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  So, in  the last class we have talked about the Kane-Mele model, but I have gone a little
fast  there in order to you know finish up the calculation of the Z2 invariant which we
have done it  quite extensively. So, right now we will rerun some of the discussions that
we already had  and talk about the model a little more and show some of the results that
we can get from  the model okay.  So, we start  with this  again with the Kane-Mele
Hamiltonian, I have already told that  there are certain features that are distinct from the
Holden model and will again come  to that in just a while. So, the first term is the first
term is the tight binding term  which is there in graphene, this is the really the Holden
term and I have said this that  you can use either a t2 or a lambda SO there mostly in
literature it is used as lambda  SO. So, I have written it as lambda SO and this is the
Semenov term which opens up a  gap of trivial nature at the Dirac points okay. So, it is a
simple model which is two  copies of the Holden model and that is why it is written as
Holden square and it conserves  the S z component or z component of the spin angular
momentum and I have written it  with  a capital  S z, but sometimes in literature it  is
written with a small sz.

 So, here S  z denotes the z component of the true spin or the actual electronic spin. So,
this has  been told that the spin up the up spin particles which correspond to a Holden
model with a  flux phi equal to pi by 2. You remember the flux comes from these the
second neighbor  hopping which is exponential i phi and then of course, one has a c i
dagger c j. Now this  is a second neighbor.

 So, we write it with a i j or you can write it just in case you  are not comfortable with i j
because that is used for the nearest neighbor as we have  done it for the first term you can
use a i k also. So, instead of a j one can use a  k just to make sure that that is the next
nearest neighbor and not the nearest neighbor.  We have shown this picture many times
and similarly for the spin down electrons it is  another Holden model and with us this flux
equal to minus pi by 2. So, there is a flux  pi by 2 for the up spin and minus pi by 2 for
the down spin and there is exactly what  is written here and it takes a block diagonal term
where the upper block on the left is  for the up spin and for the lower block down spin
each one of them each of H up and H down  like a 2 by 2 Hamiltonian of the Dirac form.



What I mean by Dirac form is that it can  be written as d dot sigma and the Hamiltonian
has time reversal symmetry now which we have  discussed elaborately.

  Now, there is another term that is added which is called as a Rashba spin orbit coupling
we will do a little discussion on that in just a while and the term is written as i  lambda r
and there is a c i dagger and these sigma cross d i j will tell you what d i j  is d i j is
actually a unit vector that connects to the site from site i to a nearest neighbor  site j and
of  course,  the  rest  of  the  things  are  all  same.   Now,  this  creates  one  complication
additional complication which is what we have seen here  the Hamiltonian no longer
remains as block diagonal as you can see here. There are off  diagonal elements in this 4
by 4 Hamiltonian that arise and it does not have this you know  block structure that you
see here okay. Now, how do I get this term and you know how this  thing comes into
picture is what we will see and so, some of the results are same with  and without the
Rashba spin orbit coupling though they are quantitatively different and  we will have
large application in terms of spintronics if we apply or rather include  this term and as I
said earlier this term is quite possible in a 2 dimensional perfectly  2 dimensional system
which our graphene is because there is an inversion symmetry breaking  happening there
which will give rise to an electric field and this the spin will couple  to the electric field
and  so  on  okay.  We  will  just  come  to  that  in  just  a  while.

  And we get spin filtered 8 states because of this term that we see here and there are  the
spin current that will be there and one gets a quantum spin Hall phase which is observed



in the system and there is a quantized Hall conductance in the spin sector which we call
it as quantum spin Hall conductance as opposed to the charge Hall conductance which is
equal  to 0 here. It is 0 because the system has time reversal  symmetry and we have
shown  that  how  the  system  has  time  reversal  symmetry  earlier.  So,  the   spin  Hall
conductance is quantized at a value which is E over 2 pi. Let me try to derive  this term
that you see here the lambda r term and this is like how this sigma cross  d i j and the z
component of that come is what is important. I mean you have to take  a note of this z
component because we are writing a Hamiltonian whose eigenvalues will  give energies.

