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  Let  me show a very important thing in this discussion particular topic in this discussion
which  makes the study of quantum Hall effect so interesting.   I have mentioned this
several times that the system which is a two dimensional electron  gas is a dirty system it
does  not  have  any  translational  invariance  that  is  there  is   no  space  translational
invariance and no time reversal invariance because of the presence  of the magnetic field
there.  However the plateaus are very robust there is so much so that they are used in the
metrology  of you know fixing the value of the resistance.  So what makes this so robust
is it really some intrinsic constant that is coming into  the picture and because to show
that we had introduced various formalism that is related  to studying a crystal lattice in
presence of a magnetic field.  We will continue doing that because we will do graphene
but let me take a break for the  moment and show you that the Hall plateaus are related to
a topological invariant which  is called as a Chern number or in general which has a name
as TKNN invariant I  have mentioned this earlier it is in the name of four people.  So that
is an invariant that we are going to derive for the Hall conductivity and we  have derived
the form of the Hall conductivity via the Kubo formula.

  So Hall quantization and the Chern number let me write it instead  of writing Chern
number let me write topological invariant  and in order to do that we will follow a trick
and  the  trick  is  basically  just  to  suit   our  requirements  you  know that  if  there  is  a
magnetic field there will be a flux of the  magnetic field which is nothing but the strength
of the field multiplied by the area that it  pierces through.  So we have talked about such
fluxes and we have you know denoted them by this phi which  is nothing but B into A, A
is the area through which it is threading.  We have also seen that you know if this phi by
phi 0 and this phi 0 being h over e which  is a flux quantum if this is a number okay.  So
an integer say for example, a whole number that is then the system properties will remain
invariant.

  So as soon as it  takes  a number such as say 1,  2,  3 the system won't  will  remain
invariant  that is the properties of the system will remain invariant.  The interesting thing
occurs when it is not an integer and a fraction of the form p by  q where p and q are co-
prime integers.  So we want to sort of study the effect of this flux for the quantum Hall
system.  Now we have done this and it is not that we have not done this we have done



this exactly  when we derived the Kubo formula okay.  But here in order to link it to the
topological invariant or which is a churn number which  we will call it as a churn number
let  us  apply  a  trick  such  that  we  thread  not  one  flux,   but  there  are  two  fluxes.

  So  and what I mean by that is the following.  So take a square system and of length say
L x and L y okay.  And now you use a periodic boundary condition let me show it with a
color that is you fold  it in this direction and you fold it in this direction okay.  So we just
fold them in both the direction in the x and the y direction.  So the resultant structure
becomes  a  torus  okay.

  A torus like this which we have seen earlier in the context of what we have called as a
Corbino disk or a Corbino ring.  So it becomes like a torus of this form or you have seen
donut so it is like that a structure  like that.  So this is under periodic boundary condition.
Now this derivation the way we are following is very typical and only used in a few
places  particularly you can see this  article by David Tong he does that,  but actually
originally  it has been done in a different way which appears in the paper by this T K N N
Thaouless  Kohomoto Nightingale and DeNijs.  And then so what we mean by threading
two  fluxes.

  So we have A x which is equal to a phi x by L x and we have A y which is equal to a phi
y and L y and a plus a B x okay.  So that is we have thread two fluxes and they look like
as if you know there is a flux that  is threading here.  Let us call that as phi x and along
this we thread a phi y okay.  So phi x is through the opening of the torus and the phi y is
in the annular region okay.  So there is a phi y flux that is threading this just in keeping
with the structure that  we have drawn in the vertical which is which is that phi x ok.

  Then in that case of course, your A becomes equal to A x x cap plus A y y cap okay.
And we remind you that the perturbation term which we have used in deriving or rather
deducing  the Kubo formula is H prime it is equal to minus J dot A. And in this particular
case  so it will be like minus J x A x plus or rather a minus a J y A y and so on okay.  So
this is exactly similar to earlier excepting that we are now talking about threading two
different fluxes as I said it is just to help us in getting the result.  In fact, this will tell you
just in a few steps down the line it will tell you that  we come very close to the Kubo
formula and this is actually aiding that okay.

