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   So students colleagues and friends welcome  to this new course called the quantum Hall
effects  and the reason that it is called quantum Hall effects usually you would see that it
is written as quantum Hall effect,  but here along with original quantum Hall effect, I
would also  like to talk about anomalous quantum Hall effect and spin Hall effect and that
is why  this plural is used along with the quantum Hall effect  so that is effects that is
what it means.  In this course, there will be sort of a number of topics  that are going to be
taught I will introduce the topics in brief,  but before that let me tell you the motivation
for this course.  Quantum Hall effect was discovered in 1980 which is about 100 years
later than the classical Hall effect was discovered  and I will talk about the you know the
discovery in details,  but this was the first example of what is called as the topological
insulator  that was first you know talked about.  So the quantum Hall systems are the first
examples  of  topological  insulators,  and  that  is  why  the  effect  and  its  associated
phenomena  are  important   and  then  it  sort  of  migrated  from its  original  notion   of
applying a magnetic field in a 2D electron gas it went on  to various areas such as you do
not have to apply a magnetic field  and it is just important to break the time-reversal
symmetry  of  the  system   and  that  is  what  quantum  Hall  effect  means  I  mean  the
anomalous  quantum  Hall  effect  would  mean  that  and  then  when  the  time  reversal
symmetry  is restored that will give rise to another kind of quantum Hall system,  which
is called as a spin Hall effect,  and constitutes another topological insulator that is found
in nature.  I will talk about the experiments as well.  So just to give you a brief sort of
overview  of the course the content of the course we are going to talk   about transport in
Mesoscopic systems to begin with then we will give historical  introduction to the Hall
effect we will talk about first about classical Hall effect   which was discovered in 1879
by Edwin Hall  then we will talk about quantum Hall effect its discovery in 2D electron
gases   and  the  Hall  resistivity  and  the  conductivity  and  the  experimental   sort  of
realization  of  2D  electron  gas.

  We will talk about the metrology that how quantum Hall effect actually establishes
from an experiment in the lab establishes the scale of resistance, the fundamental scale of
resistance which is given by H over e-square and then we will talk about the integer
quantum Hall effect   in fact most of the discussion we are going  to talk about integer
Hall effect  excepting for one module or one unit,   we are going to talk about fractional
quantum Hall effect.  Then we will talk about you know how to approach this problem,
what are the Landau levels,  how actually you know electrons in presence of a magnetic
field planar electrons,   that is,  electrons confined in 2D planes  that gives rise to the
Landau levels and these Landau levels  in principle have infinite degeneracy and we will
also talk about the quantum of  flux associated with it and that is how the degeneracy is
represented  in terms of the quantum of flux.  We will talk about the Shubhnikov-De hass



effects oscillations  and so on and will among this understanding   of the quantum Hall
effect can also be achieved by Laughlin's argument  of a Corbino ring which he actually
thought of as a quantum Hall pump so a disk geometry.  It is a thought experiment and it
explains the presence  of you know the quantum of flux  and the integer  number of
electrons being transferred from the edge  of the disk the inner edge of the disk to the
outer  edge,    and  that  is  called  as  a  Corbino  ring.

