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  We  shall be talking about quantum Hall effect in graphene. As I told you that it will
serve  two sort  of  purpose.  One of  them is  doing the quantum Hall  effect  or  rather
rewinding  the story of quantum Hall effect in a crystal lattice structure. We have seen
that in a  square lattice how magnetic field enters into the problem and now we will see it
for graphene.  One of the more important things in this context is that in square lattice the
dispersion is  the low energy or rather the long wavelength dispersion is that of a k square
type whereas  here it is a relativistic dispersion which we call it a pseudo relativistic and
in order  to do that we will have to know the electronic structure of graphene and so our
first sort  of activity would be understanding the electronic structure particularly the low
energy  dispersion   of  graphene.  Just  wanted  to  remind  you  that  there  are  different
allotropes of carbon graphene is one of them and some of the allotropes such as diamond.

  Diamond was known for a very long time I mean 4000 BC so that's even before Christ



and the  graphite which is a well-known form of carbon this is basically what you find in
your pencil  tips. So, this is discovered in 16th century then there are other allotropes
such as carbon  60 which is called as a buckyball. So, this was in 1985 and single wall
carbon nanotube  okay. So, it's a nanotube form was there in 1991 initially it was I think
so  1991  was   so  this  is  multi-walled  carbon  nanotube.

 So, this was 1991 then single walled carbon  nanotube was in 1993. So, these are like
one-dimensional structures C 60 is like a zero-dimensional  structure and graphene was
there in at the end around 2004-2005 okay.  So, this is how the history unfolded of carbon
and its allotropes okay. So, let's go to study  graphene and so this structure has already
been told to you that this is the structure  where these open atoms that you see here. So,
there is an open atom and then there is  a closed atom there okay.

 So, each open atom and closed atom would be called as A and B  atoms or A and B sub
lattices there is the sub lattice actually contains these two atoms.  So, the unit cell has
these two atoms and this is the Brillouin zone. So, if you have  a flat top just like what
you see here like here there is a flat top. So, this will have  a hexagon with of this shape
and if you have the real space of this shape that is of this  the momentum space structure
that you see here if the real space atoms are arranged  in this fashion then the momentum
space would be like what the real space looks like.  So, the important thing is that in a
real space you have a honeycomb structure and also  in the momentum space you have a
honeycomb structure these a 1 and a 2 are called as  the unit cell vectors or the primitive
lattice vectors and b 1 and b 2 are called as a reciprocal  lattice vectors and these there are
some points in the Brillouin zone that are shown  here on the right picture where you see
a gamma point and then there are K and K prime  points and then the M point and so on
these  are  quite  important  as  the  subsequent  discussions   will  show.

 And so, this a 1 and a 2 are the primitive lattice vectors or this unit cells  are given by
these a 1 and a 2. So, let me write down the nearest neighbor vectors.  So, each B atom
has a nearest neighbor as A atoms as you can see. So, this is the A  atom here there is one
A atom here there is one A atom here and hence the three nearest  neighbors which will
write it with a delta 1 which is a by 2 root over 3 x cap plus y  cap. So, this is delta 1
which is this one which you see it here let us call it as some  point say p and a p prime
and  a  p  double  prime.

 So, a delta 1 connects the B atom to p point  and similarly one can write down the delta 2
which is A by 2 it is a minus root 3 x and  a plus y. So, one can put actually a plus root 3
x and a minus y because it is below  that and then the last one is actually a delta 3 which
is equal to a minus A x cap that is  at the point. So, at p at p prime and at p double prime
and we can write down the a 1 and a 2 vectors as a 1 equal to a by 2 root over 3 x cap



plus 3 y cap and a 2 equal to  a by 2 root 3 x cap minus 3 y cap and similarly the b 1
which are the reciprocal lattice vectors  can be written as 2 pi over 3 a and root 3 k x cap
plus k y cap and b 2 would be 2 pi  over 3 a and root 3 k x minus k y cap. Now, these are
all the vectors that are important  for our discussion and any point on the lattice can be or
any position of any of the atoms  can be obtained by doing this that is a 2 where n and m
are integers and a 1 a 2 are  shown here okay. So, n m are integers.

