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  We have  seen Haldane model  or  the Chern insulator  which  is  characterized  by a
nonzero churn  number and the insulator is characterized by a time reversal symmetry
broken.   There  is  no time reversal  symmetry  in  the  system which is  induced by the
second neighbour  complex hopping which we have mentioned and is  this  picture of
Haldane and later  on in   about  2004-2005 Kane and Mele  this  is  Charlie  Kane and
Eugene  Mele  they  have  understood   that  it  is  possible  to  recover  the  time  reversal
invariance and this would create another insulator  which is called as a quantum spin Hall
insulator.  In fact what they have realized was very profound that if we include the spin
degrees of freedom  in the system actual spin degrees of freedom not the pseudo spinner
that we have been talking  about so far then it is possible to regain back the lost time
reversal symmetry.  Of course the system would not have Chern number or it is not will
not be called as  Chern insulator but it will be another kind of insulator which is known as
the quantum  spin Hall insulator which is what we will see.  So, Kane and Mele they
proposed this model which is known as the Kane Mele model and  these are the papers
that you see that which were published in 2005 in the physical review  letters by both
Kane and Milley the one of them is called as the quantum spin Hall effect  in graphene
which they realized that because along with the spin orbit coupling term there  is the
Hamiltonian respects all symmetries of that of graphene.  So, it is quite likely that it will
be there in graphene and then they wrote another paper  in the same year or rather this
paper came earlier than the next one which says about  a Z2 topological order and the
quantum spin Hall effect.

  So, Z2 index or the Z2 topological invariant is the new topological invariant for this
system which is distinct from the Chern number because in this system the Chern number
is  0 because the system has time reversal invariance.  So, this is what we are going to
study which goes by the name quantum spin Hall insulator.  So, here of course as I said
earlier that the time reversal invariance is not lost it  is in fact preserved in the systems
and the system will show protected boundary modes  or edge modes very similar to the
Haldane model or the churn insulator, but here it  will be spin resolved modes and they
are called as a helical edge modes that are present  in the system and as I said that they
will  be  characterized  by  a  Z2  invariant.   So,  let  me  write  down  these  two  points.



  So, helical edge states that are spin resolved and characterized by Z2 invariant and we
will  see what the Z2 invariant is and we will of course stick to a simpler situation in
which the system has inversion symmetry and there the calculation of the Z2 invariant  is
easier  than  of  course  without  a  translation  or  rather  the  inversion  symmetry  in  the
problem.  So, the main ingredient of this kind of quantum spin Hall insulator is what is
known as the  spin orbit coupling and in the most simple way that one can understand is
that the angular  momentum and the spin are coupled and if the scenario is like this then
we know that neither  of L or S are good quantum numbers and one actually talks about J
which is a good quantum  number in this case and one can find out the eigenvalue of this
L dot S operator in  the eigen basis which is spanned by you know J, J1, J2, M1, M2 and
so on so forth.  So, the spin orbit coupling is as I said it is an important ingredient in this
problem  and this special kind of spin orbit coupling is what we shall be talking about it is
called  as a Rashba spin orbit coupling and it has a special place in graphene because
graphene  is  two-dimensional  which has  the  inversion symmetry  about  the Z axis  is
broken and Rashba  is a very possible candidate in graphene.  So, we will be talking
about that and so what kind of spin orbit coupling are we talking  about here we are
talking about a spin orbit coupling let us write down a Hamiltonian which  looks like we
may use a different notation but right now we are using a lambda SO which  is nothing
but that second neighbor hopping t2 that we have talked about in the Haldane  model and
then there is a sigma Z and then there is a tau Z and then there is a SZ okay  and we will
actually  derive this  term a part  of it  is already derived like this term is  there in the
Haldane model we just have gotten this SZ extra.  Now the sigma Z just to remind you is
the sub lattice degrees of freedom tau Z is a  valid degree of freedom and SZ is a real spin
so spin degree of freedom so SZ equal to a  plus or minus 1 for a spin half particle.