  So this can be written as so I which is x y this is equal to a J i of phi i by L i where  i is x
and y. So, phi i is phi x by L x and then phi y by L y and then this is the one  that you
have here okay. And this is the perturbation of course, and this perturbation we want to
see  how  this  perturbation  affects  the  ground  state  okay.   So  the  idea  is  to  see  the



perturbation affects the ground state ground state with  the psi 0 and this psi 0 as we have
discussed earlier it can be a many body state by and  it can contain any term excepting the
J  dot  A term which  appears  because  of  the  inclusion   of  the  magnetic  field  or  the
magnetic flux okay. It can also have interaction terms.

 So,  we want to see the effect of H prime on this by using a first order perturbation
theory  okay. So, H prime is seen as a perturbation and  then we can write down this psi 0
prime it is equal to a psi 0 in the first order we  can write this as some n or m does not
matter I mean this n is not equal to psi 0. So, this  is not the ground state. So, it will
promote the J dot A term will promote particular state  or rather it acts on a ground state
and the perturbation promotes it to the system to  the excited state. So, this is all let me
write it as psi n.

  So, this psi n is not equal to psi 0. So, this psi n and H prime and then psi 0 and  then it
is a E n minus E 0 and what I have done is that I have introduced a completeness  of
states and that is why I sum over psi n which is not of course, equal to psi 0 because  if
that is the case then the denominator diverges okay.  So, we are careful in not dealing
with degenerate systems and make sure that this H prime really  promotes the system
from the ground state to a state which is a low lying one of the  low lying excited states
okay. So, this is the expression for psi 0 prime which is a new  ground state because of
this perturbation this is the first order correction. Of course,  the first order correction in



energy  is  given  by.

 So, if you want that then the first order  correction in energy is simply given by a psi 0 H
prime and psi 0. We are interested  in the state not the energy here okay. So, if you
consider this psi n how psi n a  response to an infinitesimal flux then what we can find
out is that we can find out a  del psi 0 and a del phi okay. So, that is the how a system
responds to an infinitesimal  flux and that is nothing, but 1 over L i and a sum over this
psi n of course, not equal  to psi 0 or we can write it in instead of writing it psi n not equal
to this thing we  can just simply write it E n not equal to E 0 that is probably more correct
way of writing  okay. So, this so, E n not equal to E 0 and this  is equal to a psi n and a J
and i of course, and then you have a psi  0 and the E n minus  E 0 and psi n okay.

 So, I have just written H prime as J i phi i and then taking this  derivative of this wave
function the ground state wave function for an infinitesimal change  in the flux. So, you
thread the flux and thread it slowly we have discussed this in the context  of Corbino ring
and what we mean by slow varying of the flux. So, we do that and then we land  up with
this expression for this del psi 0 del phi i which tells you that how the ground  state
response to the perturbation. Now, just reminding you of the Kubo formula  the Kubo
formula said that the sigma x y some geometrical factor which is this a let  me write a
area itself okay, because this a already there as a vector potential and then  you have these
E n not equal to E 0 and then it is a psi 0 and a J y and a psi n and a  psi n psi n J x psi 0
and minus psi 0 J x psi n psi n J y psi 0 and divided by E n minus  E 0 square. You should
go and look back the derivation  of the Kubo formula and this is exactly what we had
written  earlier.

 Now, you see that  this is this term there which looks like this term here okay and each
of these terms I mean  this one as well as this one and so on this one and so on. So, they
look like this. So,  this quantity that is this del psi 0 del phi i actually enters into the Kubo
formula and  that is why we will write each of these terms in terms of this del psi 0 del
phi i okay.  So, that tells you that my sigma x y can be written as i h cross which is there
and then  of course, there is a del of psi 0 del phi y because of this J y then a del psi 0 del
phi x now it is a J x because of this J x term and then this is equal to and each one  of
them is bringing along E n minus E 0. So, that makes it E n minus E 0 square and of
course,  we  know  that  these  E  n  and  E  0  are  different.

 So, that the denominator is not  allowed to blow up and then so, you have a del psi 0 del
phi x and a del psi 0 del phi  y, okay. So, this is your sigma x. So, which can further  be
written in a slightly different form in which we do a del del phi y and do a psi 0  and del
psi 0 del phi x and minus del del phi x and you have a psi 0 and a del psi 0  del phi y. So,
this is a form of the Kubo formula and this is what we will you know  sort of deal with.



