal to some f(E) g(E) and dE okay.  So this E is the energy of the electrons in presence
of a magnetic field okay, we do not know as yet what that is but this is a general formula,
this is for the density of electrons or it's the total number of electrons okay, I mean you
can you can write  this  as total  number of electrons,  because you have integrated the
density of states.  So either I write n and then somehow if I divide it by V, that is will
become the density of carriers so in that case it becomes n. Now this is some function of
E which sort  of you know this includes a magnetic field.

  So this is the Fermi distribution function to remind you what is the Fermi distribution
function, the distribution function is exponential beta epsilon minus mu plus 1, and so
this is the bare electron, where electronic energy levels are written as h cross square k
square over 2m, and mu denotes the chemical  potential  here this mu is  the chemical
potential and and this is the density of states okay.  So because every quantity physical
quantity that you would like to determine, depends on the density of states that how many
states are there,  that tells  you what the properties  will  be and how the properties are
different in different dimensions okay and because this density of states have different
behavior with energy,  and we are really looking for energies close to the Fermi energy,
for most of our conductance behavior okay.  So this tells you that as you sweep B or as
you increase B, we told that you put things inside an electromagnet and take reading for
various B's, which means that you make the current that is flowing in the electromagnet
to be larger and larger so that you can actually sweep over a range of magnetic field.
There it was very small you start from zero magnetic field and go up to maybe 0.4 Tesla
whereas here you go up to maybe 10 Tesla or 15 Tesla, which is a large magnetic field
and these distribution function will be proportional  to not really proportional but it will
sort of scale as you change the magnetic field, because of the reason that this quantity the
Fermi distribution  function will  be a function of B  because the  energy it  will  enter
through the energy.



  I wrote it separately but does not mean that we are talking about these two will scale
independently they will depend on each other and this will increase as you sweep B as
you make B to be larger, when that happens then the conductivity will be different okay
will change, just  like in the classical  Hall effect we saw that as you change B, these
resistivity or the Hall I mean the Hall resistance so to say  that scales with the magnetic
field,  here also you should do that but why is this region this plateau region coming, and
because of this plateau region, it is these are called plateaus, and because of this plateau
region the name had come, that it is a quantized Hall effect or a quantum Hall effect,
because here the resistivity is not just a monotonic function linear function of B, but it
shows plateaus and these plateaus are interesting.  Now what Klitzing found out on the
day of his discovery in which he actually wrote some nice notes they are sort of illegible,
because they have been you know used many times,  but he had found out that these
resistivities  are quantized in h over e square,  which means this  has a value h over e
square, I am just giving you an example this is h over 2e square, this h over 3e square and
so on okay.  So these are happening these now these are resistivity so they have, so this is
this value is h over 3e square this value is h over 2e square   and this value is h over e
square and so on so forth okay, and he found that this has a value which is it is 25.813
kilo ohms okay  and this is a resistance which is now taken as a unit of resistance.  Now
you see that h is a Planck's constant okay e is the electronic charge and these two put
together define a unit of resistance, these are quantum mechanical quantities, like h sets
the scale of energy  if you remember that E equal to h nu or h cross omega, as appeared
in Planck's theory of radiation,  so this  is  the quantized energy of the photons with h
having a value which is 6.63 into 10 to the power minus 34 joule second and this h was
initially introduced by Bohr's theory of atoms, where the electrons have angular momenta
which are quantized in unit of h such that when they move around in the stationary orbits,
they do not emit electromagnetic radiation, and these are called as the stationary orbits
okay, and e is the electronic charge, which has a value 1.6 into 10 to the power minus 19
Coulomb, thus all these microscopic quantities h and e, they put together define the unit
of resistance which is h over e square which is a measurable quantity and it comes out  in
the  Hall  experiment  okay.   And  this  is  known  as  metrology  what  it  means  is  that
metrology  is  a  scientific  study  of  measurement  which  establishes  a  common
understanding of units in the context of this modern manufacturing industry, metrology
also refers to the calibration of machines that are used in the production process and for
example the defining the length of an object one uses the laser interferometry.  So here
we  define  the  unit  of  resistance  or  we  fix  resistance  by  this  experiment,  and  this
experiment think of this it is done in the lab okay, of course we are talking about low
temperature and large magnetic field, but they are still accessible low temperature is we
know that liquid nitrogen temperature, or liquid helium temperature if you want to go to
still lower values, liquid helium temperature is about 4.2 Kelvin and liquid nitrogen is



about 77 Kelvin, these are low enough temperatures for a specific kind of experiments I
mean  you probably need to go to farther lower temperatures to see some other effects.

  Let us not go into that but here it is some experiment that is done with samples which
are not perfectly clean which we will see in the coming discussions but they still are able
to fix the value of the resistance.  This is the one of the main triumphs of the quantum
Hall effect which was missing in the classical version of the Hall effect, which could only
give you for a given sample, which could give you the sign of the carriers, that is whether
they are electrons or holes or what is the carrier density for that particular sample, which
could be anything between 10 to the power 16 to 10 to the power 19 but it does not say
anything  which  is  a  fundamental  quantity.   Now this  tells  you about  a  fundamental
quantity, if you see that it has the really the resistance the unit of resistance h over e
square,  and  will  also  you  know  in  almost  a  similar  manner  we  will  talk  about
conductivity, which has a scale which is inverse of that so this is called as conductivity.
And conductivity is either written in Ohm inverse, or it is written as Mho, M H O.  So
this Omega is called ohm and this is called as mho, just the opposite okay so that is called
as a conductance.

  So, I hope just to put things in perspective in half a minute, we have done a thorough
calculation of conductivity in a nanostructures or mesostructures, mesoscopic quantities
rather systems, the mesoscopic scales of those quantities.   And then we came to talk
about  Hall  effect,  which  is  not  we  are  not  interested  in  calculating  the  longitudinal
resistance,  which  of  course  we  also  would  be  you  know  discussing  longitudinal
resistance, but here we are more interested in talking about the transverse resistance  that



is perpendicular to the direction, where you send the current you measure the voltage in a
direction, which is perpendicular to that that is called as a Hall voltage.  So the system or
rather the formalism does not change, the system also remains the same,  excepting that
we are talking about a different resistance and the different resistivity of the material
property of the material, and the property very convincingly shows us the resistivity to be
a universal constant, and 25.813 kilo ohm corresponds to the value, h over e square which
are known to be purely quantum mechanical quantities.  Thank you.


