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  We have  looked at quantum Hall effect in a 2D electron gas such as silicon MOSFET
or gallium arsenide.  We have started looking at the same phenomena that's quantum Hall
effect in graphene.  So graphene has its own interest for the reasons that we have talked
about.  It has a Dirac like dispersion comprising of massless fermions, the low energy
dispersion  resembles  that  of massless Dirac fermions and there are many things the
physical properties  of graphene are by themselves very interesting.  And we wish to talk
about the quantum Hall effect in graphene and there is a possibility  that actually the
quantum Hall effect is realizable at a very large temperature that is comparable  to the
room temperature and this is what we are going to see.  To start  that and before we
actually talk about quantum Hall effect we can look at the  Hofstadter butterfly which we
have discussed earlier.

  So we can look at the Hofstadter butterfly in graphene.  So the basic idea is that the
electrons either in say the 2D electron gas or in graphene  say if they are particularly in
graphene when they are described by the tight binding model  and then they are subject to
the  external  magnetic  field  they  will  show  quantized  Hall   plateaus  for  the  Hall
conductance  or  the  resistance  and  consequently  the  band  energies  of  the   electrons
transform into discrete Landau levels and this is what we are going to find that  how the
Landau levels look like in graphene.  We have seen that already at length for the case of
2D electron gas.  Now this presence of this periodic crystal potential which is the lattice
basically  which   means that  V of  r  is  equal  to  V of  r  plus  r  this  is  the periodicity.

  So these are periodic crystal potential.  It adds you know further features to the spectrum
and that's what the butterfly is all about.  So this Hamiltonian in presence of such periodic
potential is written as you know p minus e  A whole square over 2m and plus a V of r and
this V of r has this property that we  have just talked about and where R capital R is the
lattice periodicity and so the electrons  are described by the block states here where k is a
good quantum number.  So we talking about purely about graphene this is not applicable
to the 2D electron  gas.  So in presence of this magnetic field or the magnetic vector
potential so this each bloch  band gets farther divided into sub bands and these resultant
energy spectrum as a function  of the magnetic flux it gives rise to a fractal structure
which  is  known  as  a  Hofstadter  butterfly.



  So this rather complex looking energy spectra it arise because of a delicate interplay
between  2 length scales of the problem.  This is a very important statement and so these
2 length scales are a and lb so a and  lb and these 2 length scales where a is the lattice
constant and lb is the magnetic length  which we have said a number of times earlier.  So
it's basically the interplay of these 2 and the Hofstadter butterfly it basically  arises when
this ratio of these 2 a and lb is a rational fraction.  In fact more interesting physics arises
when the ratio is not a rational fraction but an  irrational fraction but of course will not
discuss it here.  So this fractal nature of the spectrum was first discovered or rather seen
by  D  Hofstadter   and  that's  why  it's  called  as  a  Hofstadter  butterfly  in  1980.

  When he solved what's called as a Harper equation we'll come to that but let me not go
into  details of the Harper equation and he demonstrated that for you know commensurate
values of this  flux which is a Phi over Phi 0.  I told you that the Phi 0 is very important
quantity it's h over e which is the quantum  of flux.  If this becomes of the form p by q
where p and q are co-prime integers and what's meant  by co-prime integers is that there
is no common factor between them.  If the flux because of the external field is such that
then these the single particle  bloch bands they split into q sub bands.  And these sub
bands  are  themselves  p  fold  degenerate.

  This  is  a  very  important  thing  which  is  needed for  these  butterfly  or  these  fractal
spectrum  to take place.  And as I said that there are two length scales in the problem one
is the lattice constant  which is basically the periodicity of the lattice which is written as r
plus R. So R  is equal to nothing but this is equal to A that's the lattice constant and LB is
the  magnetic length of the problem which we have said earlier it's root over h over eB.
And the ratio of this will decide what kind of spectrum we get and it turns out that this  is
related to the fact that these Phi over Phi 0 these are in a form of a rational fraction  p by
q being integers co-prime integers.  So what happens is this that each of the block bands
would  split  into  q  sub  bands  and  each   of  these  sub  bands  themselves  are  p  fold
degenerate.