So, this is a present form of Kubo formula in terms of this present variables  where we
have introduced two fluxes.

 Now, you see that the why we have introduced  two fluxes is because we needed to get
this J x and J y and that is why the J dot a otherwise  if it has one component then we will
get just you know we will not get a formula like what  we have done. I mean there is no
restriction on threading a flux as long as the requisition  or the parent conditions are being
satisfied okay.  Now, let me sort of introduce a variable which is a variable that varies
from 0 to 1 and  it can take value any fraction. So, we can write this as a phi i divided by
phi 0 which  takes values between in the limit 0 and 1 and because this is what we have
discussed  that the system actually when you thread the flux slowly each one of the fluxes
phi x and  phi y are being increased from some 0 to phi 0 and then of course, phi 0 to 2
phi 0  and so on. So, I am just talking about just you know  between 0 and 1, but then of
course,  it  takes  any  integer  values  I  mean  it  can  go  from  0   to  n.

 The idea is that in order to you know make more sense let me multiply it by 2 pi  such
that we find out an angular variable and this is like a phi i by phi 0 is, let me  call that as
an angular variable say let us call it as a theta i. So, that theta i varies  from 0 to 2 pi okay.
I have just changed the condition so that I do not have to talk about  any number and I
can periodically talk about 0 to 2 pi that is when phi i divided by phi  0 takes some
arbitrary values okay. So, now let me sort of take a little bit of  time off from this and let
me introduce quantity called as a Berry phase and Berry connection  and we will come



back to this in just a while okay.  So, what is Berry phase? So, Berry phase is the simplest
demonstration of how you know  geometry and topology both can emerge in a quantum
system  okay.

 In order to understand  it better let me sort of write down a Hamiltonian which depends
on a parameter lambda and which  is a function of t. It is not only one parameter that it
can depend on it can depend on a number  of parameters like lambda 1, lambda 2, lambda
3, lambda 4 etcetera, but we just talking  about just one of them without any harming the
generality of the discussion and this  is a function of t. So, lambda is a function of t and
so h implicitly is a function of  t okay. Now what equation do we have to solve? We
have to solve a time dependent Schrodinger equation which is i h cross del psi t del  t
which is equal to h lambda t psi okay. So, this is the equation that we have to solve  and
the general solution of this is psi of t is equal to some u of t and psi and let  us introduce a
basis  which  is  say  a  phi  of  t  okay.

 So, phi of t is the basis for the problem  or now what we can do is that of course, this phi
of t it depends on both lambda and  t. So, in fact, we will do better justice if we write it as
phi lambda of t, but this  denotes the basis. So, this lambda of t. So, this is how the wave
function evolves and  if we claim that phi of lambda at 0 at t equal to 0 if that is equal to
psi at t equal  to 0 if this is true then we can fix that u at t equal to 0 is equal to 1 okay.
Now let me take this space as well and we will come back to this thing this discussion
that  we  have  been  doing.

 So, now, the whole idea is that we want to find or determine  this u of t as this lambda is
changed via changing t over a full cycle that is you start  from a point and then you come
back to a point after a complete rotation and then you ask  the question what happens to u
of t does it ultimately you know the question is that  whether it picks up a phase which is
irreducible  and it  is  not  the  usual  dynamical  phase  that   we are  aware  of  and usual
dynamical phase is nothing, but exponential i e t by h cross.  So, does it pick up a phase
that is anything more significant and then that does not go  away because this dynamical
phase does not appear in the probability density because  the moment you take the mod
square of a wave function the this thing goes away, but however,  here it is it is important
and I let me just write down the solution of this you can follow  R. Shankar's quantum
mechanics book for a very nice and detailed solution or rather  discussion on this Berry
phase and so on ok.  So, u of t it is just basically this ansatz had to be plugged into this
equation.  So,   this  is  equation  1  this  is  equation  2  and  maybe  this  is  equation  3.