 So, this is again the thing shown in color. So, these  A and B just for your benefit are
shown as blue and red atoms and then the Brillouin  zone is shown okay. Alright, we will
come to this discussion in just a while okay.  So, let me write down the tight binding
dispersion and the tight binding dispersion is say written  as so, the Hamiltonian and the
Hamiltonian is first let us write it in the real space  which is the nearest neighbor hopping.
So, each carbon atom has one electron per atom.

  So, it is like half filled system where the entire valence band is filled okay. So, this  is
like a a i sigma dagger b j sigma plus a Hermitian conjugate of that and sigma.  So, I am
using the second quantized notation where a i sigma creates an electron with spin  sigma
at the ith side which belongs to the a sub lattice and it destroys an electron  with spin
sigma at the jth side in b sub lattice and just to make sure that these a i and j  are nearest
neighbors there is a angular bracket that is shown and this sigma actually denotes  the
spin of the electrons. However, the spin here carries no meaning.  So, in the subsequent
discussions the spin will be dropped will only include spin as  and when it is needed that



is  when  there  is  a  spin  orbit  coupling  that  is  present.

 So,  we write down this a little more elaborately and so, this is a minus t that is the tight
binding Hamiltonian we are doing and why we are doing a tight binding Hamiltonian
because  these t is of the order of 2.7 electron volt which is very large and also that each
carbon  atom has one electron. So, the interaction between the electrons is completely
neglected.  So, we write it as r and delta and this is like I am writing it slightly differently,
but they mean the same thing delta i where delta i's are those nearest neighbor this  is a
generic form for any tight binding Hamiltonian now I am writing it for graphene. So, that
is why we are using these delta i's delta 1 delta 2 delta 3 are defined earlier and  so, this is
equal to a of r where r is as I said is a general point which connects any  atom starting
from  some  chosen  origin.

 So,  this  is  a  dagger  r  br  plus  delta  i  these  are   all  vectors.  So,  this  is  a  Hermitian
conjugate and Hamiltonian needs a Hermitian conjugate  to be considered as real that
means, for the hermiticity of the Hamiltonian. So, that it  gives real eigenvalues you need
to add the Hermitian conjugate. So, this is basically  the Hermitian conjugate and again in
keeping with the notation that we have talked about  earlier that is a b a b dagger will
create an electron at the b site with b sub lattice  with the site r plus delta i and a r will
annihilate an electron at site r belonging  to the a sub lattice and just to make sure that
each a sub lattice has a neighbor as  a b sub lattice and vice versa and there is a sum over
all these delta i and there  are three neighbors as we have said. So, now, because this
Hamiltonian  has  translational   invariance  we can  do  a  Fourier  transform and  why I
mention about translational invariance  because k is a good quantum number or a k is a
conserved  quantity  which  can  be  used   to  denote  the  basis  for  the  problem.

 So, a k is equal to now these are all  vectors sometimes  I would not write them as
vectors, but they are all vectors. So, this is a a of r. So,  this k is a vector r is a vector and
e to the power minus i k dot r and you have a sum  over r. So, if you do that so, there are
these Hamiltonian takes the form minus t over n  because this root over of n that this n
denotes the number of sites. So, this is equal to  now there are you are multiplying two
operators  here  b  and  a.

 So, they will come with different  wave vectors maybe k and k prime or let us see what
we use here.  So, we use a k and q and of course, there is a r which is coming from the
this Fourier  transform and then delta i where you know i is equal to 1 2 and 3. So, with
that so,  we have a exponential i k minus q dot r now remember because there is a dagger
there.  So, if you want to write a dagger. So, a k dagger will come with a 1 by root n
exactly  everything remains same excepting that you have a a dagger r and exponential i k
dot  r and these are column vectors each of these vectors a and b because they are column
vectors  when you write them you have to use different notations otherwise it will mean



that you  are using only the like terms like a 1 b 1 a 2 b 2 and so on because they are not
simply  just algebraic quantities they involve a column vector.

