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  So, let me  rewind some of the discussion that we have already done. We know that the
Hall  plateaus   are  quantized  and  we  have  taken  a  2D electron  gas  and  have  put  a
perpendicular  magnetic   field  and  when  you  calculate  the  Hall  conductivity  the
conductivities or the resistivity either  of them is found to be quantized at values that are
integral  multiples  of h  over  e square  or e  square over  h.  Let  us just  talk  about  the
conductivity for the moment. So, it is  integral multiple of e square over h and these
integers are very robust they do not go away  with disorder and the system as I said does
not  possess  translational  symmetry  or  a  time   reversal  symmetry  still  these  plateaus
continue to exist. They are resilient to these external  conditions that we have spoken
about. This is of course, a fact we need to understand  deeper that is why do they survive
even  though  the  symmetry  protections  are  not  there  and   in  fact,  it  is  because  the
symmetry protections are not there the plateaus actually arise  and some of the physical
reasons we have seen that there are disorder that plays a role  in broadening the Landau
bands and as you know the Landau levels move or as a magnetic  field is increased the
Landau bands kind of successively cross the Fermi level and that  is where they spend
some time while crossing the Fermi level and one sees that there is  a plateau that arises.

 Now, we have said that these quantization  of the plateaus or in the Hall conductivity are
related to a topological invariant, but  we have not elaborated it as yet we are going to do
that, but in order to understand that  statement quite you know convincingly what we do
is that we change the system and we  go to a system which has translational invariance
such as a crystal lattice and we want to see  this in a crystal lattice what happens. Suppose
we put a simple lattice such as you  know two dimensional square lattice in a magnetic
field then what happens. Now, it is you cannot  take a 1D lattice for you know discussing
magnetic field because we need to understand  that there should be an area for the flux to
penetrate in order to you know for that  magnetic field to have any effect a 1D lattice of
course, does not enclose such an area and  that is why we have to go to 2D and the
simplest of the 2D lattice is a 2D square lattice a  uniform square lattice and that is what
let  us  see  that  the  as  I  said  the  idea  is  to  understand   the  quantization  of  the  Hall
conductivity in terms of a topological invariant this will  yield sort of mathematical way
to arrive at that topological invariant that we just talked  about and this will make the
calculations more clear and otherwise in a 2D electron  gas a dirty system and with no
translational invariance it is difficult to or rather it  is not possible to do a calculation we



just have to say that the topological invariant  is the coefficient that sits in front of the
Hall conductivity and remember Hall conductivity  has been found using Kubo formula
the formula that we have derived.  Now in order to talk about these periodic potential let
us understand the periodic potential  I have already shown that an electron is actually
moving  in  a  periodic  lattice.

 So, it experiences  a potential which is periodic in nature that is it is of the form V of r
equal to V of  r plus r let us write a vector on everything where r is the periodicity. So,
capital R  is the distance between two successive ions and they are offering a potential to
the to  the electron that is you know passing through it and we have drawn a 1D lattice,
but of  course this can be done in any dimension alright.  The solution of this problem
that is if you want to solve this one particle problem in  presence of a periodic potential
this is called as Cronig-Penny model solving the Schrodinger  equation in presence of
such a potential gives you the energy quantization for a you know  a problem which is a
continuum problem that is when the electrons have a k square type  dispersion a parabolic
dispersion h cross square k square over 2m.  But in a lattice the wave functions are given
by a psi of r is equal to uk of r and exponential  i k dot r and this is the wave function. So,
this is a function of course k and if  you want to put a band index because there are
multiple bands that are going to form  and so we can put a n here and we can put a n here
where  n  denotes  the  band.

 So, it  is the first band or a second band and so on. So, it is basically the band index and
these u n k of r it captures the periodicity of this potential that we have talked about.  So,
k is actually a vector. So, you can write down it as a vector and so this is like r  plus r and
this goes by the name Bloch's theorem. But this is only half the problem we need  to also
know about the energy eigenvalues for these periodic potential and we can we  can know
it  in  a  number  of  ways.