 So, it cannot be just a vector. So, it will have a scalar and that z component  makes it a
scalar. So, we write down the wave function in the  Wannier basis and the wave function
is of this form where these c i s are the operators and  these w s are the Wannier wave
functions and the Wannier functions are localized at some  sites which are given by this r
i. These obey the orthonormality condition which is given  by this equation. Let us call
this as equation 1 and this as equation 2.

 So, it is clear  that it is w star which is a Wannier function r i minus r and the r j minus r
where i and  j are different sites will be equal to 0 and if i and j are same then that will
lead to  the normalization of the Wannier functions. Now, this is well known that when
you want  to write derivatives on a lattice one does it like this that. So, it is a f prime of  x
is equal to f of x plus h minus f of x divided by h and limit h tends to 0 that is the
definition  that we have learned probably in school. So, there is these Wannier functions



which  are written at  r i  plus d site where d is the nearest neighbor site and taken a
subtracted  the Wannier function at the ith site and then because it is a gradient. So, it
should  have   a  direction.

 So, this is that a d cap direction that is shown and divided by the d which is  the length of
the  nearest  neighbor  vector  or  the  distance  nearest  neighbor  distance.   So,  because
gradient is a vector so, thus this d cap which is in the direction connecting  the two sites r
i and r i plus d that is shown here. So, this is the definition of momentum  or a gradient of
a scalar function. Now, why is that required that is required because  we need to write
down the momentum the operation  of the momentum on the wave function and this
momentum is written as minus i h cross del del x. So, for del del x there is a shorthand
notation which is del of x and we have taken h cross equal to 1 without any loss of
generality  and this is equal to a c i and w r i where c i is a is an operator at the site i and
that  is  the  Wannier  function.

 So, this can be written as minus i and then  now you apply the gradient operator just
from this equation 3 let us call that as equation  4. So, we apply the same thing. So, del
del x is nothing, but say something like a gradient  vector and this gradient is written as x
cap dot you know the gradient of w at r i. Now  this we already know from 3 and that can
be expanded now since we have a x cap here  you can write it as x cap as well. So, this is
equal to dx by d square and so on okay.



 So,  that is  exactly  what we have done now this  is no longer a vector this  quantity
because  you have dotted with a x cap direction and this x cap comes because we have
taken a p  x it will be p y will get a y cap here. So, what we land up with is an operator
and  then this dx over d square and these the Wannier functions at the or the difference
between  the Wannier functions at the consecutive or the nearest neighbor sites.  So, we
are ultimately you know interested in a quantity like this which is psi dagger  p x psi and
that is because that would you know be there in this kind of a term. So,  we are sort of
trying to get that here. Now ultimately this will be related to the to  the form that we just
got  and  then  we  write  down  if  you  look  at  it  carefully  it  is  pretty   easy.

 So, this is that c i dagger c j coming from the dagger is coming from psi dagger  and c j
is coming from psi and then the p x operator is written here exactly in the  same way that
we have done it in equation 4 let us call this as equation 5.  So, now because of the
orthonormality condition that is this and this will only survive you  know provided D
connects to the nearest neighbor and this with this will give you a 0 because  that is the
orthonormality coming if i is not equal to j and of course, i is not equal  to j. So, this left
hand side that we have in equation 5 has a form which is nothing,  but this 6 where this
W star r i  and W r j plus D will  give you 1 because of the normalization  where D
connects to the neighboring sites and so on.  So, this is a c i dagger c j and then the d x by
d square and the volume integral  over  r  goes on to make up for the orthonormality
condition. And similarly for p y 1 gets this  exactly the same let us write it as 7 and then
we have a d x over d square and a d y  over d square and so, this is p x and p y that one
gets here.



 And of course, you do  not see any p x and p y here, but then we will show that this is
really coming out from  a term like that okay. So, this is 6 and 7 make up for the 2
equations that we need for these  the expectation values of p x and p y. Now, this you
know that the Rasbha term is written  as sigma x p y minus sigma y p x okay. This is
basically the sigma cross p and the z component  of that or you dotted with the with the z
okay. And the z is nothing, but we will tell  you in a moment that it is nothing, but the
electric field direction of the electric field  which occurs or other which arises because of
there is a gradient of the crystal potential  okay.