  And each of these p sub bands this further split as a continued fraction as a function  of
this magnetic flux that means when the magnetic field is varied it  forms a continued
fraction.   So if  you want to know what's a continued fraction a continued fraction is
written as  say for example so this is a continued fraction.  So this a 0 plus a 1 by a 1 plus
a 1 by a 2 plus a 1 by this sort of goes on and then  there is a plus 1 by a n kind of thing
this called as a continued fraction.  So these each of the p sub bands they split into these
kind of a continued fraction as  a function of this flux Phi over Phi 0 say give you an
example 181 by 101 is a rational  fraction which can be written as 1 divided by 1 plus 1
plus 1 divided by 3 plus 1 divided  by 1 plus 1 over 4 plus 1 by 4 and so on.  So these are
some examples of this continued fraction.



  So this is what happens so this distance between these levels or these the sub levels
etcetera  and the width of each of the superstructure they oscillates with you know as the
magnetic  field is varied and the period of this variation of this quantity basically it's
universal  and it doesn't depend upon the particular form of the quasi particle dispersion
etcetera.   So  this  is  well  known  we  have  talked  about  this  I  thought  of  you  know
repeating this  of these fractal structure in the case of graphene because we have earlier
talked about  in the in a different context.  So let me show you that how we calculate
these Hofstadter butterfly for graphene.  So let me take a lattice a graphene lattice or a
honeycomb lattice with two atoms per  basis these red and the white atoms for the sake of
you know clarity we have taken these  lines which correspond to m minus 1 m m plus 1
and m plus 2 in the sort of vertical direction  though it's slanted and then we have also
taken these the horizontal lines as n n minus  1 n plus 1 and n plus 2 and so on.  And so in
order to demonstrate the Hofstadter butterfly we take a ribbon like this and this  called as
a semi-infinite ribbon.



  Okay so this is the semi-infinite ribbon and now we'll do this calculation it has zigzag
edges this is important in the context of graphene that there are two kinds of edges  this is
called as a zigzag edge because as you see that this looks like a zigzag pattern  and that's
why it's called a zigzag edge.  The zigzag edge on one edge that is one side means that
there  is  armchair  on the  other   so the armchair  pattern  looks like  this  so this  is  the
armchair pattern and so on.  Okay so we have taken a zigzag edge and the prescription is
clear we need to change the  mechanical momentum of the electrons by including the
magnetic vector potential using peierls  coupling so we'll use this exponential ie over h i
and j a dot dr say for example and  a t ij this can be written as exponential i 2 pi by phi 0
and i to j and a dot dr a  dot dr and t ij so each of the hopping integrals they get modified
so t ij get modified each  pair of the hopping integrals get or the amplitudes get modified
by this so t ij is  the one without any field.  So the information about the field is coming
from these exponential term or the phase okay  and of course we know that phi 0 is equal
to h over e and we have again taken B to B  in the z direction that's  the transverse
magnetic field that we have always said and  B is a constant and we can take a Landau
gauge where this is written as B x y cap we have  shown another choice of the gauge
another Landau gauge so to say which is minus B y x cap but they would of course yield
the same result later on we'll talk about a third gauge  which is called as a symmetric
gauge which is important for a different reason okay.  So once we fix this so let me write
down the tight binding Hamiltonian so now in the tight  binding Hamiltonian the kinetic
energy  or  the  hopping  amplitude  would  now get  modified   by  this  vector  potential
because we have an external magnetic field present in the problem.



  So just to show you again I'll write it first and then we'll go back and show this so m
and n are the pair of sides so T exponential I pi phi over phi 0 and n and a m n  dagger  b
m n plus T exponential minus I pi phi by phi 0 of course there will be both the signs
present and a m n dagger b m minus 1 n and there will be another term which is t m n
dagger b m n minus 1 and plus a Hermitian conjugate and you see that the hopping along
the x direction is picks up a phase this is m n and b m minus 1 n and I'll show you the
picture that is this so these are these coordinates of this so one of them so this one has a
coordinate  which is say n plus 2 and m minus 1 okay. So rather you know because of the
gauge that  we have chosen the hopping in the y direction is affected because this is along
the y direction  and in the x direction it's not affected okay and a m n and b m n are the
these electron  creation operators I mean daggers are the creation operators so a dagger
would be the  creation operator and so this a is annihilation and this is  in A sub lattice
and same for B so b dagger and b are creation annihilation operators  in B sub lattice. So I
think it's clear how these Hamiltonian is written which gets modified  by these presence
of the external  magnetic field okay and a site index each site is represented  by two
numbers because we are talking in two dimensions it's m and n okay and once  that is
done one can do a Fourier transform of this and which gives you a Hamiltonian  I'm not
repeating the Fourier transform formula but all of you know that so this is equal  to so
minus this minus sign is there and there is a k and n and so there is a t exponential  i pi
phi by phi 0 n a k n dagger b k n plus t exponential minus i pi phi over phi 0 and  a k n
dagger b k n and plus a t a k n dagger b k n minus 1 plus a Hermitian conjugate okay.  So
this Fourier transforming okay if you take this as equation 1 and this as equation 2  so if
you Fourier transform 1 you get 2. So here then we sort of write down the basis  as so the
eigenfunction is assumed to be psi of k equal to sum over n alpha k n a k  n plus beta k n
b k n and so on and alpha k n and beta k n are amplitudes at A and B  sub lattices okay.