 And one of the things that are done in courses on solid  state physics or they are taught in
that course on solid state physics basic solid state physics  where you learn a tight binding
approximation okay.  So, tight binding approximation means that the electronic wave
functions  are  tightly   bound to the ionic  core  and it  has  very  little  overlap with the
neighboring ions, but enough  just to make the electron move from one position of one
ionic core to the next alight. So,  let me give you a very simple derivation of the this
dispersion the electronic dispersion  and in this particular case we just talk about a square
lattice. So, a square lattice  is a simplest thing. So, we draw a square and let us just draw
this and every junction  of this vertical and the horizontal lines there is a lattice side that
are present and  so this is that lattice say the lattice constant is a and we are going to write
down the tight  binding dispersion which is epsilon as a function of k of course, this is a
real space  structure we are going to derive the dispersion in the momentum space which
is  a  function   of  k.



 And in order to do that let me sort of resort  to technique or formalism which is like
discretizing the Hamiltonian into a grid which is consisting  of these lattice points okay.
You can follow the derivation of this tight binding method  for a general lattice say for
example,  a three dimensional  simple cubic lattice from Ashcroft   okay. Let me show
another way of doing it let us say we have a function on a 1D grid okay.  So, there is a
function f of x that resides on this grid and these 1D grid is I am just  talking about a 1D
function, but it can be generalized to more than one dimension. There  are these sides
which are like so these are is no minus sign there is just a dot dot and  then it is x m
minus 1 x m and x m plus 1 and so on.

 So, this is the grid points and  this function is defined on those grid points. So, I can
write it as x m where m is any of  the sides that you see written out here okay. So, what
we can do is that since we are talking  about a lattice your x m and x m minus 1 or x m
and x m plus 1 they are separated by a  lattice constant a. What I mean by that is that you
can write down this as you know.  So, this is like a m minus 1 a m a and m plus 1 and so
on okay.

 This really denote the coordinates  in a one dimensional array. So, what I want to do is
that I want to evaluate  derivatives. And you may ask this question that why do we want
to evaluate derivatives  and the simple answer is that the second derivative which is d 2 f



d x square in this particular  case actually denotes the kinetic energy because your kinetic
energy is written as minus h  square h bar square over 2 m, m being the particle mass the
mass of the particle that  moves on this 1 d lattice and into d 2 d x 2. So, we want to
discretize a d 2 d x 2 on  a lattice which gives you more you know intuitive way of
connecting a continuum system and to  that of a lattice okay. So, this you know from
your elementary knowledge  of derivatives.

 So, it is a d f d x since we are talking about 1 d I can take the liberty  of writing the full
derivative otherwise it could be you know if you are talking about  a two dimensional
system. So, then it will be like a del f del x and so on. So, this  is equal to f m plus 1
minus f of m minus 1. So, we are taking the two point difference  formula we are not
taking f m plus 1 and f m or f m minus 1 and f m, but we are taking  this site and this site
and then dividing it by 2 a and this is the formula for the  derivatives I mean the first
derivative so to say.  Let me write down the second derivative the second derivative
which is d 2 f d x 2 of  course, this is a m and this is written as f m plus 1 minus twice of f
m this is called  as the three point formula and so on and then f m minus 1 divided by a
square and these  f's are the values of the function and a is of course, the lattice constant
or the  distance between two successive points.

 So, we want to calculate the matrix element of  the operator either these d 2 f d x 2 or d f
d x let me show for both between two sites  m and n. So, it is a m d d x of n m n actually
denote sites. So, this is like m plus 1 n  minus m minus 1 n ok. So, where f of m we are
using that f of x m. So, this is the first  derivative or this the matrix elements of the
operator d d x and this is nothing, but  using the relations of the orthogonality relations
this is nothing, but delta n m plus  1 otherwise it will go to 0 if n is not equal to m plus 1
because  these  are  kets.

  So, we are taking the basis to be the side basis m and taking the expectation value of
these operator d d x and d 2 d x 2 in this basis which is given by this. So, let me write
that this is the basis of the problem which is the side basis minus delta n m minus 1
divided by 2 a okay. So, this is the d d x and similarly we can do it for a double derivative
which is d 2 d x 2 which is this and this is equal to again we can write it down. So,  delta
n m plus 1 you can check that minus delta n m plus delta n m minus 1 and a square.  So,
just  to  tell  you  that  delta  n  m  this  is  called  as  a  Kronecker  delta  okay.