 So, if you plug  in 2 into 1 and then use of course, the condition that  then you take a
overlap with this and take a overlap with a conjugate psi okay. Now if  they do that then u
of t comes out to be some exponential minus i and this is written with  a curly a and this
is a i lambda and so, this is A lambda i dot dot means it is a d lambda  i d t and then there



is a d t there. So, this phase is not like the dynamical phase  where this A i is called as a
Berry connection which is defined as a minus. So, this is a  function of lambda and that is
how it  the time dependence  in  the Berry connection  enters   it  is  of course,  a  vector
quantity it is minus i and you have a phi n del del lambda i and  A phi n and so on. So,
this is your Berry connection which enters  in the integrand and inside the you know
exponent of this u of t and this particularly this  quantity  is called as a Berry phase.

 So, this e to the power i gamma which is equal to e  to the power this minus this A i just
make sure that you do not think that this A is  the vector potential  that is why I am
writing it with a curly a this is a lambda and A d  lambda. So, this is called as a Berry
phase. So, this is related to this the time evolution  of the u of t operator and it is called as
a Berry phase and that is why you know the  Berry phase is a very important quantity it is
one of the topological markers of a system  a Berry phase that is different than 2 pi will
tell you that there is something non  trivial going on in the system and I will not prolong
this discussion, but as I said  that please look at this R Shankar quantum mechanics.  In
fact, this Berry connection is like a vector potential actually like a vector potential  and if
you take the curl of that it gives you a quantity which is called as a Berry  curvature and
this Berry curvature when you integrate over the entire Brillouin zone that  gives you the
topological invariant namely the chern number all right.  Then of course, we are nearly
done we write down the Berry connection for this particular  problem which we have
been doing with the 2 fluxes.

 So, the Berry connection is this  A i and which is a function of phi now it is that lambda



is nothing, but phi here and  minus this and a psi 0 and del del theta i theta i is a variable
angular variable and  a psi 0 okay. So, this is called as a Berry connection and from there
you can calculate   the Berry curvature.  So,  the Berry connection is  analogous to  the
vector potential okay. And the Berry curvature which is analogous to the magnetic field
can be obtained by taking a curl of that and one writes it as a curly f and x y which  is
equal to del this curly Berry connection by theta y and minus del A y del theta x let  us
take a curl basically. So, b equal to curl A so this is like a b which is what we have  said
and  when  you  do  that  it  becomes  something  that  is  familiar.

 So, it is a del del theta  y let me just remind you of this. So, we had this del del phi y
which is now a del del  theta y and so on and these all these things will be written in the
present notation which  is del del theta y and a psi 0 and a del psi 0 del theta x and minus
del del theta  x which is equal to a psi 0 del psi 0 del theta y and then this is what is the
Berry  curvature. And now if you go back and just take a one  to one correspondence with
the Kubo formula then you will see that the Kubo formula the  conductivity tensor can be
written as a minus e square by h and these F of x y. So, this  is Hall conductivity in terms
of the Berry curvature. So, this  is that formula that the Hall conductivity is expressed in
the form of Berry curvature  and we have already introduced this k space representation
by going to square lattice  and writing down you know Bloch's theorem etcetera.

 So, this will help us actually to  calculate the Berry curvature and so on for a for a given
system and then the total Hall  conductivity. So, this can be these quantity which is a
Berry curvature can be integrated to basically show that this is over these over the surface



of the torus which is what we have done to the square shaped system as if the 2D electron
gas is confined there you do not have to talk about the 2D electron gas it could be  any
system could be a crystal lattice integrated to the surface of the torus.  Now again going
back to the discussion that we had done at some point of time that this  integration of this
Berry curvature which is like a Gaussian curvature and when you  integrate over the
entire system which in this case in this particular case it is the  Brillouin zone. So, then
this sigma x y for a k space system that is a crystal lattice  this surface of the torus is
nothing, but the Brillouin zone is what I wanted to say.  So, that all our discussions that
we are having now would be valid in case of a crystal lattice  whether you take it a square
lattice  or  you  take  it  more  exotic  lattices  all  these  discussions   will  go  through.

 So, sigma x y is nothing, but a minus e square over h and this is over  a torus and you
integrate this thing over a torus on this angular variable and this  is equal to that. So, this
is a very important expression and  this quantity is called as a chern number. So, which is
a topological invariant I mean  or we can call it a TKNN invariant. So, that your sigma x
y becomes equal to a C with of  course, you can either absorb the minus sign or even if
you do not it does not matter C  e square over h and C can take only integer values.  I
leave it  this discussion at  this  point,  but may come back to this  later  that  why C  is
necessarily an integer, but of course, the proof has been provided by the experiment.