  We will talk about that.  We will talk about the role of disorder and the presence of edge
states which are the  signature Hallmark signatures of topological insulators.  We will
talk about a Hall conductivity how to calculate Hall conductivity   and from a linear
response theory and we will talk about the derivation of the Kubo formula and we  will
see  that  how the  whole  idea  actually  falls  in  place  by  the  argument  of  four  people
Thouless-Kohmoto-Den  Nijs  and  Nightingale,  and  this  is  like  relating  the  Hall
conductivity   to  the  Chern  number  and  then  we  will  talk  about  the  topological
consideration the Gauss  Bonnet theorem the Berry connection the Berry curvature and
also we will go over from a  2d electron gas and we will start talking about in a lattice
system or which in as a  sort of recent example we take graphene to be that lattice where
we get linear dispersion  near the low energy dispersion is linear near the Fermi level and
we will show that  the quantization of the plateaus and how graphene nano ribbons are
will give rise to these presence  of the chiral edge states what we mean by chiral edge
states is that at one edge in a nano ribbon geometry in one edge the electron traverses
along one direction say towards  the right and in the other edge it traverses towards the
left and that establishes the  bulk boundary correspondence.  We will also talk about
fractional quantum Hall effect and how the fractional quantization  of the Hall plateaus
arise because of you know the electronic interactions,   the coulomb interactions we will
talk about Laughlin wave function and we will talk about the solution  of the Schrodinger
equation now in symmetric gauge because we have circular Landau levels here,  then we
will  talk  about  fractional  statistics  between  fractional  charge,  anyons  and  braiding
statistics and so on and we will talk about spin Hall effect and spin-orbit coupling  in
particular  we  will  talk  about  Rashba  spin-orbit  coupling  we  will  talk  about  this
applications  to spintronics we will talk about experiments in real materials and these
mercury telluride  and cadmium telluride quantum wells and how a band inversion occurs
there,  which gives rise to quantum spin Hall state which is another state   in addition to
the quantum Hall state that we have we will learn throughout the course.  So let me start
with the first thing that we had decided to do   that is let us talk about generally about
conductance  phenomena  in  mesoscopic  systems.

  So let me start with the mesoscopic systems and in principle talk about a few length
scales  of the problem that are important in the present discussion.  So what's meant by a
mesoscopic system so these are you know anything between the macroscopic  and the
microscopic or the nanoscopic systems and we are mainly going to be concerned   with
these the low dimensional  systems and these study of these mesoscopic systems you
know  at low temperatures it has been one of the most studied fields in condensed matter
physics  in recent times and there are a lot of advancement happens in happened in the
in the last may be two or three decades on the fabrication techniques.  So we are able to
fabricate low dimensional systems at low temperature and so on   and not only that there



are a farther developments of adding electrodes and studying the conductance.  So the
conductance properties of these mesoscopic systems are of importance,  and they have
been everywhere in the study of condensed matter system.  So by conductance we mean
resistance as well so it's a transport properties of these mesoscopic  systems, and systems
being developed and fabricated at lower dimensions and have you know dimensions  of
the order of few nanometers or maybe hundreds of nanometers we those are available
experimentally   and one can also attach electrodes in order to study the conductance
properties.

  Alright,  so why is  it  important  we have to  understand that  and the  reason that  it's
important is  that especially at low temperatures the quantum mechanical phenomena can
be well understood.  So what we mean by quantum mechanical phenomena are that those
which relate  to the you know the observation of quantized energy scales of the problem
and the quantized energy scales are they come with a scale of h cross say  for example or
h  cross  Omega  the  energy  comes   with  a  scale  of  h  cross  Omega  and  so  these
conductance properties they explicitly give rise  to these if there are modes available for
the electron transport then only the conductance  will show a peak else the conductance
will show a plateau it's something like that.  So that's a very important thing that like you
know if you can actually in the lab see  direct manifestation of quantum phenomena those
are very interesting and it's also important  to understand that you know these at low
temperature particularly the conductance of the resistance  properties are very different
from Ohm's law.  Ohm's law talks about you know the voltage being proportional to the
current  and the proportionality constant is known as R the resistance of the of the sample
however and  we know that there are parallel and series combinations of resistances that
are available  and in these mesoscopic systems at low temperature they do not obey those
addition   of  resistance  formula  either  for  series  or  for  parallel.   There  is  one  more
important  thing that is  these conductance features are proportional   to the number of
electrons that are present or the number of carriers that are present  at the Fermi level.