 So, what is  meant by Kronecker delta that is the definition is. So, if this is equal to 1 for
m equal  to n it is equal to 0 for m not equal to n, that is when m and n becomes same
then this  it gives you a value 1 otherwise it gives you a value 0 okay.  So, this is what it



means and where it comes from is from the orthogonality relation like  this which is delta
m n. So, these have matrix elements only between these states which are  given by. So,
single derivative only has matrix elements between the neighboring sides either  the left
neighbor which is this is m plus 1 is the right neighbor and m minus 1 is a  left neighbor.

 And similarly this has the d 2 d x 2 has matrix elements in between these  3 states that is
n equal to m n equal to m plus 1 n equal to m minus 1.  And you can understand that if I
want to write down the double derivative in 2 dimensions  that is if I want to write d x 2
plus a d 2 d y 2 and then I have to introduce another  variable say m n for x direction I
mean m will denote for this x direction the coordinates  in the x direction and n will
denote coordinates in the y direction and then you have to have  m prime and n prime in
order to take the these matrix elements all right.  Let me write down a general operator a
and which has a form which is like m n and this  is like m n and C m dagger C n ok. I am
introducing this fermionic operators I mean this could  be fermionic this could be bosonic
depending upon what is the context of the problem. Let  us say we are talking about
electrons  because  that  is  under  our  discussion  now  we  are  focusing   on  electronic
transport.

 So,  these  are  electronic  operators  and  they  have  you  know  the  anti   commutation
relations between them. So, which are given by a C m and a C n dagger this is  equal to
delta m n and so on. So, this means that this anti commutation relation means  that there
is a plus sign between the 2 that is C m C n dagger plus C n dagger C m this  is equal to
delta n m or m n does not matter. This tells you that that we are really talking  about the
second quantized operators to describe the electron. So, this could be a Hamiltonian  I
have  just  written  any  operator  it  could  be  the  Hamiltonian  of  the  problem.

  So, if you use those definitions that we have just written above. So, then this is equal  to
1 1 over 2 a which can come out of the integral and this is equal to like C m C m  plus 1
and minus C m dagger. So, this is C m dagger C m plus 1 and this is a C m dagger  C m
minus 1 and so on okay. So, this is the d dx operator and similarly the d 2 d x 2  operator
can be written in a similar fashion which has a 1 over a square in the denominator  and
you have a a and then you have a C m dagger C m plus 1 minus 2 C m dagger C m plus
C m dagger C m minus 1 and I am just following these definitions that we have said.  So,
these we are discretizing the space.



 So, that from a continuum system we are going  into a lattice. So, we are using this
discretization scheme in order to understand that how a kinetic  energy which was written
as simply as you know minus h square by 2 m and d 2 dx 2 how  that can be written in a
lattice. So, that is the idea behind this and we are sort of  proceeding in that direction
okay. Just like what we wrote so, h equal to p square  over 2 m and in 3 dimension this is
you know it is equal to minus h square over 2 m and  a d 2 dx 2 plus a d 2 dy 2 plus a d 2
dz 2 okay. That is the operator and if you have no  potential that is the only term that is
there of course, in presence of a periodic potential  you will have a periodic term which is
V of r.

 So, right now we are not talking about  this V of r we are a focus on this now all right
okay.  So, of course, here what comes is that so, you have this h cross square over 2 m
and  then we have this n and let me just write the only in one dimension. So, this this and
then n because that will give me the energy that is the expectation value. So, I am taking
it between the same states and this will give me equal to say a t nm which is t nm is the
hopping amplitude from site n to site m okay. So, that is your  t nm if this is equal to so,
you make a an approximation that this is equal to t if n  equal to m plus a delta I mean a x
cap where x cap is the unit vector in the x direction  and as I said that n and m are just the
site  indices.



  So, if n happens to be m plus 1 unit that is 1 lattice spacing either in the plus direction
or in the minus direction and so on. So, this is equal to a plus and minus in 1 d or it  is
this  thing  if  otherwise.  So,  you  make  this  approximation  or  let  us  say  this  is  the
assumption  and which is also the called as the tight binding approximation. I remind you
that I  have said that the approximation is that the electronic wave functions are strongly
bound  to the sites and they have very little overlap with the neighboring sites, but just
enough  to  give  you a  hopping  from or  a  jump of  the  particle  from one site  to  its
neighboring  site okay. So, this is of course, your T is equal to  nothing, but equal to in
our  language  it  is  like  H  over  2  m  a  square  and  so  on.