  So, the experiment says that the Hall conductivity is quantized in terms of e square over
h and  this chern number can take values which are 1, 2, 3, 4 and so on and this is called
as  a z invariant okay. It can take any value any integer value and it is necessarily an
integer  and that is the reason that it is so robust because of this discussion if you follow
right  from the beginning that we had done just now you will see that it is completely
general  and it does not talk about any crystal lattice or 2D electron gas.  We have just
taken a sample and have introduced periodic boundary condition threaded to flux  and
wrote down a simple perturbation theory in that J dot A minus J dot A term and then  we



have cast  it  in the form of Kubo formula and this  Kubo formula gives you the Hall
conductivity  which is some C times e square over h maybe minus C times e square over
h where C remains  an integer because C is an integer we are going to see plateaus in the
Hall  conductivity   necessarily  the  plateaus  would  survive  okay  under  this  condition
alright.  So this is very fundamental in nature and that is why the Hall effect is such an
important  experiment and it warrants a completely new look at the systems. The system
is not yet  interacting but if suppose we include the interactions and then more exotic
things will  happen which we will see in the fractional quantum Hall effect but however
at this point  it is the C denotes the integer number which corresponds to the plateaus in
the integer  quantum Hall effect.

  Let me sort of go away from this and let me go to another discussion which is related
which we have started earlier it is we have talked about square lattice and how magnetic
field affects the hopping in the square lattice and so on and square lattice is of course  2D
square lattice is an idealization of crystal system or a crystal lattice we can do a more
realistic  system and these  realistic  system could  be  graphene  and this  graphene  was
discovered  in 2004 as you can see here and this  is  by Andre Geim and Konstantin
Novoselov and it  was awarded Nobel Prize in 2010.  And one of the things that have
been said after the discovery is that it  is a material  made of a single layer of carbon
atoms arranged in a hexagonal lattice okay. This is what has  been found so these things
that you see here are the carbon atoms and so on and this is  over a two dimensional plane
and this is really a hexagonal lattice that you see that  they are making hexagons and
these carbon atoms are making hexagons and the carbon has  a six electrons.  So, six
electrons and then you know there are these this configuration  is 1s, 2 2s, 2 2p2. So,
these are inner electrons and the valence electrons are these 2p electrons  and these 2s and
2p  also  you  know  hybridized.

 Now essentially you know 1p electron per carbon  atom is available for conduction. The
other p electron forms the sigma bonds which are  the bonds that you see here the bonds
that you see here. So, they are busy in making  these bonds and these are covalent bonds
and so it is actually a two atom per unit cell  we will talk about that and how to take the
unit cell and so on and so these are called  as a nearest neighbour distance just some value
we will  talk  about  that  as  well  in  details.   There  is  just  one  thing  that  you need to
remember the problem is slightly more complicated than  the square lattice which had
one atom per unit cell here there are two atoms per unit  cell which are both are carbon
atoms and carbon has one electron available for conduction.  So, carbon should have been
a metal I mean these 2d allotropes of carbon should have  been a metal but it is not a
metal in fact it is like a semi metal or the bands actually  touch but they do not penetrate.



 So, the conduction band and the valence bands they touch at some  points selected points
in the Brillouin zone and we will see that these points are called  as the Dirac points. So,
we will talk about eventually we will  talk about quantum hall effect in graphene which
these constant I mean Novoselov and  Geim have us wrote a paper they have written a
paper at that time saying that room temperature  quantum hall effect in graphene. So,
because the gap between the Landau levels is of that  of room temperature or even larger
than room temperature. So, you should be able to see  quantum hall effect in graphene at
room temperature. So, both are carbon atoms as I said but they  belong to different sub
lattices one is called as a A sub lattice and a B sub lattice this  is exactly the structure also
of hexagonal boron nitride BN or HBN as it says, but these  symmetry is not there which
is called as a inversion symmetry or the sub lattice symmetry  of the problem where it is
not there because one of the A sub lattice contains  boron and  say the B sub lattice
contain nitrogen here both are carbon.