  So, why this term respects time reversal symmetry it respects time reversal symmetry
because  under time reversal symmetry the tau Z changes sign that is one is taken from
the K Valley  to the K prime Valley or K Dirac point to the K prime Dirac point so that
changes sign  so under time reversal this tau Z goes to minus tau Z and we will see in a
while that  SZ also goes to minus SZ so an up spin goes to down spin and sigma Z does
not change sign  because that is the sub lattice degree of freedom and under time reversal
it does not  change sign so there is no net let me also write that sigma Z does not change
sign.  So, there is no net sign change and this is the main thing about this quantum spin
Hall  insulators and we now have taken into account the real spin degrees of freedom.
So, if you take this SZ equal to 1 and minus 1 separately so plus 1 and SZ equal to minus
1 so this  is  one copy of the Haldane model  and this  belongs to another  copy of the
Haldane  model okay such that the Chern number or the Hall conductivity will be a plus e
square  by h and minus e square by h that is equal to 0. 



But nevertheless one has a quantity called  as the spin current which is defined as Js
which is equal to h over 2e J up minus J down  so this will be nonzero and we will have a
sigma xy a spin Hall let us write it with  the s this is equal to a nonzero e over 2 pi.  So it
is a it is a distinct topological insulator compared to Haldane model  and 2d electron gas
we have used this abbreviation several times in presence of an external magnetic  field
okay.  So this is the new thing that is going to come and it is a new form of topological
insulator  the second kind so to say after the ones that we have seen for either 2d electron
gas in  a an external field or a Haldane model where time reversal symmetry is broken by
a second  neighbour complex hopping okay.

  So in order to understand this better let me talk about the time reversal symmetry in  a
spinful model okay I mean spinful model means a Hamiltonian that includes spin real
spin or let me write it as in presence of spin.  Let me remind you that the time reversal



symmetry operator without any spin present in the problem  is the complex conjugation
operator.  So without spin we will write for this time reversal symmetry or symmetric
system  as  TRS   so  without  spin  TRS  operator  is  simply  K  which  is  the  complex
conjugation okay.  So we can write it with a slightly tilted T which is nothing but equal to
K but with  spin this is not sufficient and let me tell you that why it is not sufficient okay
and  the reason that it is not sufficient is that because this complex conjugation operator
will act on the Sigma x let me write it with just K acting on Sigma x will give Sigma x
will not change its sign K acting on Sigma y will give you a minus Sigma y because
Sigma  y is complex and K acting on Sigma z will give you a Sigma z without changing
its sign  but why do we want it to change sign.  So let us go back to that the spin orbit
coupling and  which is written as L dot S now under this time reversal L goes to minus L
and S goes  to minus S so that there is no change in sign.

  Now you see that since we are talking about spin half particles we have resorted to the
Pauli matrices now you see that both Sigma x and Sigma z do not change sign but we
want  them to change sign.  So there is some other operator that we need to think about
which will give us a change  in sign for all of Sigma x Sigma y and Sigma z and that can
be done in the following sense  I am drawing a coordinate axis but this is in the spin
space so this is say x this is  y and this is z so this is actually s x s y and s z if you like and
then if I do a rotation  by pi about the y axis then x become minus x and z becomes minus
z.  So rotation by pi x becomes minus x and z becomes minus z and  y remains as y
because it is a rotation about the y axis.  



Now this is as I said that this in the spin space which means that such a rotation will
make Sigma x to minus Sigma x and Sigma z to minus Sigma z and will not do anything
to Sigma y but Sigma y by virtue of being complex will change a sign under the these
complex conjugation.  So we are looking for an operator that does this rotation about the
y  axis  by  pi  and  if   you  remember  the  quantum  mechanics  angular  momentum  of
quantum mechanics such a rotation  is written as so this rotation operator is written as
exponential say for example a minus  i pi s y by h cross okay and now the time reversal
operator will be this into k okay  and since we are talking about this Pauli matrices or
other spin half objects we can  make a simplification that s y is equal to h cross by 2
Sigma y and or rather all components  will follow this relation that is s x equal to h cross
by 2 Sigma x and s z equal to h  cross by 2 Sigma z.