  

So in fact that can be tuned that is this called as a density of states,  the density of states
can be tuned using external gate voltages and finally which is very important,  last but not
the least  as  I  say is  that  the  interaction  effects  disorder  effects   and these scattering
between the carriers  and impurities  and disorder  and imperfections   that  can  also be



studied in these conductance properties of these mesoscopic systems or below them the
scale of mesoscopic systems.  Right now you know the discussion that we are going to
have is not directly related  to the quantum Hall effect okay.  We will talk about that we
are simply talking about see quantum Hall effect is also measurement  of resistance when
you pass a current in the longitudinal direction  and measure the voltage in the transverse
direction.  Here we are only talking about measuring the voltage along the direction of
the current.  So we are talking about either resistance or the inverse of it as conductance.

  So this is a general discussion that precedes the discussion on quantum Hall effect,  a
general one that will help the audience to understand how lower dimensional systems
these  conductance   properties  of  the  conduction  properties  are  important  for  us  to
understand okay.  In this connection there are a number of length scales that are present
and one of the most important length scale is it is called as the coherence length  and it is
denoted by let us call it as L Phi you will probably see various definitions  of these what
is called as a coherence length and so on.  So it is basically just to tell you that it is the
distance over which an electronic wave  function maintains its coherence that is the phase
does not change even if it changes  it maintains a relationship between the initial phase
and the final phase.  So there is a well-defined phase so to say so it is a distance over
which the electrons  travels where it retains the phase information okay.  So that is called
as the coherence length and a related quantity is called as tau Phi  which is called as the
coherence time.

  So this coherence time is called tau Phi and these L Phi and tau Phi are denoted by root
over D and a tau Phi now you see that there is a clear deviation from Newton's law of
motion where the L is known to be linear in time whereas this the L Phi and tau Phi
which are length and time are not related in a linear manner and there is a square root
involved and moreover this D is called as the diffusion constant okay.  So and this tau Phi
inverse is called as the diffusing or rather it is called as a  dephasing rate not diffusing it
is a dephasing rate okay and how is this D coming  into the picture the D comes into the
picture  as you know the D this D is related to the conductance Sigma  via this relation
that Sigma equal to E square this is electronic charge and dn  dE and D okay  where you
know N is the electronic density and the dn dE stands for the density  of states.  So the
what we get here is that the conductance of a system is related  to the diffusion constant
and the density of states by this formula okay.  So the existence of a finite L Phi that  so if
the if this coherence length is finite so that distinguishes incoherent transport  from a
coherent transport okay. So once again just to remind you the word coherent means  that
the electron actually preserves the information about the phase in moving  from one point
to another and over the distance it preserves that information is known as  a coherence
length okay.



  So this distinguishes between incoherent and coherent transport  okay so there's another
thing  that's  important  here  is  that  this  L  Phi  and  tau  Phi  they  depend   upon  the
temperature T okay and these temperatures so basically with the increasing temperature
L Phi  and tau  Phi  decreases  which  means  that  the coherence  goes  down because  of
thermal effects  effects and it's easy to understand why that happens because the number
of collisions increase  and the system actually undergoes through inelastic collisions at
large temperatures  because of thermal effects and what we mean by inelastic collision is
that  the  momentum  is   of  course  conserved  in  any  collision  but  the  energy  is  not
conserved okay.  So now it's very important that these L Phi and the system length so the
system  length   let's  talk  about  a  linear  dimension  to  be  L  and  this  should  have  a
relationship  you see if L is much greater than L Phi  that means that you have a large
system and this system is much larger than the coherence length if   that happens then the
electrons will undergo  many collisions okay  and when they emerge out from the other
end and you have attached  electrodes  or leads and when they emerge out there will be a
large  number  of  inelastic  collisions  which  it  has  suffered  and  in  which  case  so  we
understand that in that case that  thermal effects will be dominant the temperature will
actually rule the transport and we must  be in the classical regime.  Whereas if we are in
the opposite limit that is your L Phi is much greater than L  in that case you have the
quantum mechanical  features  becoming  important.  So  here  the  classical   effects  are
important and in this case the quantum effects rule.  okay so along with that there is
another length scale that's important  which is called as a mean free path.