 And  now, in addition to this if you consider these C m and C n operators we can do a
Fourier  transform of this operators is just like the restatement of the Bloch's theorem for
the  operators and in that case your C m plus n is equal to exponential i k dot n and let
me write it in since I am writing in one dimension let us not you know write with a vector
sign  because it is a one dimensional problem. So, this is equal to C m and if that is true
then of course, your epsilon k or the energy that comes from for this Hamiltonian. So,
epsilon k is nothing, but the energy or the eigenvalue of this Hamiltonian that is written
in equation 1, but without the V of r there is no V of r there and this is equal to a  minus 2
t including the minus sign now it is equal to cosine k x a plus a cosine k y  a ok. In the
sense that we are only dealing with the kinetic energy term and so, these  k x etcetera
these are two dimensional. So, I have now written it in two dimension  in a 2D square
lattice in one dimension simply it gives you a minus 2 t cosine k x a I just  to go went one
step ahead and in a square lattice with lattice constant a I write this  as this is the energy
dispersion.

 So, this is called as a tight binding energy dispersion.  So, this was a missing link in the
problem where you are talking about the electrons  present in a periodic potential. So, this
is the kinetic energy this is how the kinetic  energy behaves and if you look at it carefully
your  the  long  wavelength  limit  of  this  dispersion   exactly  looks  like  the  continuum
problem. So, if you take a long wavelength limit which  means that your k actually can be
written as 2 pi over lambda and which means lambda  is large. So, k goes to 0 when
lambda  is  large.

 So, that is the long wavelength okay.  So, if k goes to 0 I can do a. So, k going to 0 limit
of this is minus 2 t into 1 minus  k x square over 2 this is the cosine function that that is
how the cos behaves as you take  the k x going to 0 limit k x of course, a square and a
plus a 1 minus k y square by  2 a square and so on. So, this I take away this. So, this is
equal to 4 t minus 4 t 4  t because there is a 1 and 1 that will make 2. So, 2 and 2 4 t and
then there is a 2 t  and a square and the k x square plus a k y square if I drop this term
neglect  what  I   mean  is  that  it  is  a  constant  term  which  can  be  neglected.



 So, this really looks like the  k square dispersion which you are most familiar with it is a
free particle dispersion in k  space which is h cross square k square over 2 m, okay.  

So, the dispersion of electrons in 2 dimension in a 2 dimension square lattice is given as
this  minus  2  T  cosine  k  x  a  plus  a  cosine  k  y  a.  Now  of  course,  the  system  has
translational  invariance we will come back to this figure you may be seeing this this is
one  of  the   important  discussions  that  will  have  to  be  done  and  this  called  as  the
Hofstadter butterfly,  but I will come back to this alright. So, now of course, one of the
chief ingredients  of our discussion is the magnetic field. So, we will let us you know do a
square lattice  in a magnetic field okay.

 And we write down again the Hamiltonian. So, it is in a square  lattice. So, we have the
Hamiltonian the tight binding Hamiltonian. Now we are not writing  m n m was written
because it was a single this thing let me write it as i and j which  means the same thing.
And when I use this symbol i j with an angular bracket it means  that they are nearest
neighbor.

 So, j is a nearest neighbor of i. So, this is equal to  in principle you can have t i j to be
inside which means that it can be different the hopping  amplitudes can be different for
each of the links in a square lattice I have already shown  you a square lattice. So, this is a
C C j dagger C i and now a magnetic field has to  be included. And how do you include
magnetic field you have seen that in a continuum system  it is included as e plus p plus e
A. So, it enters through the momentum of the particle.   So, the magnetic field enters



through the vector potential and the vector potential  actually renormalizes the value of
the momentum it  makes  the  mechanical  momentum to be the  canonical  momentum
which  is  nothing,  but  p  plus  e  A.

 But  in  a  lattice  it  enters  just   like  this  that  t  the  hopping  amplitude  it  is  a  t  into
exponential some i and some phi  phi some phase and this phase contains the information
about the magnetic field through  the vector potential. So, this phi is nothing, but it is
related  to the line integral of the vector potential  and if you use the Stokes theorem
which says  that the line integral of a vector potential is actually or rather any vector is
can be  written as curl of the vector and over this d s. Now this is of course, a closed
integral  and so this s is the surface of the closed contour that you have considered. So,
this   curl  is  nothing,  but  B.