 So this is the setting of the problem that  is writing down the tight binding Hamiltonian
and including the Peierl's coupling and where  the hopping terms they pick up a phase
and the argument of the phase includes the a dot  dl or which is nothing but curl A ds
which is nothing dot b dot ds and that's where one  gets a flux from and then it's of course
this can be solved. So this gives rise to  an eigenvalue equation if I solve with this solve
H psi equal to E psi okay.  And once you do that what you get is that a set of equations
which is coupled in an  alpha and beta so this E k alpha k n equal to minus exponential i k
a by 2 to T cosine  pi phi by phi 0 N minus k a by 2 okay into this is a beta k n plus t beta
k n minus 1.  So this is one equation for alpha k n and this is the other equation for beta k
n which  is equal to minus exponential minus i k a by 2 to T cosine pi phi over phi 0 N
minus  k a by 2 alpha k n plus a t alpha k n plus 1 okay.  So this is quite clear so let me in
keeping with this equation numbers so this is equation  2 you can call this as equation 3
and this as equation 4 and let's call this as set of  equations as equation 5.

 Now this is a set of coupled equation there is nothing but the  Schrodinger equation



written in terms of the amplitudes at the a and b sub lattices for  the electrons in presence
of an external field and these field gives rise to a magnetic vector  potential  and the
vector potential modifies or renormalizes the hopping between the nearest  neighbor sites.
So once you get this you solve solving this  these equations and one should get  have to
be numerically solved there is no other way and these are for different bands  these are
solved this n is the band index and what one gets is the following. One gets  this energy
so you this is like eigenvalue equation and this eigenvalue equation can  be solved and
one lands up with this energy as a function of the external flux and you  see that there is a
nice symmetry of this and there are these fractal structures which  is not very apparent
here but then if you zoom in at a particular site here this zoomed  in feature looks exactly
similar  to the entire  butterfly.   That's  why it's  called as a fractal.  Once again just  to
remind you that the Phi over  Phi 0 has to be a rational fraction of the form p by q p and q
both being the co-prime  integer that is there is no common factor between them.

 So this is just talking about  graphene in presence of a magnetic field which was needed
anyway will do quantum Hall effect  and before quantum Hall effect of course we need to



understand  the  structure  of  the  Landau   levels  and  details  of  the  Landau  levels  its
properties etc.  But even before that I want to speak about a few important things in the
context of graphene  and these things are so some properties of graphene  which are
basically interesting by its themselves but on the other hand they are also interesting  or
rather  relevant  in  the context  that  we are talking  about.  We need some experimental
ingredients as well and to before we understand graphene or rather the quantum Hall
effect  in graphene a few things that are interesting here is the density of states.  It is not
very trivial to get the density of states because we know that the density  of states for a
2D system with parabolic  dispersion is  a constant  of course here we do not have  a
parabolic dispersion we have a linear dispersion Dirac like dispersion. So the density of
states  needs to be figured out that's one thing then we are going to talk about the electron
density.

  Okay and then we'll of course talk about the Fermi energy in graphene we'll also talk
about  conductivity  and  so  on.  As  I  said  these  are  precursors  of  understanding  the
quantum  Hall effect in graphene and these are by in general they are interesting even
without  the mention of quantum Hall effect. Okay so let's just look at the density of
states.  Okay which we call it as so density of states is called as DOS. So how we can get
the density  of states near the Dirac points we have worked out the Dirac points in details
and we know  that at the Dirac points or in the vicinity of the Dirac points the dispersion
is linear  and denotes that of massless Dirac fermions and in order to do that this is quite
standard  that you equate the total number of electrons with the I mean write it in terms of
the density  of states here of course we do not have a volume but we have an area and this
is  equal   to  some 0  to  some epsilon  and  some row epsilon  prime  d  epsilon  prime.