  And the first realization of a perfect two dimensional crystal which had taken the world
very surprised because people have been trying to make two dimensional material a thin
film  in the form of thin films and so on. So, you make or prepare thin films by deposition
techniques   this  could  be  sputtering  or  MB molecular  beam  epitaxy  or  some  other
method,  but  there  is   really  a  thickness  which  is  say  of  the  order  of  nanometers  or
angstroms or micrometers  and so on. So, they are really like quasi two dimensional
material  you have to call them as quasi because there is a very small  extent in the z
direction  otherwise they are flat this is a real two dimension with no extent in the third
direction.  And it is a million times thinner than a human hair and it is thinnest object as I



said ever created which means that it is the perfect two dimensionality is something that
very surprising. Just to tell you about different allotropes  of carbon which have been you
know in like the graphite was known for a very long time  probably few thousands of
years and even more.

 And these nanotubes these are called  SWCNT these are called carbon nanotubes single
wall carbon nanotubes double walled carbon  nanotubes multiple wall carbon nanotubes
and so on. They have variety of applications  in  the medicinal  industry in biological
systems and so on. And this is called as a fullerene  this is a C 60 large molecule C 60 all
these have been discovered earlier than graphene  and graphene was the last member to
be  discovered.  So,  even  quantum dots  which  have  not  included   here  quantum dots
etcetera which are zero dimensional object they have been discovered  three dimensional
graphene has been discovered like long back really  long back.  Then the CNT is the
carbon  nanotubes  which  are  like  rolled  objects  like  you  can  say  that   quasi  two
dimensional objects and so on or even three dimensional objects.

 So, all the  allotropes were available by the last century say 70s and 80s, but this one
took the two  dimensional allotrope of carbon took a really long time and we wanted to
wait till 2004  in order to have in use. It is also very interesting you should read it up how
to generate or how  to fabricate these graphene that single layer of graphene there are
scotch step techniques  and there are other techniques that you should read up.  The



scotch step technique is particularly very simple. So, you take a scotch step so  suppose
like this a scotch step okay a piece of scotch step and then you put a graphite  here okay
and then you close from both the ends okay that is you fold it and the scotch  step will
stick to each other then you open it again and then you close it and you open  it again if
you do it a few times you actually on the scotch step you will find a single  layer of
graphene that is that forms which you can transfer it to a substrate and so  on for your
own use.  Now doing hall effect in graphene is one example of doing it in crystal lattices,
but it is  also there is another dimension to it or there is another idea that can be told is
that when  you do it on square lattice and try to do you know hall effect you are doing it
on a  system which has a parabolic dispersion in the long wavelength limit okay because
we  have said this earlier that it looks like a minus 2t cosine k x a plus at cosine k y  a that
is the dispersion for a 2d square lattice.

  If you expand this it looks like 1 minus k x square by 2 a square and plus 1 minus k  y
square a square by 2 and if you combine this k square k x square and k y square it  just
looks like a 1 minus k square a square with some constant I mean 1 minus or 2 minus  is
actually 2 minus k square a square that is a dispersion that we are very familiar  with in
the non relativistic scenario.  However how the relativistic electrons respond to magnetic
field if you want to know that  then that is exactly also we do when we do graphene
because we show that the energy dispersion  for the electrons close to the Fermi energy
which is called as a low energy dispersion  is a very unlike k square or the square of the
momentum it goes as linear in momentum.  And if I remind you that a dispersion linear in
the momentum is  a  characteristic  feature   of  a  relativistic  particle  such as  a  photon,
photon is known as a ultra relativistic particle  whose rest mass is equal to 0.  So do we
really in condensed matter physics do we really talk about relativistic particles  I mean do
the electrons in graphene travel with the velocity of light it does not happen  so it is only
that the low energy dispersion is linear but the electrons still move or  they have velocity
which is the same as a Fermi velocity which is typically 3 orders  of magnitude lower 2 to
3 orders of magnitude lower than that of the photons or the light.  So we really do not talk
about  really  the  relativistic  particles  but  these  that  is  why   they  are  called  pseudo
relativistic particles.