  So if we do that then this complex conjugation operator will be like exponential minus i
pi by 2 Sigma y okay and then of course we will have to write down this. So let me deal
with this for the moment and this is easy to work out so this will we can write this  as a
cosine of pi by 2 Sigma y and a minus i sine pi by 2 Sigma y.  So let me show how this
simplification is done so cosine pi by 2 Sigma y is equal to  so cosine of pi by 2 Sigma y
is equal to 1 and minus these pi by 2 Sigma y whole square  there is a half factor here
which is 1 by 2 factorial and then there is a 1 by 4 factorial  and pi by 2 Sigma y to the
power 4 and so on. So there is a plus minus plus minus now  this can be written as if you
remember the properties of the Pauli matrix then this Sigma  y squared equal to 1 and that
gives you that Sigma y cube is equal to Sigma y and so on  so forth okay. So each even
power of Sigma y will give us 1 and each odd power will give  us just simply Sigma y
okay.

 So that tells you that this becomes equal to 1 minus there  is a 1 by 2 factorial and then
there is a pi by 2 and so on so forth square plus 1 by  4.  So it is a pi by 2 whole to the
power 4 and so on and this is nothing but cosine of pi  by 2 which is equal to 0 okay and
similarly but the sine of pi by 2 Sigma y will have  these all the odd terms which are there
so this is equal to a pi by 2 Sigma y minus 1  by 2 factorial pi by 2 Sigma y cube and a
plus 1 by not this 3 factorial I am sorry  this 5 factorial pi by 2 Sigma y whole to the
power 5 and so on okay.  So this is nothing but equal to so because your Sigma y cube is
Sigma y and there are  Sigma y so that Sigma y into a Sigma sine pi by 2 Sigma y which
gives you so this operator  is exponential minus i pi by 2 Sigma y is nothing but minus i
the sine pi by 2 equal  to 1 so it is minus i Sigma y and that tells you that this time
reversal operator for a  spin full case which is what we wanted to derive is nothing but a
minus Sigma y and  a k okay so that complex conjugation will be there.  So this is a quite
a known so that is the operator there and so on. 



 Now what  do we do with  this  in  the  sense  that  how is  it  useful  and what  are  the
consequences   of  time  reversal  symmetry  in  a  spin  full  model  and  a  priori  the
consequences are quite  significant it gives you what is called as a Kramer's degeneracy
okay.

  So let us see what Kramer's degeneracy is okay alright.  So now we have of course
written down that this is equal to a minus i Sigma y k if you  take a square of that then it
is equal to minus i square and Sigma y square equal to  1 and k square of course equal to
1 as well because you do twice complex conjugation it  comes back so this is equal to
minus 1.  Now there is something very important that in a spinless system where there is
no spin  tau square equal to 1 or these time reversal t  square equal to 1 for spinless
system.  Now this minus 1 actually has a lot of interesting thing to go along with and let
me see that  and how does it lead to the degeneracy.  What happens is that suppose if psi
is  an  eigenfunction  of  a  Hamiltonian  with  energy   E  well  this  Hamiltonian  is  TRS
invariant  that  is  time  reversal  symmetry  invariant  with  energy E then T psi  is  also
another eigenfunction or rather T psi is actually perpendicular  to or orthogonal to this it
is also another eigenfunction with the same energy and this  degeneracy is called as a
Kramer's  degeneracy.

  So how do we see that that this T psi is and what is the nature of T psi?  T psi is a
perpendicular or orthogonal to this so you take a inner product of psi and  T psi so this is
just the T is written with a slight bit of you know curvature if I forget  that you carry on
with your notation.  So this is equal to a T square psi because so T psi okay T square psi



because T you do  this time reversal twice and should come back to the psi and so this is
nothing but  a minus psi because T square is equal to minus psi and T psi and this is equal
to minus of  psi and T psi and now this cannot be possible unless psi and T psi is equal to
0 because  if you take this the last term on this side then becomes twice of this and then
so that  means that I mean 2 cannot be 0 so this psi and T psi are orthogonal okay.  So
this  is  one of  the important  implication  of  the time reversal  symmetry  in a  spin full
system that they are orthogonal to each other but they have the same energy and this is
called as Kramer's degeneracy so this is Kramer's and the psi and T psi are called  as
Kramer's doublets.  Alright so let me come back to this band theory that is Bloch states so
let us talk about  the Bloch states which has you know K as a good quantum number of
course the system has  crystalline symmetries and so on.  