  So, the first term is that and then exponential i q dot delta i these and then b q dagger  a
k. So, we can write it down here as plus exponential i k minus q dot r exponential  minus
i q dot delta i and a q dagger b k. So, that is the two terms that we have written  above
and now a little bit of simplification will have to be done, but now notice one thing  that
the definition of the Kronecker delta which is usually written as delta k q this  is equal to
1 by n summation over r and it is a exponential k minus q dot r.  So, you see that there is
a sum over r and then there are these exponential  factors which  are there and these
exponential factors will give you nothing, but just the Kronecker delta  which means that
it  will  make  k  and  q  to  be  same and  with  that  what  one  gets  is  a  following.   the
Hamiltonian is written as minus t sum over k and then these delta i's will go from  1 to 3
which we have said and there is a minus k dot because k and q have become same.

 So,  it is i k dot delta i b k dagger a k and a plus exponential i k dot delta i a k dagger  a k
dagger b k. This you need to do it once in order to get used to this and then we can  write
this as minus t then there is a sum over k and you again have this delta i equal  to 1 2 3
and I can write it just like a matrix where a k dagger b k dagger.  So, this is like a row
vector and this is a 0 and exponential minus i k dot delta i  exponential i k dot delta i and
then 0 and then you have a a k and b k okay. Now you see  that there is no term that
contains a a k dagger a k because there is no hopping from  a atom to a atom. So, it is the
hopping is between a atom to b atom because we are talking  about nearest neighbour



model  nearest  neighbour  tight  binding  model.

  Actually there is no term which is b k dagger b k that is why this matrix that you see at
the middle sandwich between the row vector and the column vector actually does not
have  any diagonal elements, but it only has off diagonal elements. So, this can be written
as a sum over k and again a delta i equal to I may forget these vectors, but please  put it.
So, this is a k dagger b k dagger and then let us write this as h k and a k  b k that is your
Hamiltonian and what is the form of h k? Now h k involves a sum of 3 terms  with the
delta 1 and delta 2 and delta 3 that we have mentioned earlier that is delta  1 delta 2 and
delta 3 which are written here ok.  So, once when you put that then h k becomes a sum of
3 terms let  me also take this minus  t here. So, that I do not write the minus t here.

 So, I take it with h k. So, that this  becomes like a 0 exponential i k dot delta 1 plus
exponential i k dot delta 2 plus exponential  i k dot delta 3 okay. And so, and then there
will be a term like the similar kind of term,  but with the Hermitian conjugate. So, it is a
minus i k dot delta 1 plus exponential  minus i k dot delta 2 plus exponential minus i k
dot delta 3 and this and a 0 here and  if we want to diagonalize this we just have to find
the eigenvalues of this matrix H of  k okay. Now the difference between this delta 1 and
delta 2 or delta 2 and delta 3 or delta 1 and delta 3 must give you a lattice vector  which is
r.  So,  one  can  do in  order  to  you know achieve  more  simplification  one  can  do  a
transformation of like a k can be changed to e to the power i k dot delta 3 a k and  a k
dagger will be exponential minus i k dot delta 3 and a k dagger okay.

 This is not  required, but if you make this then at one term becomes equal to 1 and that is



what  is   intended here.  So,  we will  write  this  H k,  but now because  we made this
transformation  let  us  write  it  with  a  H tilde  it  is  equal  to  minus  t  and  0  here  and
exponential i k delta 1 minus delta 3 plus exponential i k delta 2 minus delta  3 and plus 1
and then you have a. So, this is a term there and then one can actually  have exponential
minus i k delta 1 minus delta 3 plus exponential minus i k delta 2 minus  delta 3 plus 1
and there is a 0 here and that is becomes the matrix.  If we use the definitions of delta 1
and delta 2 so, you see now that one term has become  equal to 1 just for the simplicity
now we put delta 1 and delta 2 and delta 3 and then  one gets this H of k to be rather H
tilde of k to be minus t and it is a 0 exponential  i k dot a 1 plus exponential i k dot a 2 i k
dot a 2 and a plus 1 and there is a minus  there is a minus sign minus i k dot a 1 plus
exponential minus i k dot a 2 plus 1 and this  is a 0. So, this is one term and the off
diagonal  term there and now one can actually verify that this H tilde obeys this equal to
H tilde  k plus G where G is the proper reciprocal lattice vector which is defined as.