  Nevertheless since the dispersion is  linear  which is  light  like or like photon like a
relativistic particle and you know that how the magnetic field enters into the problem  in
an orbital sense we are not talking about Zeeman effect because we do not talk about
spins even in graphene we are rarely going to talk about spins unless we talk about a  spin
orbit coupling.  So when we do not talk about spins then we are only talking about the



orbital  effect  and the vector potential  or rather the magnetic  field enters through the
vector  potential   and the vector  potential  enters  through the minimal  coupling or the
momentum becomes the  mechanical momentum becomes or P becomes P plus Ea, E is
the electronic charge and A  is the vector potential that we have seen several times.  So
how under  this  influence  of  a  magnetic  vector  potential  how the  relativistic  electron
behaves  or  how  these  relativistic  dispersion  behaves  that  could  also  be  one  of  the
objectives  of doing Hall effect in graphene.  Apart from the fact that which Geim and
Novoselov  have  pointed  out  that  it  is  possible  to  see   quantum Hall  effect  at  room
temperature.  Let me show you some more structures so these are the bonds which are
shown here the bonds  here and I said that it is like 1.42 angstrom or 0.142 nanometer
that is the distance between  the two carbon atoms and each one of them is a carbon atom
these black dots that  are   there and then it  has a nice and uniform structure and the
structure of course has crystal symmetry  and so we can write down all of the Bloch's
theorem or everything that holds for translation  of invariant system we can do that and
we will calculate the electronic dispersion within  the tight binding model that we have
talked about.  So this is one of the things that we are interested in and this is another plot
that we show that  these are the delta 1, delta 2, delta 3 if you take the blue atom to be a
carbon atom  which is like your reference thing and then of course you can write down
like let me write  down another set of things which are equally you know valid.  So let me
just write down this one and this one and this one instead of the one that is  shown here so
it is a delta 3 in my notation and this is like a delta 1 and this is like  a delta 2 which is
shown there.  So it just does not matter I mean you can take the delta 1, delta 2, delta 3
that is  shown there and or you can adopt my notation so delta 1 equal to a by 2 where a is
that  value 1.42 angstrom or 0.142 nanometers so that is a and that is like a root 3 x cap
plus a y cap okay.  So this is equal to delta 2 equal to a by 2 minus root 3 x cap so your x
direction is  this and your y direction is this plus a y and delta 3 is particularly simple it is
equal to minus a y cap okay.  So that is your dispersion and so on and then you know we
can take this is like a unit cell  and this unit cell so basically if you repeat this unit cell
you will generate the entire  lattice and this unit cell has these vectors and you can write
down these vectors also  like these vectors like these vectors these are let us call them as
a 2 and this is as  a 1.  So you can write down these basis vectors these are called basis
vectors root 3 a x  cap a 2 as root 3 a by 2 x cap plus root 3 y cap.  So these are the basis
vectors by which you can generate this and a is of course what  has been given it is 1.42
angstrom and so on.  It is very interesting to note that the hopping amplitude has a value
which is very large  and this value because it is a very large value it is about 2.7 electron
volt will tell  you the exact number.  



So each of the electrons have a very large hopping okay so it hops to its nearest neighbor
so  let  us  begin  with  its  nearest  neighbors  and  maybe  will  also  include  next  nearest
neighbor  etcetera but these being too large you do not need to talk about the electron-
electron  interaction in  graphene you can only get  by talking about  the tight  binding
model in  order to get the energy spectrum that is write down the Hamiltonian only in
terms of the  nearest neighbor hopping that is the dominant part of the Hamiltonian and
you do not need  to talk about the interaction between the electrons that are there okay.
So we will start from here and derive the tight binding dispersion of electrons in graphene
I did not draw this unit cell properly so let me erase it out and one can actually draw  do a
nice you know sort of it is basically you need to do that well such that it contains  two
unit cells and so on.  So you can do it like this and so that is like the unit cell that gets
repeated  and  you need to  in  order to  generate  the  lattice  this  is  as  I  said it  is  1.42
angstrom.  So we will do a tight binding model or rather derive a tight binding dispersion
for graphene  that is the first thing and then of course we will do a quantum Hall effect
that  is  include  the effect  of the magnetic  field on these electrons  and see how they
respond and how  the Landau levels form.  Once the Landau level forms we of course
know the how the plateaus will form and so on again  is the same thing this plateaus are
broadened because of disorder maybe or impurity and  so on and then there are steps in
the  Hall  conductivity  that  we have  seen  earlier  and  we show you the  plots  for  the
quantized Hall effect in graphene.  Thank you.