 So, now, with all these things we have a there  is a dagger that is missed here. So, psi
dagger and so on this sigma x p y minus sigma y p  x which is nothing, but sigma cross p
the z component of that and a psi r. So, we get  a c i dagger and a c j coming out from this
and then a sigma x d y minus a sigma y d x  exactly coming out from this and there is of
course, a d square that comes out okay. And  there is a i factor there and this gamma is
simply nothing, but either you call it a lambda  r or something, but lambda r we are going
to get it here.  So, we sort of wrote a constant a coefficient of this Rasbha term and this is
nothing, but  what we want okay.



 So, the Rasbha term indeed has a form. So, this one is what you start  with and then you
end up with a term that is like this and this is exactly what is written  here okay. This one
needed a little bit of hand holding in order to derive this form, but  I sort of wanted not to
you know break the flow in calculation of the Z 2 invariant which  is why I skipped it
there, but now you have it here okay.  And this has already been shown that the in the
momentum space the Hamiltonian is written  as this. Now we of course, do not have a
block form this is a block here, this is a block  here, but the blocks are being mixed by
these off diagonal forms which are written in terms  of rho k and the rho k if you look at
it here it is purely coming out from the Rasbha term  okay and this is a little lengthy
derivation, but one should be able to do it without much  problem because one just needs
to Fourier transform each one of the terms that we have  written in the Hamiltonian that
we have written here okay.

  So, this Hamiltonian so, this is the most important equation and let us call it as a  capital
1 okay. And so, this is by Fourier transforming  in that capital 1 okay. And the various
other things which are there written here which  is a xi k or some this is that thing that is
coming out here that is here and the gamma  k is also there which are part of the this is
that nothing, but the T 2 the Holden term.  So, it is a spin full Holden term here and the
kinetic energy term which is there in  graphene is the tight binding kinetic energy that is
given by the xi k gamma k and rho  k and this is the 4 by 4 Hamiltonian. You remember
the Holden model was 2 by 2 because  the spin was not taken into account it was only the
sub lattice degrees of freedom and  here of course, we have taken into account spin and
that is why the size of the Hamiltonian  now have gone up and it has become 4 by 4.



 And these are some of the band structure plots  of these so, once when some diagonalizes
this  Hamiltonian  which  can  be  done  in  a  computer   and  then  one  get  for  various
parameters. Now, you see that we have shown it explicitly  for a few parameters which
are given by lambda r equal to 0 lambda v equal to 0 which means  it is only the graphene
thing and there is no lambda r or lambda v and then one has sort  of touching direct points
here and once when one switches on a lambda r then there is the  band still touch, but the
conduction band and the valence band they become spin resolved.  So, the ones that you
are seeing in blue and red are spin resolved valence bands and  these pink or something
magenta and the green they correspond to the conduction bands spin  resolved conduction
bands when you put lambda v equal to 0, but lambda r not equal to 0  a trivial gap opens
up at the direct points which is a known result. Now, if you have  both not equal to 0 that
is the Rashba term as well as the Semenov term not equal to 0  there is a gap as well as
the spin split bands can be seen okay. This is exactly what is written  there. So, these are
numerical calculations that are emerging out from this dispersion  or this Hamiltonian
that comes out here okay.  



Let me do a little discussion on the Rashba term okay. A brief discussion has already
been  done this is little more to supplement that and so on. So, when you have a charged
particle  with a velocity v moving the velocity v in a magnetic in a region where there is a
magnetic  field B there is a low range force on the charged particle. So, the low range
force  is given by f L and which is equal to a minus V e V cross B.

 So, V is the velocity and B  is the magnetic field and because it also has spin which is
now we have to necessarily  include spin in our discussion there is also a Zeeman energy
which is given by let us call  it a e z and which is equal to a mu B sigma dot B okay.
There is of course, one is force the other is energy. So, this is what we are writing  and
then mu B is called as a Bohr magneton which has a value 9.27 into 10 to the power
minus 24 joule per Tesla okay. So, now when the electron is subjected to an electric field
then in  the rest  frame of  the  electric  of  the  electron  it  experiences  a  magnetic  field.