 So, this  is defined as p of b 1 plus q of b 2 and again p q alright. So, this is the form and
then let us write a little more neatly where we write this as minus t 0 f of k and f star  of k
and 0 where f of k is equal to this just the simplified form of this 2 by 2 matrix  where
this is equal to minus t exponential minus i k x a plus 2 exponential i k x a by  2 and a
cosine of k y root 3 k y root 3 a by 2 okay.  That is the form for f of k and we can now
diagonalize this matrix H tilde of k and get  the energy dispersion for the tight binding
problem of for graphene. So, this is equal  to plus minus t root over of f k mod square and
this is equal to plus minus t and 3 plus  2 cosine root over 3 a k y plus 4 cos root 3 k y a
by 2 and a cosine 3 a k x by 2.  Ideally this should have been the end of the problem
because we have found out there are  2 bands one correspond to plus sign and the other
other correspond to minus sign and there  are 2 bands because there are 2 atoms per unit
cell.



 So, it is like a diatomic lattice  and that is why there are 2 bands we have seen this in
while doing the phonons or the  crystal vibrations monoatomic lattice would give rise to 1
band and diatomic would give  rise to 2 and if you have more atoms per unit cell such as
a Kagome lattice you will have  3 bands etcetera. So, this is the dispersion k x and k y
both   go  from minus  pi  to  pi  in  the  Brillouin  zone  and  one  can  actually  plot  this
dispersion  and one gets the how the bands look like and when we do that let me show
you the pictures.  So, this is the picture of the bands you see there are 2 bands. So, this is
the top band  which is called as a conduction band and this is known as a valence band.
However,  they are not separated you see that there are these points which are denoted by
white  and black dots here and they are touching at  the 6 points on the Fermi sheet.

 So, this  is the Fermi sheet or you can call  it  epsilon f equal to 0 or if suppose the
chemical potential  is fixed there then these bands 2 bands just barely touch at these 6
points and not only  that they touch they touch like a light cone as is shown here you see
that this is like  a light cone. So, it is like a linear dispersion and linear dispersion is
equated to the behavior  of photons. So, photons have a behavior which is like which is
PC which is like a extreme  relativistic limit of a particle or you can call it a massless
particle.  So, that is why  the electrons in graphene they show character of a massless
Dirac fermions.  So, these word is very common and why are they called as massless
Dirac  fermions let me tell you that the Dirac equation is written as this is equal to C
alpha  dot   p  plus  beta  m c  square  where  alpha  and  beta  are  matrices  and  p  is  the
momentum and m c  square is the energy the rest mass energy and C is the speed of light.

 However, this  dispersion that we will see in a while looks like only this term being
present and this  term is absent and that is why it is called as a massless and why it is



called a Dirac  because it is you can see that the energy is linear in p or k as it is shown
here because.  So, this is the conical dispersion that you see there it is been also seen in
experiments  angular resolve photo emission spectroscopy shows this formation of Dirac
cones.  

Now we need to understand because condensed matter physics deals with low energy
properties  of systems we need to understand that what is a low energy property for this
particular  Hamiltonian and in order to understand that before we go there let me show
you a colored  picture of this again you see that this is the energy plotted in e v and there
is  a  k   x  and  a  k  y  and  so  on  and  then  these  red  colored  red  and  yellowish  that
corresponds  to the conduction band and then blue and greenish tinge that corresponds to
valence band and  we have said that it is one electron per site per carbon atom. So, it is
half filled which  means that all the states in the valence band is full.  Now we need to
find the Dirac point so that we can expand the energy which we have just  obtained about
those Dirac points I told you why they are called Dirac points because dispersion  is that
of a ultra relativistic or a massless relativistic particle and that is why they  are called
Dirac.