So if you consider a Bloch state which means that we are talking about a psi  K with a
spin Sigma this is equal to an exponential i K dot r and u K Sigma where Sigma is a spin
and Sigma can be up or down this is according to Bloch’s theorem so this contains the
periodicity  of the potential and there is a free wave or there is a plane wave term there.

  Now if I operate this psi K Sigma then what happens is that so I will have to operate  it
by i Sigma y K on this i exponential i K dot r u K Sigma and so this K will act on  this
and will make this exponential minus i K r the plane wave part and we can write  this as
so exponential minus i K dot r and then we have of course a minus i Sigma y u  K Sigma
and now you see that this can be written as exponential of i minus K dot r and then  the
job of this i Sigma y will be to invert the spin.  So if there is a Sigma spin then there will
be a Sigma bar spin where Sigma if Sigma is  up then the Sigma bar will be down okay
and because this looks like a minus K so this  becomes equal to a minus K and a Sigma



bar and the bar so Sigma equal to up Sigma bar  equal to down or vice versa. So this is
equal to exponential minus i K dot r and a u minus  K Sigma bar okay so that's what
happens when you apply psi K Sigma on this.  So which implies that there is of course a
degeneracy such that E K up is equal to E  minus K down and this is called as a Kramer's
degeneracy okay. So there's a degeneracy of  these up and down states for one given
value of K but if it is plus K for the up spin then  it's minus K for the down spin or vice
versa and this of course has we know that this has  a lot of implications on the topological
insulators.

  So what it means is the following that let me show this just a picture so we'll sort  of see
it like this there is so I'm just drawing parabolic bands for up and down spins they  could
be I mean you can interchange them doesn't matter so this is E as a function of K and
you see that at K equal to 0 they sort of touch each other but the degeneracy is here  So
there is these two points let me use a color to mark them so this point and these  points
are degenerate but they correspond to two diametrically opposite points in the  Brillouin
zone and that's where the degeneracy comes. So for up spin it's at a K well we  have done
it just the other way around let me change the spin indices that way so this  is down and
this is up so this is that K so E at a K is degenerate with E at a minus  K E at K for an up
spin is degenerate with E at minus K for the down spin. 

And this gives  the rigidity of the edge modes in this particular spin full system or the
Kane Mele model that  we are going to discuss in just a while.  So the back scattering
from state a K upstate to a minus K downstate are forbidden and that's  why these edge



states are these these are robust states. So let me come to this model  the model is a very
intuitive model and which has been introduced by Kane and Mele and  that's the name
that appears in the model and so on. This is the usual tight binding  term that we all are
familiar with and we have been seeing this in the context of graphene  several times it's
just a Ci sigma Ci dagger Cj we haven't written any spin index here  because it doesn't
matter  it's  a  spin  polarized  term  which  is  just  the  tight  binding  kinetic   energy  of
graphene.

 Now this is what we have done just one small change that has occurred  is that there is a
sigma sigma prime term where sigma sigma prime can be up or down  and this lambda
SO was nothing but t2 in the Haldane model. So, Haldane model there is exactly  the
Haldane term but rather two copies of the Haldane term one corresponding to spin up
with  the flux which is given by pi by 2 and the down spin corresponds to a flux which
has  exactly equal and opposite magnitude which is equal to minus pi by 2.  And this is of
course the term that we are familiar with that's the inversion symmetry  breaking term
and the term that was there in graphene because if we had sort of different  chemical
potentials  at  the  two  carbon  atom  sites  which  are  say  which  are  analogous  to   the
hexagonal boron nitride. So, that's the term which is inversion symmetry breaking  term.
This  term without  the  sigma sigma prime  there  it  would  have  been  just  the  normal
Haldane  model but now you see that this part is taken into account that's spin Sz is taken
into   account  and they  are  taking sort  of  components  of  that  and this  of  course the
chirality.