 So, this becomes a B dot d s. So, this phase that you see involves  the flux that threads
through the lattice. So, it the magnetic field has a flux which  is given by the b into the
area and that whatever flux threads sample or the system  is given by this that appears the
phase. So, there is a Hermitian conjugate that is  very important we have not written it
earlier, but because of the Hermitian conjugate the  Hamiltonian becomes Hermitian and
it  gives  real  eigenvalues.  If  you do not  have  that   then you have  problems.  Now in
presence of the magnetic field we do not have translational  invariance and the reason
that we lose translational invariance is because the hopping now becomes  a function of i
j that is these sites because as the electron hops it picks up a phase and  then it picks up
another  phase.

 I mean that phase keeps growing as you keep  as the electron or as the particle keeps
hopping from one side to another. Then of course the  Hamiltonian which only comprises
of the kinetic energy or the hopping term then is not same  from going from one side to
another and if it is not same then you cannot Fourier transform  and write it epsilon as a
function of k. But luckily there is something else that happens  we would be able to
formulate a magnetic Brillouin zone or magnetic unit cell which of course  does not have
the periodicity, but that unit cell is repeated which means that what I am  trying to say is
the following exponential i phi is a phase right. So, phi is a phase  which is just like an
angle.

 Now if the phi changes from phi to phi plus  2 pi. So, if the angle changes to 2 pi then of
course the phase does not change at all  because exponential i phi plus 2 pi is equal to
same as exponential i phi because exponential  2 pi i equal to 1 which is cos 2 pi plus i
sine 2 pi. So, because of this even if the  electron hoppings are different, but it is only
different over certain dimension and  we can take that as a unit cell. See previously the
unit cell was just comprising of one atom  which we have you know shown here. So, here
I  mean  one  lattice  point  you  can  frame  a  unit   cell  there  and  you  can  translate  it



everywhere in order to generate the lattice if you have  a bipartite lattice then of course
you can you have to have two atoms per unit cell and  so on. I am just doing a general
discussion, but  here you cannot generate the lattice because the Hamiltonian being it
changes as you go  from one side to another.

 So, this picks up a phase which we let us write it as theta  i j okay. So, as it goes from i to
j it picks up a phase. So, there is a i here and the  reason that I am writing it with a red ink
is because this is equal to so, i in red is  root over minus 1 whereas, the i in black is not a
other side indices okay. You do not  have to you know carry on this ambiguity for too
long will sort of and if you if it bothers  you please help yourself to write with m and n
okay which is going to be fine alright.  And this phase factor theta i j equal to minus of
theta j i.

 So, basically it is defined  on a link or on a bond, okay. So, it connecting pair of  sites i
and j alright. So, what is then a theta i j? Theta i j equal to 2 pi e over  h and from i to j
now these are of course, sites and this vector potential dot dl okay.  And so, A is the
vector potential. So, now, what it can be done is that this 1 over 2  pi this 2 pi if I take it
down  and  then  I  sum  over  all  the  theta  i  j's  in  going  from   these.

 So, this as I go in one this thing so, I go like this then I go like this then  I go like this and
then I go like this. Why do I go in a particular plaquette this like  called a plaquette? I go
in a placket because in order to understand that what is the flux  that thread this is related
to these hoppings would be related to the flux that threads  that particular  these area
which is shaded like this okay.  So, in order to do that let us let us sum over all this
around an around a placket area  let us write it like this. And this is equal to nothing, but e
over h and then integral  I mean the closed integral a dot dl and so, this is h. So, e over h
you know h over e  is just to remind you this I have done several times this is the flux
quantum let us call  it a phi naught which has a value which I have told also a number of
times  okay.

  So, this is equal to 1 over phi 0 because e over h is inverse of h over e and then there  is
a surface and then this is equal to b dot ds okay. So, as I just said that these phases  are
related to the flux. So, b dot ds is a flux that threads one placket of that square  lattice
which I have shown and phi 0 is of course, a flux quantum around this placket.