 So, there is no scale the velocity scale here is only the fermionic  velocity at the Fermi
level not the velocity of light. So, the fermionic velocity is typically  about three orders of
magnitude lower. So, that is why it is called as massless Dirac  fermions, but they are
called pseudo massless fermions that is the pseudo Dirac fermions  or pseudo relativistic
fermions. So, you know how now the dispersion looks  like and so on and then let us find
out the Dirac points and that is not too difficult  what you can do is that you can put the
real part and imaginary part of this dispersion  equal to 0. Here of course, you do not see
that you go to this f of k which has real  part and an imaginary part and you put them
separately to be equal to 0 because you want  to see where it meets epsilon equal to 0
which  is  the  Fermi  energy  or  the  Fermi  sheet   or  the  chemical  potential.

 So, we will put these f of k equal to 0 to find out what are  the coordinates of k x and k y
for which the dispersion vanishes and that can be found  out easily if you do that exercise
of putting the real and imaginary parts to be equal to  0. So, let me write down this as
finding the Dirac points that is the exercise.  So, putting the real and imaginary parts. We
get two equations one from the real part  one from the imaginary part and let us write
down these equations as you can check them.  So, it is a cos k x a by 2 cos root 3 k y a by
2 equal to 0 and minus sin k x a plus  2 sin k x a by 2 cos root 3 k y a by 2 equal to 0.

 So, this one of them is from the real  part the top one and the bottom one is from the
imaginary part putting that equal to 0  and I hope I have been able to communicate why I
am putting them equal to 0 because I  want to see these points of touching which I have
shown here that these points these  red circle points are what I am trying to determine and
because the dispersion gives  you 0 value. So, that is why the f of k has to be it has to



vanish and from those conditions  we have found out these two equations. And the so, if
you manipulate the first one  then what you get is so, from 1 its sin k x a by 2 and a minus
cos k x a by 2 plus a  cos k y a root 3 by 2 this is equal to 0. So, that is from 1 we get
from this let us  call this as 3 and we are left with two options in which there is a product
of these two terms  equal  to  0 which means either  the sin k x a by 2 is  0 or these
bracketed square bracket  is 0 and we will see both of them separately. So, one of them
gives so, option 1 is let  us call them as option.

 Option 1 its sin k x a by 2 equal to 0 which also means that  cosine of k x a by 2 is either
plus 1 or minus 1. So, sine vanishes and cosine just either  phase leads or phase lags. So,
that is why it is a plus or minus 1 or option 2 is when  the bracket is equal to 0 which
means that a cosine k x a by 2 equal to cosine k y a  root 3 by 2. So, this is equal to a
cosine k x a by 2 and equal to cosine root 3 k y  a by 2.

 So, we look at option 1. So, let us write it as equation number 4 and equation  number 5.
So, from equation 4 what one gets is we get a condition that 1 plus 2 cosine  k y root 3 a
is equal to 0 option 1 gives this equal to 0 and then what you can do is  that you can this
gives a position of the points as so, these are the points which are  0 plus minus 4 pi by 3
root 3 a. So, these are the so, this k x and these are k y. So,  I get 2 points 0 and 4 pi by 3
root 3 a another is 0 minus 4 pi by 3 root 3 a these are the  2 points that we get from these
option 1 and from option 2 we get from equation 5 one gets  the other option which is



equal to the cosine of k y a root 3 which is plus a 2 cosine square  k y a root 3 by 2. So,
where  we  have  used  this  equation  that   we  get  from  here.

 So, we have used 6 and 7 I mean we have used 6 here and then we get  a 4 more points
from this equation and these points are plus minus 2 pi by 3 a 1 and a  1 by root 3 and
plus minus 2 pi by 3 a 1 minus 1 by root 3. So, we get 2 points here and  4 points it is like
2 more points here and 2 more points here. So, that becomes 6 points.  So, 2 points 2
Dirac points this is 2 Dirac points  and these are 2 more Dirac points. So, that makes it 6
Dirac points which is what we have  seen in the dispersion.