  So, that tells you that if the second neighbour hopping is clockwise then it has a positive
sign or if it's anti-clockwise it has a negative sign and this we have taken the flux to be
exactly equal to pi by 2 and that's what is done excepting when we wanted to generate
the phase diagram which is flux versus the these this term. This term means the with  the
lambda V term which is the mass term that opens up a gap inversion symmetry breaking
term.  So, it's basically two copies of the Haldane model. Okay? So, this is you know
hold model  with flux pi by 2 for the spin up and for spin down it's minus pi by 2. So, this
Kane  Mele  term  so  this  is  called  as  a  Kane  Mele  term.

 Okay? This Kele term is actually  up up Haldane Hamiltonian for Phi equal to pi by 2
Phi is the flux which is due to the  you know so this flux is exponential i Phi I mean it's
called as a Haldane flux but this  is that term that you know comes with the t2 term so
that if Phi equal to pi by 2 then  it becomes equal to i t2 and so on i t2 or minus i t2.  



So,  in  the  absence  of  any  Rashba  kind  of  spin  orbit  coupling  term  the  Kane  Mele
Hamiltonian  looks like the H up and H down and so on.  So, it  obeys time reversal
symmetry how that's  not difficult to understand we have done that here so this was the
term so lambda SO  Sigma Z and tau Z and SZ so this was there in the Haldane model.
So, this was Haldane term  which was time reversal symmetry broken term and this SZ
has returned or recovered the  time reversal symmetry.  So, now what can happen is that
one can also add a term which is called as a Rashba term  that will sort of detail about this
later the Rashba term is written as I lambda R and  then there is a CI dagger and then
there is a Sigma cross D vector so this D vector is  basically some vector it just looks like
a vector kind of coupling but then you see that  we have taken a Z component and of
course  that  there  is  a  lambda  V  term  etc.

 So, what  one can get is that now with this term there one actually gets the spin filtered
edge states  in the problem. So, which means that at each edge you will have a up and
down the spin  states or edge modes corresponding to up and down.  So, at each edge
there are two spins up spin and down spin and so on so these are called  as a helical edge
states. So, a quantum spin Hall effect can be observed in the system  and the system will
show a quantum spin Hall conductance of E over 2 pi but we will have  0 charge Hall
conductance for the reason that we have already said before having a Hall  conductivity
you need to have the time reversal symmetry broken for the charge Hall the usual  Hall
effect that we talk about.  



So, this is the full tight binding Kane-Mele Hamiltonian in the momentum space these are
the diagonal term which are something like second neighbour hopping or on-site potential
and these are the kinetic energy nearest neighbour kinetic energy terms and so on. So,
each one  of the terms are written carefully here there is a full tight binding model. So,
this tight  binding model has term you know I mean this one in the low energy limit  this
Hamiltonian looks like other than so there is only the Kane-Mele term that looks  like this
lambda SO Sigma Z tau Z and SZ and this is what we have discussed.  If you do all these
expansion then this is of course the kinetic energy term or rather  than near tight binding
nearest neighbor tight binding term and so on and these are the term  which is coming
from the Kane-Mele term so this is the Kane-Mele term and this is the Rashba  term okay
and this  Rashba term does  not  do anything to  the  time reversal  symmetry   heuristic
argument has been already put forward there that is when you have a L dot S kind  of
coupling both L and S change their signs and one does not have any net sign emerging
out of that. So, this is a time reversal invariant Hamiltonian and this Hamiltonian  now
had to be we sort of discuss about a little more about the Hamiltonian but before that  let
me show you the calculation of the Z2 invariant.  So, given that it is a 4 by 4 Hamiltonian
in the K space it can easily be diagonalized  in order to calculate the eigenvalues and
eigenvectors and once when we get the eigenvalues  and eigenvectors we know that we
can calculate the topological invariant and let us just  think that you know let us take two
occupied band corresponding to two spins which are  psi i and psi j these are the occupied
band wave functions and the overlap of the time  reverse block states are calculated using
this formula okay.