  So, we know this. So, this is actually the phi. So, let me write this as phi over phi  0 and
that is equal to 1 over 2 pi and then sum over all this theta ij and so on. So,  suppose this
phi that you have here this flux b dot ds. So, this phi which is let us call  it as a 1 over 2 pi
and then this theta ij over a plaquette I am just in shorthand I am  just writing a placket
that is around a plaquette. So, this becomes equal to or rather you know  this phi over phi
0 it becomes a fraction like this. So, p by q is called as a rational  fraction when p and q
are co-prime integers and what I mean by co-prime integers is that  basically they have no
common  quotient  that  is  a  one  cannot  be  divided  by  the  other.

 So,  just say 1 by 3, 2 by 3, 3 by 5 and so on 3 by 7 and so on. So, there is no common
factor  and that is why they are called co-prime and this is a rational fraction. So, if it is
in this form because phi by phi 0 is a fraction and if this fraction happens to be a rational
fraction  in  that  case  then  the  spectrum the  spectrum that  I  have  shown this  is  quite
important  splits into q sub bands. And so, basically somebody called D Hofstadter  he
studied this problem for the first time and that is why these quantization of the  electronic
dispersion which is minus 2 t cosine k x a plus cosine k y a which is which just  saw.
Now  that  further  splits  into  these  sub  bands  and  it  forms  a  fractal  structure.

 I  will show you the picture, but you will have to you know calculate work out that and
calculate  this thing. And so, suppose now our job is to take a specific choice of magnetic
field  that is easy because we have several times said that we want to take a B which is B
Z  cap and then of course, we have one of the choices which is a Landau gauge.  So, let
us write a Landau gauge. So, this is equal to B X Y cap or you can take B Y  X cap.



 Now because of this let us see what happens. Let me draw this square lattice once  again
and you will see that just bear with me till I draw the lattice. These are the  bonds along
with which the electron hops or the links you can call them a links or  bonds and so on so
forth. Well, I think this should be enough for our discussion.  So now, what happens is
that you see the hopping in the x direction is unchanged because the  gauge is in the y
direction. So, the theta or the phase that the electron picks up will  only be affecting the
movement  in  the  or  hopping  along  the  y  direction.

 So, the x direction  still remains as t t t and t. Now let me take for l equal to 1. So, these
are different  rungs and different legs legs and rungs. So, l stands for leg and this l minus
1th leg  this l minus 2th leg this l plus 1th leg and so on. So, this is a k equal to minus 1
rung  and k equal to 0 rung and k equal to 1 and k equal to 2 and k equal to 3 and so on.
Now, this hopping are like t in the x direction in all the x direction is t because the the
gauge is particularly taken in the y direction because it is B x y cap and because of that
these hopping along these y directions they will pick up a phase this directions it will
pick  up  a  phase  and  they  will  pick  up  a  phase  depending  upon  this  phi  by  phi  0.

 In a particular  case let us take phi by phi 0 a rational fraction a specific rational fraction
one-third which  is simple. So, then what will happen to these hopping? So, this hopping
will be t into exponential  2 pi i by 3 t exponential 2 pi i by 3 t exponential 2 pi i by 3 and
so on. So, this will be at  k equal to 0 will be still t of course, because this is we are
talking about. So, this will  be like t exponential 4 pi i by 3 t exponential 4 pi i by 3 t
exponential 4 pi i by 3 and  so on and similarly there will be t exponential 4 pi i by 3
along these bonds. So, t exponential  4 pi i by 3 and t exponential 4 pi i by 3 and so on
and  all  the  horizontal  hopping  are   of  course  t.

 Now you see your B is in the z direction that  is it is coming out from the board okay. So,
you see the point dot of the arrow and the  this thing is in the y direction of course, and
but it is increasing in the x direction  like this and so on. So, this is the A this is the x
direction because it is a B into  x and it is increasing in the y direction. So, this is not the
direction this is x because  as x increases B increases ok. So, we have particularly taken
the  p  by  q  equal  to  one-third   and  have  done  this.