  Of course there should be also a Fermi factor inside the integral but then the Fermi
energy  or the Fermi distribution is taken to be equal to 1 which is relevant for either you
talk  about 0 temperature or you talk about low temperature and the description is only
valid  if the Fermi energy is very large and which will show that the Fermi energy is
pretty  large it is anything between 4500 to 5000 Kelvin.  Okay so your row epsilon
prime is the density of states which is what we want to find A  is the area so it is basically
it is a areal density that we are or the total number of  electrons divided by this is the areal
density. So, N by A is called as the areal density.  Okay so we are going to integrate this
thing from some this expression from the 0 to epsilon  till  which the linearity of the
dispersion holds and we are not sure we just keep it  as a symbol. So, it is of course valid
for low energies and as you deviate significantly  from low energies this linearity goes
down.

 So, once we know this we can write this as  A and eta and we will define of course there
should not be any problem. So, where eta is  called as the valley degeneracy and what I
mean by valley degeneracy is that there  are two K and K prime points. So, these eta is



nothing but equal to 2. Okay so this valley  degeneracy is included because we want to
find the total density of states and now I  convert this energy integral to a momentum and
these momentum is say is a function of  the energy. So, I change this rho epsilon prime
and  I  use  a  dq  prime  and  d  epsilon  dq   prime.

 Okay and why I do that is that so rho epsilon prime d epsilon prime is written as  rho
epsilon prime dq prime d epsilon prime and dq prime. Now the limit of integration  or the
other the range of integration is changed from over epsilon to over q where q is of  course
related to epsilon which is by that linear dispersion that we have talked about.  If you
want to talk about the spin degeneracy which is usually not talked about in the case  of
graphene but if you include spin orbit coupling which we will see later these there  is also
another factor of 2 coming from the electron spin degeneracy which is nothing  but 2s
plus 1 for s equal to half it is 2. Alright so we have epsilon as going as q.  Okay so this is
what we have learned that the low energy dispersion is linear so we  have d epsilon dq to
be equal to constant.

 Okay which gives of course the velocity even  though this proportionality looks like that
of photon but of course the proportionality  constant is not the speed of light but rather it
is a Fermi velocity of the electrons. So,  if I have these equation 1 and this equation 2
then these 2 can be reconciled if I write  down the density of states as a q divided by d
epsilon  dq.   Now if  I  use  using  epsilon  equal  to  h  cross  of  VF q  this  is  the  Dirac
dispersion  then d epsilon dq becomes equal to a constant which is nothing but h cross v F
even if you  write h cross equal to 1 it does not matter but let us keep it for the time being



and  so from here the row epsilon it comes out as is like epsilon and then h cross square
v F square this is quite interesting and it is in contrast with a parabolic dispersion  where
the density of states is independent of energy whereas this is function linearly  a function
of energy and so the density of states really behaves like okay.  So, this is row of epsilon
and epsilon okay. So, the density of states behaves linearly  with epsilon and this is one
of the interesting things or it is also an important things because  as soon as you try to
calculate  physical  properties physical  quantities  experimentally  measurable  quantities
the density of states come into the picture because the density of state dictates  that how
many carriers there which are electrons here how many electrons are there which near
the Fermi energy which would contribute to the say for example, the transport properties
etcetera  okay.

  So, let me go to the next one to calculate the electron density. So, what is a typical
electron density in graphene okay? Is it the same electron density that we talked about  in
2D electron gas such as silicon MOSFET or gallium arsenide or some structure which  is
some super lattice structure that we talk about in the context of 2D electron gas. It  is in
fact,  something  like  2  orders  of  magnitude  more.   So,  let  me  refer  to  the  original
experiment  done  by  Geim  who  was  awarded  the  Nobel  Prize   for  a  discovery  of
graphene.