 So, we have these 6 Dirac points however, it can actually be  checked that the all the 6
points are not independent. In fact, there are relationships  such as the let us take the first
one with the positive sign and these 3 root 3 a plus  a b 2 b 2 has been defined earlier if
you see that b 2 has been defined here b 1 and  b 2. So, once you add b 1 or b 2 to this the
first point you get a 1 other Dirac point  which is 1 minus 1 by root 3 which is here the
plus 1 with a minus sign inside and so  on between them. So, this is 1 and we have a 0 4
pi by 3 root 3 a plus or minus a b 1  that gives another 1 which is 2 pi by 3 a minus 1
minus 1 by root 3.

  So, these are the 2 relations. So, that cut down the relationship or rather the independent
Dirac points and there are other relations that connect the other 2 Dirac points. So,  we
are left with only 2 independent Dirac points,  and these are called as k and k prime okay.
They are also referred to as valleys. Now,  whenever I write it a big k and a k prime they



mean the Dirac points that we are referring  to. So, they are 2 independent Dirac points
and they can be anything, but what is usually  done is that you can write it down as 2 pi
by 3 a 1 1 by root 3 and the k prime is equal  to 2 pi by 3 a 1 minus 1 by root 3 okay.

 So, these are the usual choices, but it does  not matter you can have other choices as well
that is you can work with any 2 of them the  other 4 become dependent on these 2 and
they also refer to as valleys as I told. So, these  are the k and k prime points that you have
seen earlier in that dispersion you see here.  So, there is a k point here and a k prime point
in between that is called as a m point  the center of the Brillouin zone is called as a
gamma  point  and  so  on  okay.   So,  at  these  points  one  has  massless  Dirac  kind  of
dispersion for the electrons of graphene  okay. Now, since we have found these points the
Dirac  points  we  can  expand  the  electronic   dispersion  about  these  points  okay.

 And when we do that so, what we have to do is we now  get the low energy dispersion.
And in order to do that what we do is we basically expand  f of k about a k or k prime in
principle it is we will do it around both.  So, let us write down a momentum say q which
is equal to k minus k okay. Now this is a momentum  variable okay, this is runs in the
Brillouin zone this is fixed this is a Dirac point.  And this q is actually also a variable, but
it is a low energy variable because you are  expanding the dispersion about the k point.

 So, we write now f of q and in order to do  that let us take the derivative of that that is f
prime of q which is a del f k del k x.  So, this is like at the k point and this is like a k x
minus a k x okay. This is the x component  of the Dirac point in the Brillouin zone and
this small k x is actually a variable plus  a del f k del k y at the k point and k y minus k y
okay. So, if you do that then this  yields a spectrum which is 3 a t divided by 2 q x plus i



q y, okay, where a is the lattice  constant which is 1.42 angstrom which we have said
earlier  t  is  of  course,  the  hopping   strength  hopping  amplitude.

 And these are the wave vectors q x and q y i is of course,  the imaginary number. This
dispersion at k the low energy dispersion is h cross v f  where v f is the scale and this is
equal to q x plus i q y.  Now, if you repeat this for the other k point which is k prime at q
this will give a h cross  v f and q x minus i q y where v f is nothing, but 3 a t divided by 2
h cross and this has  a value which is like 10 to the power 6 meters per second as opposed
to 10 to the power 8  meters per second etcetera for that is for the light. So, this is called
as a Fermi velocity  okay. These is very important this gives the low energy dispersion of
graphene.

  So, if we forget that we have done all these exercise and we want to write down a
dispersion  for this graphene for the low energy dispersion and we can write it as a k and
k prime just  combined is equal to a h cross v f q dot sigma where q is a 2 dimensional
wave vector and  this sigma is they denote the Pauli matrices. So, this is like sigma x
sigma y and sigma  z of course,  but sigma z is not important  because q itself  is a 2
dimensional vector.  So, q couples with sigma. So, this will be like a q x sigma x and q y
sigma y okay and  it can also be checked that epsilon at k prime is the epsilon at k and its
complex conjugate.  So, this 2 Dirac points the electronic dispersion are related and if one
just get the scalar  form of energy then this is equal to a plus minus h cross v f and a q.