  So just to remind you that the mean free path was discussed or rather introduced by
Drude  in his model for electronic transport that gives rise to you know metals. So if you
start  with a metal that is if you have a metal and then this metal has free electrons now  if



the electrons are completely free then there can't be any resistivity but we know  that the
metals have resistivity and this is what you know your I square R  where I is the current
and R is a resistance  that's equal to the power dissipated in the system and  that gives rise
to joule heating.  So this V into I or I square R or V square by R all these are different
forms  of the power dissipated  in  the  system these kind of  situations  so you need a
scattering  mechanism   in  order  to  bring  in  the  notion  of  resistance  and  that's  what
happened when Drude proposed  that actually these electrons are otherwise free but they
undergo collisions  and between two such collisions they propagate like free particles
okay and not only that he made one  more very important comment there and if you look
at  it  carefully  it  says  that   the  electrons  are  completely  randomly  directed  after  any
collision so the average velocity is zero  but the speed that is if I ignore the direction the
speed of the electron  after  a collision is proportional to the local  temperature of the
system  and that's how he brought in the  notion of temperature  so a hotter region will
emit  or  eject  more  energetic  electrons   okay  now  that  gave  rise  to  these  collisions
between the electrons that gave rise  to the resistivity of this material and the mean free
path is the distance  that the electron travels between two successive collisions and here
also it means the same thing.  Let me write it with LMFP just to make sure that this mean
free path.   so this is the the distance that  an electron travels between two successive
collisions  okay.

 So based on these length scales let me define two regimes  and these two regimes are
called as one is called as a diffusive regime  where let's also define another length scale
which inter atomic distance.  So that's basically the distance between two atoms or ions
and let's call that as A  so this is the distance now what happens is so in the diffusive
regime your A is much  smaller than LMFP is smaller than much smaller than L which is
the dimension of the system  or the system size so to say and which is less than L Phi so
there's a diffusive regime  which is what we have said that that where the conductivity is
determined by the diffusion  constant  and there is also a ballistic regime where A is



much smaller than MFP   and this is of the order of L and it's still much smaller than L
Phi   so  these  two  are  the  regimes  that   we  need  to  consider   for  considering  the
conductance properties of the mesoscopic systems okay.  So in the ballistic regime the
conductance scale is set by  is set by these quantity called as a 2 e square by h  and so
we'll see that as we progress that h over e square is equal   to the unit of resistance just the
opposite of that excepting the factor 2  and this factor of 2 actually denotes summation
over spins.  So there are up and down spins so these two factor of 2 represents that and
this is the unit of resistance and this is the biggest triumph of quantum Hall effect  that it
could actually the plateaus the quantum Hall plateaus that we'll see are completely you
know quantized  in unit of this okay so it's like h over e square h over 2e square  h over
3e  square  and so  on  so  forth  okay  and  so  this  sets  the  unit  of  resistance  which  is
approximately 25.8  kilo ohm whereas you know this e square over h also has a value
which is inverse of that okay we can write down that value also.

  So the conductance has a unit so this is a unit of conductance which is just the opposite
or rather inverse not opposite inverse which is given by 3.874 into 10  to the power minus
5 ohm inverse or you can call it as mho.  Of course there is another length scale which is
often used that's called as a localization length  and it could have been brought into the
discussion but it is not essential  because you know these are the two primary the two
regimes where the conductance  in mesoscopic systems are studied but nevertheless this
localization length is the length over which certain observable  or a physical quantity that
falls to a value which is 1 over e like  for example this G the conductance which is equal
to some G0  so this is in presence of disorder.   This is like minus L by Xi or maybe
sometimes it is 2L by Xi.  So this G0 is the conductance without disorder.