  So, let me write that  in its rest frame it experiences an effective magnetic field  a B
effective which is given by minus e cross v divided by c square where c is the speed  of
light.  This is electrodynamics you can check Griffith’s book. So, that is the effective
magnetic field that it experiences and this gives you an a net you know a Zeeman energy
which is given by a mu B e cross v divided by c square dot sigma. So, its B dot sigma  or
sigma dot B does not matter I mean you can write it. So, this is the so, its sigma  dot B
which is nothing, but so, this is like mu B sigma dot B effective and B effective  appears
just  on  the  step  above.

 So, this e z prime is nothing, but the spin  orbit coupling term and we can write down if



we write it down in terms of operators  then this spin orbit term is written as a mu B over
m c square e cross. Now I make this  v as p divided by m and this is written as m c square
and there is a sigma dot there  okay. So, this is the spin orbit coupling term that we are
interested in and you will see  that the Rashba term looks very similar to that and what is
the origin of e in crystal  lattice. So, e is originated by the crystal potential  which is given
by minus e equal to minus gradient of v where v is the crystal potential  which is present
due to the presence of ionic crystals or ionic sites and so on. Now what  happens is that if
you have a purely two dimensional sample which are graphene is then your e becomes  in
the direction of z cap okay.

 So, its in the direction of z cap this yields  a form for the HSO as say we write it with the
alpha r by h cross and then there is a  z cap across p dot sigma I have changed the order
of this e and which I have been you  know doing it. So, sigma dot this term or this term
dot sigma it really does not matter.  So, this is a z cap cross p dot sigma and then all these
other things like mc square  etcetera they are being absorbed here. So, alpha r by h is you
know it replaces this  mu b e z divided by mc square which are scalar quantities okay. So,
the spin orbit coupling  takes this form which is z cap is the direction unit vector in the z
direction which is perpendicular  to the 2D plane and this is crossed with the momentum
and  dotted  with  the  electronic  spin.

  So, here make no mistake that we are really talking about spin by sigma usually when
we  write the graphene Hamiltonian we denote sigma to represent the sub lattice degrees
of freedom,  but this is a real spin okay. You know so, there are this alpha r is actually
measurable and can also be enhanced by using gate voltage and various kinds of other



things  such as heavy adder terms like gold etcetera in a graphene matrix, but I will not
go into  details of that. So, typical values of alpha r in these LaAlO 3 these are interface
of  this hetero structures SrTiO 3 etcetera this has a value it is about 0.5 to 0.6 into  10 to
the power minus  11 eV m whereas,  for  some of  the  topological  insulators   alpha  is
typically 1 or 2 orders of magnitude large and it can have a value which is 10  to the
power minus 10 eV meter and this can be further enhanced by using external means  will
not go into that, but how is this relevant for us why we are talking about it why we  want
to include an additional term as I said that this additional term obeys the time reversal
symmetry  or  rather  all  the  symmetries  that  graphene  has.

  So, if we add a term which does not violate any of the parent symmetries of graphene
then  it might as well be there okay. It unfortunately turns out that the magnitude of the
spin orbit  coupling or that alpha r or the strength of the spin orbit coupling in graphene is
quite  small  it  is of the order of a few m eV. However,  it  is still  has a fundamental
importance in  this study of quantum spin Hall insulators and the study of spintronics
which  could be  you know next  generation  devices  for  with  replacing  the  electronic
devices. For a number  of reasons which I do not want to elaborate here, but one of them
is that the spins do  not undergo joule heating it is not scattered by impurities and so on
and hence they could  be you know potential candidates for doing a device making okay
spintronic device making.  So, what happens is that in presence of the spin Rashba term
the velocity of the electrons  becomes spin dependent at they are given by so this velocity
and I write it with a  subscript sigma because now it means that it is a spin dependent
velocity which means  that the up spin electrons will have a different velocity than the
down  spin  electron.