 So, that explains  the dispersion like this which is what we have seen. So, because there
is a mode of  q. So, there is a term that you know it there is a conical kind of dispersion
that you get  and so, it  looks like relativistic  like photons, but of course,  we are not



talking about photons  we are talking about electrons and that is why these electrons are
called as the massless  Dirac electrons or Dirac fermions okay. The discussion throws up
one small anomaly  which we want to point out and that anomaly is about the effective
mass of electrons  and the anomaly arises from the fact that this the effective mass is
defined as h cross  square divided by del 2 epsilon say q del q square okay or you can
write it with k,  k is just a wave vector.

 Now you see here the dispersion is linear.  So, epsilon q is like h cross v f q or you can
neglect this and just say it is linear  in q. So, this is a universe of that. Now this is equal to
it will go to 0 because there  is no dependence there is no curvature and this will go to 0.
So, m star goes to infinity  because this inverse of 0 would be infinity, but that is not true
and we are on the other  hand we are saying that there are these massless Dirac fermions.
So, how do we actually reconcile  these definition of the effective mass and what we have
just said so far okay.

  For that we have to use a formula m star is equal to h cross square k del E del k inverse.
So, it is not a double derivative, but it is a single derivative and if you want to  understand
where it comes from simple a semi classical argument would be good enough. So,  we
have p is equal to h cross k which is nothing, but the m star into vg where vg denotes a
groove velocity okay. So, this vg has a form which is equal to like 1 by h cross del E  del
k that is the groove velocity and which is obtained from the slope of the dispersion  and if
you put it back into this.



 So, let us call this as equation 1. So, 1 apparently  throws up a controversy and so, we are
reconciling that by introducing a new definition and trying  to understand whether that
new definition holds. So, vg equal to 1 by h cross del E  del k. So, if you put 4 in 3. So,
your p becomes equal to m star by h del E del k and that  gives you m star equal to h
cross p del E del k inverse and if you put p equal to h  cross k this becomes h cross square
k del E del k inverse ok.  So, this is the definition that we wish to use and if we use this
definition then of  course, we get a finite mass of these things because your del E del k
here it is of course,  q we have sort of been a little casual in talking about the wave
vector, but this q. So, this is a linear in q. So, we have we can save the definition it is
some finite  thing which is related to the electron I mean which is close to the bare mass
of the electron  or at least it is related to the bare mass of the electron. 

 So, what we have done so, far is we have obtained the low energy dispersion for the
electrons  in graphene and once we get that now it will be easier for us to talk about
quantum Hall  effect because this q or the h cross q or whatever you want to call as a
momentum  this   momentum  will  now  get  modified  or  renormalized  by  this  vector
potential  by this  p minus e  A and we will  put  it  into this  equation  and sort  of  start
discussing  about  Hall  effect.   There  is  one  thing  that  one  should  mention  from the
dispersion is clear that it is not  a dispersion which is like a. So, the q dot sigma tells you
that this is like a 2 by 2  Hamiltonian.

 So, the Hamiltonian is 2 by 2. So, the equations will become 2 by 2 anyway  because of
these 2 atoms per unit cell or which is denotes the sub lattice degree of  freedom. Now, if



you want to talk about the valleys in addition then it becomes a 4 by  4 problem and if
you want to include real spin of electrons then it will become 8 by  8 problem. We will at
least forget about the real spin  because in discussing quantum Hall effect there is no need
for real spins to be involved  which we have discussed at some point of time. However, it
is important that we talk about  at least  a 4 by 4 Hamiltonian that is including the 2
valleys the K and the K prime valleys  and including the intrinsic degree of freedom that
comes  along  with.

  This is just one word of caution that I want to talk about here. This sigma does not
depend  does not denote the real spin of the electrons. This that is why it is called as a
pseudo  spinor and it denotes sub lattice degree of freedom that is A and B. So, this really
is a very important thing. So, the Hamiltonian is 2 by 2 not because of the properties of
spin half, but because we are talking about 2 degrees of freedom coming from the sub
lattices  the 2 sub lattices A and B that is why it is called as a pseudo spinor is not a real
spinor, but yes we may have to include real spin we will take care of that when we come
to this.  Thank you.