 

 So, what is important is that one has to calculate this thing which is nothing but minus i
sigma  yk which is what we have shown and they have to be calculated between the two
occupied  band wave function and what turns out that there is some epsilon function and
then the  Pfafian of which is a function of K now this Pfafian I  will  just  come in a
moment what is  a Pfafian but this Pfafian is 0 at K and K prime points and while at the
four symmetry points  that is these K and the K prime points this Pfafian is equal to 0
once one calculates this  this matrix element this matrix element will come in the form of



you know I mean this will  have numbers and so on and these numbers for a 2 by 2 will
give me a Pfafian there and so  this is a 0 at the K and the K prime points in fact if you
calculate it over this entire  you know rhombus which is that red triangle plus the black
triangle then the Pfafian would  come out to 0 and the topological invariant will not be
there okay.  But if you calculate it only over half the triangle which is denoted by red
which are  the C1 C2 C3 then it has a value equal to plus 1. So, it is actually defined as
the  Z2 is defined as 1 by 2 pi I and these closed contour integral over this red curve C
that  is C1 plus C2 plus C3 and it is a dk dot these the gradient of the log of this quantity
this is just taken for convergence by Ken and Millie but one can actually put that equal  to
0 it still works. So, it is a log of the Pfafian that is important.  Now what is Pfafian? So, if
you take a 2 by 2 Hamiltonian Pfafian is just the that off  diagonal element okay.

 So, this is the off diagonal element and for a 3 by 3 Hamiltonian  if you have such a
matrix structure then the Pfafian is 0 and for a 4 by 4 matrix with the  diagonal elements
to be equal  to  0.  So,  this  is  actually  a  purely off  diagonal  matrix  all   the made the
diagonal elements are strictly equal to 0.  So, this is equal to A into F minus B into E plus
C into D and so on. So, but of course  we are interested in only these Fafian which is of a
2 by 2 matrix. So, we need to do this  integral this integral and this integral needs to be so
this is a C1 fx kx ky dkx and fy  kx ky dky and so on and then over this C2 so this C1 and
then C2 and then C3.



 So, this  along C1 and then C2 and along C3 the same kind of integrals that will be there.
Now I am just showing you integral 1 that is I1 and for I1 you cannot do this integral
simply  because  there  is  a  kx and ky dependency  and these  integrand of  course  is  a
function  of kx and ky. So, along C1 and C2 it is slightly you know non-trivial because of
this kx and  ky dependencies but along C3 of course your kx is constant and it is only ky
that changes.  So, if you take C1 and equation of this line that goes through this point
gamma through  m1 it is nothing but ky equal to kx by root 3. So, in this integrand that is
I1 integrand  we have fx which is a function of kx and ky.

 So, this is actually kx and kx by root 3 and  the integral has to be done this has been
found out carefully that this is that gamma  point is 0 0 and the x coordinate of this point
here that is let us call it as OAB and  so on. So, it is a OABO integral. So, this integral is
that  you see here  is  over  this   OABO. Okay.  So,  that  is  the  thing  that  needs  to  be
substituted here and then this integral  is from 0 to 6 pi by 3 root 3 this has been found as
6 pi by 3 root 3 and so on.

  And if we substitute kx equal to root 3 ky that is what the equation tells you and then
this becomes equal to root 3 ky and ky over dky and dk ky goes from 0 to 2 pi over 3 and
so on. So, these are the double integral is calculated in two steps. So, this step number
one in which first you do the kx integral and then you do the ky integral. Okay. And
similarly one has to do the C2 over I2 and for I3 only dky is nonzero because kx is
constant.



  So, kx is fixed at a value 0. So, we need to only calculate this. So, now you calculate
over this C1 contour and this is that C2 contour and this is that C3 contour and then you
add  integral over C1 plus C2 plus C3 and that should give you a topological invariant.
Okay.  And this is exactly the plot that one gets from this you see that there's a dark blue
line which is like a contour of this enclosed region and this blue line the dark blue line
that represents a gap closing scenario for this Ken Milley model which means that there
is everywhere on that plot or on that line contour the gap is equal to 0 at the Dirac  points.

 Okay. And the gap is nonzero only inside in the sky blue regime. Okay. This  sky blue
place or these inside this is the Z2 invariant calculated using the formula  that we had
given above. So, this is equal to 1 and it vanishes outside. So, Z2 is equal  to 0 here and
Z2 equal to 1 here and there is a blue line that separates.