 This   was  not  the  case  earlier  where  the  Hamiltonian  etcetera  everything  was  spin
independent as  if we are talking about spin polarized that is spin does not enter into the
discussion.  Now that is not the case. So, this is equal to it is proportional to say a del del
k of  this Rashba term let us write it okay. We are writing it with a SO. So, let me write it
with a SO and this is nothing, but this is equal to some alpha r z cap cross sigma and  now
you see that why I wrote it with v sigma because there is a sigma there and so on and  this
will give you different velocities to different spin components that is up spin  and down
spin  component.

 So,  it  is  pretty  much like you know the Magnus  force that  one sees in  a  classical
spinning object where there is an effective force on  that on there is a and that in this
particular  case would make these ups and down spin electron  separate their  ways in
terms  of  you  know when  they  move  in  a  system they  will  sort  of  go   in  different
directions and that will create a spin current or spin polarized current which  depends on
spin. So, there will be up spin and down spin will be segregated and also  will give rise to
a spin sort of voltage and this  called as a spin Hall voltage because  it  is not in the



direction of the current of the electric field is perpendicular to  that and one has what I am
trying to say is that. So, here you will have up spin say for  example and you will have
down spin there  and so there  is  a  spin Hall  voltage.  So,  if   you calculate  a  voltage
between this and so on. So, this there will be a spin Hall voltage  and this spin Hall
voltage can be if it is the magnitude is considerable it can contribute  to spintronics okay.

 So, let me do a comparison between the Holden  model or we what we call as a Chern
insulator and this quantum spin Hall insulator. So,  we will call a Chern insulator or same
as Holden model  and quantum spin Hall insulator QSH insulator and or a same as Kane-
Mele model okay.  So, let me make a comparison between the two in terms of a number
of things that we have  learned so far. It is like a summary of what we have learned.

 So, we have in no particular  order. So, there are chiral edge states that is electrons move
in different directions  in opposite sides of the sample and there are helical edge states
where they are spin  filtered. So, this is one so this spin filtered second is this is called as
a Chern number  as the topological invariant and that is why they are called as Chern
insulator Z 2  invariant okay. Number 3 time reversal symmetry is broken  let us call it as
TRS is broken, TRS is intact. So, we have told about the implications of  time reversal
symmetry.  So, it shows a quantum anomalous Hall effect shows spin hall effect  will
show you the spin conductivity or spin hall conductance spin hall effect quantum  spin
hall effect.

 Quantum spin hall effect and one sees a plateau  in the spin Hall conductivity at e square
over h plateau at  e over 2 pi last,  but not  the least of course we have a low energy
Hamiltonian H equal to h cross V f q x sigma  x tau z plus a q y sigma y plus 3 root 3 T 2
which you can call it either a lambda  S O also sigma z tau z and similarly a low energy
Hamiltonian is h cross V f q x sigma  x tau z plus a q y sigma y and a plus this 3 root 3 T



2 sigma z tau z S z that is the  spin and plus a lambda R and sigma x S y tau z minus
sigma y S x.  Compared to the last slide we had to change these notations a little because
now sigma  denotes the sub lattice degrees of freedom while S denotes the actual spin
degrees of  freedom okay. So, these are a summary of these two type of insulator and
both are very important  in their own right okay. So, here we just show that the graphene
only with the Rashba term  there is no Haldane term and so on. So, you see that this is
just the tight binding graphene  and this is the Rashba term.

 So, you see that there are this semi Dirac or semi metallic  nature not semi Dirac semi
metallic nature at the K and the K prime points which also  that there is a band touching
because without a sigma V or the Haldane term there will be  no lifting of gap, but now
you see the spin resolved bands okay.  So, it is a gapless scenario there is no gap there
even with lambda R not equal to 0 and  you have.  So, we have just  done a Fourier
transform of this and then have plotted this  or rather solve this model and plotted this
dispersion okay.  So, finally, the spin Hall conductivity which is obtained using. So, this
is the spin Hall  conductivity with you can call it a S also, but it is written with a Z
because you are  talking about the Z component of the velocity.