 Now you see why I have drawn it till this  and not drawn in beyond this that is not one
more sequence of sites and the reason is the  following that you see the next thing if
suppose there is one here and here and here let me  sort of show it by some the hopping
would have been 6 pi i by 3 in that along the y  direction and 6 pi i by 3 is nothing, but 2
pi i. So, that will be the same hopping  that we have started with here and so on okay. I
mean  just  check  that  whether  everything   has  been  written  correctly,  but  when  the
hopping becomes 6 pi i by 3 it becomes equal  to 2 pi i and which is same as t. So, we are
able to identify a magnetic you  know unit cell which I mean this is the magnetic unit cell



for this choice of flux which repeats.  So, it starts with ok maybe I will sort of take this
thing also because it starts with  t in the vertical direction and then it sort of carries on.

 So, it is t in the vertical  direction is t 2 pi i by 3 and then it is t 2 4 pi i by 3. So, possibly
we will just  remove this and check what they are in this particular. So, it is k equal to 1.
So, it  should have been minus 2 pi i by 3 and so on might have written it wrong, but
check  what the d and. So, this is the unit cell of this problem  and now even if the system
has lost translational invariance because of the presence of the  magnetic field we still are
able  to  calculate  or  rather  take  a  unit  cell  and  diagonalize   that  Hamiltonian  okay.

 And one such exercise one can do in which I have taken a slightly  different unit cell that
is I have taken p by q equal to 4 that is 1 over 4. So, written  down a Hamiltonian which
is so, this there is a minus 2 t cosine of say b a plus k y  a and so, this is including all of
that. So, t exponential i k x a 0 t minus i t k  x a and there is a t e to the power minus i k x
a then there is a minus 2 t cosine this  all minus signs cosine b a plus a 2 b a rather k y a
and minus t exponential i k x a and  a 0 and a 0 here.  So, let me show you a specific
example where we  deviate from the earlier example and take another fraction another
rational fraction  for this phi over phi 0 which is of the form p by q and let me take it as 1
over 4 which  is another rational fraction that we talk about. Now that of course, the unit
cell the  magnetic unit cell will come comprise of 4 terms or rather 4 lattice sides and
hence   we  can  write  down  a  4  by  4  matrix.

 So, the matrix one can check that the matrix  looks like this and it is a 4 by 4 because
there are terms which are on-site terms and  then there are terms which are across the



sides  and  so  on.  So,  these  are  terms  and  then   when  you  solve  this  one  gets  a  4
eigenvalues and let us write down the 4 eigenvalues let  us write them as so it is minus 2 t
cosine k x a plus 2 t cosine k y a lambda 2 equal  to 2 t cosine k x a plus 2 t cosine k y a.
So, this is k y a and lambda 3 equal to 2  t cosine k x a minus 2 t sine k y a and lambda 4
equal to 2 t cosine k x a plus 2 t sine  k y a and so on. These are the 4 eigenvalues which
you can solve using either Mathematica  or MATLAB or Python and once when you do
this and plot the energy. So, these are the energies  of these magnetic unit cell and when
you do that for a large number of values of the  magnetic field you get a spectrum which
looks like this.

 This is called as the Hofstadter  butterfly.  This is actually fractal in nature because there
is a self similar structure. So, if  you read on fractals basically a small part of that a small
part of that looks like the  whole picture that you see here. So, whether you see it here or
you see it here everywhere  there is a structures a self repeating and this is called as a
fractal and these fractal  structures or these in the energy as a function of phi by phi 0 this
is the same phi by phi  0 that we have talked about. So, these for different values of the
flux. So, we have  shown for one value of phi by phi 0 all these results if you do it as a
function of phi  over phi 0 then the E in terms of this t is or t naught is the scale of the
problem and  one sees a fractal nature.



 And so, our job is not to really dwell on the Hofstadter butterfly,  but this one of the
things that arise for these energy spectrum in presence of a magnetic  field where the tight
binding dispersion itself splits up each of the bands split up if there  are multiple bands
for a given problem they split up into these self similar structures  as a function of phi
over  phi  0  or  p  by q you see  all  those  fractions  were  taken.   It  is  another  piece  of
information that the quantization of the Hall conductivity can  be captured from these
gaps in the spectrum through a formula called as a strata formula  will not worry too
much about that because we have other ways of calculating the Hall  conductivity and so
on. So, we will leave that and carry on the discussion will not  do a sort of completely
elaborate study of the spectrum in case of graphene, but we want  to see how the situation
evolves  when you have graphene.  So,  we will  talk  about  graphene  and graphene in
magnetic fields.  Thank you.