 So, that topological  phase transition occurs from the invariant being 1 inside or in the
enclosed region and  it's 0 outside in the outside region. Okay.  So, how do we know that
it is a topological or it has edge states it's not a normal insulator  and we do the same
thing that we have done earlier we take a zigzag edge ribbon or ribbon  with a zigzag
edge and well one can do also an armchair which is a little different and  I believe that
one had to or one has to take a larger system but now you write down the  Hamiltonian
according to the hopping all the hoppings that we have between red to blue  and red to
red and blue to blue and so on so forth. Okay.  And if you want more details on this
there's a very recent paper 2023 who have calculated  there's an explicit derivation of the
helical edge modes for the Ken Milley model and so  is elaborate paper that one can
actually look at.



 We have calculated the same things  now you see that we see the spin filtered edge
modes. So, the spin filtered edge modes  of the Kane-Mele insulator are shown for two
different values of lambda v lambda v  equal to some value and lambda v equal to some
other value which are taken as 0.1 t  and 0.4 t remember that 0.1 in unit of t means the
unit of the nearest neighbour hopping  that's a little larger value and just to wanted to
make sure that one corresponds to the topological  phase this is the topological and this is
the trivial.



  Because you see there are edge modes coming out from the conduction to the valence
band  and they are cutting the Fermi energy at these green dots the points that you see
there which  are named as PQRS. So, all these PQRS are here so at one edge we have P
and S the other  edge we have Q and R and of course there is no edge modes here. So,
there is a bulk gap  so this acts like a band insulator the figure on your right is a band
insulator and the  figure on your left  is a topological insulator.   So, this thing this is
chosen because we have chosen plot that is here that is inside this  sky blue region. So,
inside the sky blue region we make sure that it's a topological insulator  with spin filtered
edge modes the and the topological invariant is equal to 1 while  on the right figure which
corresponds to lambda v equal to 0.



4  t  which  we  have  taken  this   thing  equal  to  0.  So,  the  lambda  v  equal  to  0.4  is
somewhere here somewhere here and  so on and of course your lambda R values such
that it is Z2 equal to 0.  So, in the Z2 equal to 0 case we do not have any spin filtered
edge modes and just to remind  you that in this situation we have taken the KX to be a
good quantum number and KY is not  a good quantum number. So, the Hamiltonian is
written in the Y direction is written in  the real space. So, the size of the Hamiltonian
depends on how many unit cells we take in  the Y direction and in the X direction of
course it's an infinite.

 So, this called as  a semi-infinite nano ribbon which is what we have talked about earlier
and we see these  edge modes and these edge modes are cartoon of that is has been shown
earlier here that  you see that these are the edge modes these red and the light green they
correspond to  down spin and up spin respectively at each of the edges and that's exactly
similar to  what we get here you see. So, these correspond to the P correspond to the
down. So, P corresponds  to up, S corresponds to down, Q corresponds to down and R
corresponds to up. So, this  is exactly the picture that we have shown it's been reproduced
using numerical simulations  by us.  So, this to summarize you know this represents a
completely new kind of topological insulator  which is marked by a new or a different
topological invariant it has time reversal symmetry the  states have you know Kramer's
degeneracy.

 So, these Kramer's degeneracy is what we are  talking about we have talked about that
there are up and down states which are degenerate.  So, these up and down states at the k



values you see that that there are these P and S  are degenerate states at you know but
they are differ by a momenta which is on diametrically  opposite parts of the Brillouin
zone I mean they differ by the momentum there and so on  and then you also have these
other set of things are which differ by these momenta across  the Brillouin zone.  So, this
is a different kind of scenario where spin orbit coupling plays an important role  we have
talked about two kinds of spin orbit coupling one is a Haldane term with spin term  added
to it or rather you know it is a spinful Haldane term which is also sometimes called  as
intrinsic  spin orbit  coupling and the Rashba spin orbit  coupling has been added both
respect  time reversal symmetry system has time reversal symmetry and there are instead
of chiral modes  there are spin filtered edge modes which are there present in the system.
So, we have been able to show another topological insulator or topological insulating
state  which is different than the ones that we have seen earlier either in the context of 2D
electron  gas in a magnetic field or the Haldane model.  I will stop here.  Thank you.
Thank you.