 So, this is really the spin Hall not the charge  Hall conductivity which is equal to 0
anyway. So, this is equal to this is a Fermi function  which is not important because if
you are talking about 0 temperature then this is equal  to 1 and this is the Berry curvature
and the Berry curvature can be calculated using this  formula which is a very similar to
what you have seen for the Kubo formula and the velocities  are calculated from this
gradient of the Hamiltonian with respect to K x and K y or you differentiate.  So, for V x
you take a del K x and for V y take a del K y the only thing that is important  is that now
these were is the velocity operator, but that is not what is used here you use  a V s i and
the Z component which requires one to calculate the anti-commutation relation  of these
quantities. So, it is a if you want V s x Z then you take a V x and then h cross  by 2 S Z
sigma 0 sigma 0 is simply e over 2 pi this is just the scale of the conductance  okay. So,
one does this calculation and of the Berry  curvature and then put it into the expression
for  spin  Hall  conductivity  let  us  call  it   as  1  and  2.

 So, a 1 calculates 2 and then put it into 1 put Fermi function equal to  1 at t equal to 0
and then you calculate this spin Hall conductance and the spin Hall  conductance comes
out to be a very nice you know a form which is it is 0 in the vicinity  of the Fermi energy.
So, this is the bias voltage. So, you are  biasing the system and this bias voltage changes
the Fermi energy because the electron occupancy  is altered as you bias it and you see
that there is a very broad plateau in the vicinity  of E F equal to 0 or 0 bias and it is it is
very symmetric and so on.  So, this is e over 2 pi that exists for certain range of values of
the E F or the bias voltage  and when E F lies in the gapped region of the dispersion



spectrum. So, when E F lies  here which is what we have shown earlier if E F say for
example, where both are non-zero.

  So, when the E F lies in this gap and not inside the band then this is a it gives you  a
plateau  and  then  as  it  the  plateau  sort  of  goes  away  and the  spin  Hall  conductance
becomes dispersive or it sort of rises when the Fermi energy such that it falls within  one
of the conduction or the valence band is exactly the feature that we have seen earlier
okay. And so, in this so, if lambda r and lambda  v are taken from the region outside that
is this white region here or here or here or  here then of course, the Z 2 invariant vanishes
and the plateau structure vanishes as well  okay. So, this is by and large what one gets
from the Kane-Mele model and the explicit  calculations of all the quantities that are of
importance are presented here okay.  So, these are the helical edge modes that we have
shown earlier what is presented once  again.

 So, this p q r and s are these things here. So, this is a topological insulator  that is a
quantum spin Hall  insulator.  So,  let  me write  it  as QSH insulator  and this   is  trivial
insulator with no edge modes. So, here you are inside the blue region here the  light blue
region that is sky blue region inside and for the right panel you are outside  okay. This is
what completes the discussion on the Kane-Mele model.  



Let me sort of do a sort of summary slide for the quantum spin Hall phase the mercury
telluride and the cadmium telluride quantum wells and the Kane-Mele model just setting
up a  connection  between  them.  These  are  some of  the  people  who have contributed
immensely  on this topic of quantum spin Hall insulators and once when the Kane-Mele
had proposed  this model there somebody has done an experiment and the person who did
that experiment is  Molenkamp and the theory had been almost immediately proposed by
Zhang.  So, Molenkamp this is Taylor Hughes and this is Bernevig. So, these people and
later  on many other people have contributed immensely to the development of the field.
So, what  happens is that so there are these 2, 6 materials 2, 6 materials which are the
semiconductors   rather.  So,  there  are  these 2,  6  semiconductors  which  are  important
because these semiconductors  have sp hybridization and along with these are these have
a  zinc  blend  structure  okay.