 So, this is what graphene is. So, this is the SiO 2 the silicon  oxide substrate say this is D
the thickness over which it is grown and this is graphene  graphene okay. And there is a
sort of voltage that is applied here relative to the back  surface which is let us call it as
VG and this D is usually of the order of 300 nanometers.  So, graphene is grown on that
on the substrate SiO 2 is the substrate and in addition to  that what you have done is that
you have applied a gate voltage with respect to the bottom  part of this thing. So, this
looks like a capacitor that is formed  and we know that what is the capacitance of a
capacitor the capacitance of a such a capacitor  is it is C is equal to epsilon A over d
okay, where A is the area and epsilon is the dielectric  constant of SiO 2 okay. And of
course,  A  is  the  area   as  I  said  and  d  is  the  thickness  which  is  written  here.

 So, if you want to calculate  the carrier density n e this is equal to c v g by e where v g is
the gate voltage. So,  this is equal to epsilon by d e and a v g. So, for a v g of about 100
volts n e comes out to  be about 10 to the power 12 to 10 to the power 13 per centimeter
square. So, this is the  typical electron density that is found and this is at least 2 orders of
magnitude more  okay. So, this is an important thing, but there  is another thing that is
very important here which was not there in the 2D electron gas.

  You see as v g is increased okay, n e can be made larger that is the electron density at
the  Fermi level that can be made larger by applying larger gate voltage. And not only
that the  sign of v g would determine that Ne can be both positive and negative. So, you



can have  positive charge density or negative charge density depending on the sign of v g
there  is also an important point okay. So, let us just look at the Fermi energy quickly.
So, this is the third point is Fermi energy okay.

 So, the Fermi energy can be obtained in  the following fashion. We have already worked
out that the density of states is linearly  proportional to epsilon. So, rho epsilon is equal to
epsilon and then Ne which goes as  a epsilon f square. So, that is basically the 2D feature.
So, n e goes as epsilon f square  which tells you that this is like a q f or k f square which
is the Fermi  wave vector   square because there is  a linear  dispersion there  is  unlike
parabolic  dispersion.

 So,  epsilon f is then proportional to root over n e okay. So, which means that the Fermi
energy  depends on the electron density and for an electron density just to have a square
root  will let us take Ne equal to say for example, 10 to the power 12 per centimeter
square of  we have of course, written as 10 to the power 13 in the last slide, but just to
have no  confusion with the square root let us just take it as 10 to the power 12 which I
will  be able to do a square root. So, this epsilon f turns out to be something  around 4.5
electron  volt.  So,  this  is  the  value  of  the  Fermi  energy  in  graphene  okay.

  And so, this 4.5 electron volt is pretty large and if you consider the corresponding Fermi
temperature  that  is  very  large.  So,  you  know  this  means  that  graphene  is  highly
degenerate  system at room temperature because room temperature is can also be taken as
almost like 0 Kelvin  and at 0 Kelvin the system is actually a degenerate Fermi gas okay.
And then let us look at the conductivity of graphene  and the conductivity can be obtained
from the Drude formula which is equal to. So, this  is a Drude formula and this n e is the



electron density, e is  the electronic charge and mu is the mobility which is known to be
very high for graphene.  So, mu can be defined you know using the relaxation time which
is equal to e tau over m f where  m f is the mass of the carriers at the Fermi energy okay.

  And so, the tau is the relaxation time. So, relaxation time, just to remind you that it  is
the time between two successive collisions okay. So, here it shows that m f is actually
not a constant, but it depends on the electron density okay. If we use the mean free path
the  definition of mean free path which is say m f p divided by v f. So, l m f p is the mean
free path and v f is the Fermi velocity okay.

 So, this  is tau. So, mu becomes equal to e l m f p by putting this tau expression on the
top  and this is equal to a v f m f okay. So, that tells you that the sigma it becomes equal
to e square over h which is the scale of the conductivity or the conductance. So, this  is
equal to l m f p into root over n e and so, which means that sigma is proportional  to root
over of n e. So, this is the dependency of the conductivity on the electron density  this can
be also written as. So, this is like e square over h and k f which is a Fermi wave  vector
and the  l  m f  p  this  is  a  dimensionless  quantity  if  you see  because  your  k  f  has  a
dimension of inverse of length and l m f p has of course, the dimension of length that
will tell you that they will cancel each other okay.