  And so they actually belong to the this 12 and 16 columns of these periodic table and
you see that there are zinc and cadmium and mercury this is what one of the things that
are important I mean these 2 are important in this particular context. This cadmium and
mercury and this either selenium or palladium this is important and so on and then this  is
what exactly we want to the hetero structures to form on the quantum well to form with
this.  So, this is that thing a little blown up there are these so cadmium and mercury and
then there is a this thing that are important and so on. As I said that this sp hybridization
so as opposed to the other the transition metal dichalcogenides Bi2 Se3 etcetera where
only one orbital is near the Fermi level there are 2 orbitals involved in the you know  in
making up the energy levels close to the Fermi level.  And even though this has been
discussed I mean in the sense that this is this gamma  is actually the high symmetry point



in the Brillouin zone and these gamma is subscripted  with these 6, 7 and 8 you see that
there is a 6 here there is a 7 here and there is a  8 here.

 So, this 7 and 8 are split by the spin orbit coupling which is present in this  material. In
general this gamma 6 is in the conduction band and gamma 8 is in the valence  band
which is what you see. So, this is the conduction band in CdTe this is the conduction
band and this is the valence band and which is the conduction band is of course above
the valence band and these gamma 7 even though they are spin split but they are this
gamma  7 is not under consideration because it is far away from the Fermi energy.  



Very interestingly the mercury telluride HgTe has an inverted structure which is what has
been told and here of course the gamma 6 comes below the gamma 8 and this is what
creates  all the interesting thing which is what these people who I had shown in the earlier
slide  they have understood and this is a closer picture and so on and you see that there is
a gamma 6 in the this is HgTe and a gamma 8 is up there. So, the and the red line is
actually  the Fermi energy and you see that this gamma 6 and gamma 8 have an energy
which is minus  0.3 electron volt or about 300 milli electron volt.  So this is interesting
and when you make a structure out of it when you make a you know  a sort of sandwich
the mercury telluride in between two cadmium telluride slabs when the  mercury telluride
start starts  you know dominating the phase diagram or dominating the physics  that's
when there is a interesting thing happens and this interesting thing is shown  here in the
lower panel for D less than DC you see that there are these blue is the conduction  band
and this is a valence band and so on and this is HgTe is inside and there are these  CdTes
outside. So, the electron and the whole bands are shown  by a blue and red colors and so
on and when the width of the well it is increased. So,  this way you increase the width of
the well and when it happens then D greater than DC  one has an inversion of the so the
electronic level comes below the hole and that's where  so this is a trivial insulator and
this is a topological insulator or so topological  and in particular if we talk about it is a
QSH phase that emerges.  Now there are a few inputs that one can get from this so for a
given thickness D  DC which is equal to I believe this is a value so what happens is that
the electron and the  whole bands  they become degenerate. So, this one so E1 and H1
they merge so this basically is shown  one electron band and whole band that the cartoon
picture is it's good enough to only  show one and they merge and then they switch order



and when they merge that's called as  the degenerate point and this can be exploited in the
following sense.

  So, at this thickness the E1 and the H1 will merge it's less than DC if it is less than  DC
then E1 will be higher than H1 and if D is greater than DC then E1 will lie lower  than
H1. So, that tells you that if you think in terms of a Dirac type of Hamiltonian  this is like
a D dot sigma then the DZ which is the mass term. So, this DZ is you know  is less than 0
for a Hg Te which means it's negative that's why the inverted band structure  comes and
DZ greater than 0 for C D Te. So, at the degenerate point DZ is equal to 0.



  So where one sees the gapless Dirac fermions at the interface. So, based on this BHZ
wrote  down a Hamiltonian and this is what we have seen that 4 by 4 Hamiltonian and
which of  course, has a block diagonal nature comprising of the gamma 6 and the gamma
8 levels which  are connected by time reversal symmetry because this has time reversal
symmetry. So, they  are basically the Kramer's pairs and the spin split Kramer's pairs.
And so, in the same spirit the Kane-Mele Hamiltonian is also block diagonal without  the
Rashba term and that gives rise to a spin Hall quantum spin Hall phase. So, there is  a
connection between this and the Kane-Mele Hamiltonian which also is block diagonal in
the in the spin space and one can calculate and that is what we have shown here.  Thank
you.