  So, now of course, we will do a derivation of Landau levels in graphene and how would
we do that we will just put in plug in this minimal coupling or the Peierl’s coupling into



the Schrodinger equation with a particular choice of the gauge and then a solve for the
energies and these energies will be the Landau level energies. Exactly we have done the
same  thing however, in 2D electron gas we have talked about the electrons to be in
continuum.  Now we are not talking about electrons to be in continuum the electrons are
confined  to a lattice geometry or rather 2D honeycomb lattice geometry and the problem
is  further   compounded  by  the  fact  that  there  are  2  sub  lattices  A  and  B  both
corresponding to of  course, the carbon atoms, but this will give you a structure 2 by 2
structure and if in  addition to the 2 by 2 structure if you take into account the valid
degeneracy that is  the physics occurring at both the k and k prime points together then
the size of the  Hilbert space or the size of the Hamiltonian matrix goes from 2 by 2 to 4
by 4 and of course,  in some situations which we will encounter later that if you have a
spin orbit coupling  that is a spin is a coupling to the orbit then we cannot talk about spin
polarized electrons  anymore and we have to talk about each spin separately.  Incidentally
here just like the 2D electron gas the Zeeman effect is negligible. The Zeeman  effect
means the Zeeman effect if you remember that the Zeeman energy  is EZ equal to g mu B
B  okay,  g  is  called  as  the  Lande  g-factor.

 This has been discussed  in the context of 2D electron gas, but I am still renewing those
discussion here and so,  this is usually equal to 2 for electrons in graphene and this is then
it is equal to e  h cross over m into B. So, in principle you know because the Landau
levels are the Landau  levels also have this as n plus half only talking about h cross
omega B this 2DEG ok.ay  So, the scale is set by h cross omega B and so, omega B if you
remember it is equal to  E b over m. So, these E ll and E z are of the same order, but
actually in experiments  it does not happen. In fact, E z which is a Zeeman energy scale is
much smaller and  it is for that reason that we can still ignore the presence of electronic
spin  into  the  problem.

  Because in fact, in a 2D electron gas it can be shown that which we have done in some
sense that the nth Landau level for up spin it coincides with say for example, n plus  1th
Landau level for the for the down spin. So, there is basically a degeneracy and then  this
spin really does not count much into that discussion. And same here unless one  has a
strong spin orbit coupling there is no need to talk about spin. So, we will be  mostly
happy with a 4 by 4 Hamiltonian to be solved instead of a single expression for  the
Hamiltonian  which  we  have  done  for  the  2D  electron  gas.  So,  we  have  taken  a
Hamiltonian  solved it for a given a gauge and we got the eigenfunctions and eigenvalues
and these  eigenvalues came out to be just this.

 However, these things are going to be more complicated  there is a matrix structure to
the eigenvalue equation and hence you have to diagonalize  the matrix in order to find
eigenvalues. And their dependencies on these n the Landau  level index will have to be
found out and it turns out that the Landau level index does  not have the same structure as



it is here. So, we will see this in the subsequent discussion  that this Landau level is not
does not go with n, but it goes with root over n. And  in fact, it sort of goes as root over n
into B there is a mod of n that I have written  if you notice this mod of n means there are
a positive and negative values of n that are  allowed which is again unlike the one that we
have done for the case of 2D electron gas.

  Okay. So, this are going to be coming up and once when we understand the structure of
the  Landau levels and their properties doing quantum Hall effect is only doing a Kubo
formula putting  it in a Kubo formula which we have seen elaborately that putting that
into the Kubo formula these  wave functions  and energies  and then getting this  Hall
conductance  out  and  just  like  2D   electron  gas  we  will  see  that  these  plateaus  are
quantized, but the quantization is not same as  they are for the electron gas. In fact, there
is a half integer quantization and also the  width between successive Landau levels in
terms of temperature these are very large.  So, these are very large numbers which goes
on  to  say  that  these  Landau  levels  of  quantum   Hall  effect  in  graphene  should  be
realizable at room temperature. So, first we will talk  about the obtaining the Landau
levels and there will be I will be doing a rigorous derivation  of obtaining the Landau
levels as I said that it is not that straightforward as it was for the  2D electron gas. So, you
will have to be careful and watchful on the derivation so that you can  recreate it or rather
you can produce reproduce it on your own and then we will talk about the  the quantum
Hall  effect.

 We will not undergo through again a rigorous derivation of the Kubo  formula, but we



will simply state the results of the quantization of Hall conductance in graphene.  Thank
you.