  So at a distance L equal to Xi which is the localization length G falls  to a value which is
G0 over e okay. So this is the definition of localization length.  Now let us you know
derive a formula for the conductance which is the next task  that we have this called as a



Landauer conductance formula.  Landauer is a name of scientist who's written it down
and so on. So let us talk about this regime initially let's talk about  L greater than L Phi
which means that this inelastic collision and this is like  so there are collision with what
so between the electrons and maybe with other electrons maybe  with phonons maybe
with impurities disorder defects anything okay.

  So this inelastic collisions will be there and a classical transport will prevail okay  and
what is meant by classical transport either you talk in terms of Drude formula  or you can
also talk in terms of the Ohm's law okay they mean the same thing.  So the temperature of
the system decides what will be your tau inverse is decided by the temperature.  So what
it means is that the temperature is large  which is a classical regime and then tau inverse
will be very small  which means the electrons undergo several several collisions within
the linear dimension L  of the system okay and in this case the  of course the Drude's law
or for example Ohm's law to be valid.  Alright, now one is to understand that of course
we are not going  to talk about this limit we are going to talk about L to be less than L Phi
or even much lesser than L Phi  such that the quantum effects are important is the other
limit  that  is  important.  Alright,  so  you  have  to  understand  that  when  you  make  a
measurement of the conductivity  or the resistivity you need to attach leads okay and this
is what is done in the labs  in all undergraduate labs or the labs that you all have attended
it is done  by either multimeter where you put those two the leg or the leads and then on
both sides of the sample and then you take the measurement okay the multimeter gives
you reading  or there are more elegant way of doing this there are two probe methods
and there are four probe methods which so you actually measure current by sending a
current  in  and  along  two  directions   and  measure  the  voltage  along  the  other  two
directions that's a four probe  and in a two probe method,  you measure it in whichever
direction you send the current you measure the voltage  in the same direction all right.

  So we are going to attach leads and these leads are very perfect metals neo perfect
metals. Okay so which we will call as ideal conductors, so in order to derive that let me
draw a schematic diagram which will help you understand that so this is like a sample  so
this is a the whole setup not a sample the sample is here  so we will call this sample as
scattering regime okay.  So in the sample the all the scattering happens and as I said
earlier   that the scattering does not only mean electron electron scattering it could be
between  electrons  and  impurities   electrons  and  disorder  electrons  and  phonons  and
various other things okay  and now this is the ideal conductor or the electrode or the leads
okay   so this is an ideal conductor  there is one lead and this is the other lead think in
terms of the multimeter probes  that you attach on two sides so these are those leads that
are there and there is a bath okay  and there is a bath there which our bath means that you
know they have a large number  of electrons so they are the bath of electrons so if the
electrons actually go from  towards the right or towards the left the electron density in the
bath is unaffected  and as well as the temperature of the bath is unaffected  and that is like
saying this bath means nothing  but the battery or the bias voltage that you connect it to
okay.  And just as an example let us say that this is the the mu A is the chemical potential
of conductor 1 and mu B is the chemical potential of these ideal conductor  which is the
other lead or the electrode so lead and electrode they mean the same thing  and there is a
mu 1 say for example  which is the chemical potential of bath on the left and there is a



mu 2  which is the chemical potential of the bath in the right region.  So just to remind
you that  mu is  a chemical  potential  and the chemical  potential  is  the  energy that  is
required to add one electron in the system okay.

  Now you could say that in a system of fermions you could only add an electron  only at
the Fermi energy at T equal to 0 okay  if you are not at T equal to 0 it will be some other
energy  which is slightly bigger than the Fermi energy  because the Fermi energy or the
Fermi surface loses its meaning at finite temperature.  So why is this chemical potential a
finite quantity why can't you just add one electron  to the system without spending any
energy why is it not 0  and it's not 0 for the simple reason  that all the other electrons the
n electrons that are already there in the system,  they have to readjust in order to come to
equilibrium with this new particle  or this new electron being added to the system okay.
So there is certain amount of energy cost and that's the chemical potential and if you
want  to  understand  it  simply  then  you  take  this  nice  distribution  which  is  a  Fermi
distribution  for electrons and it's a step function. So all the states below certain EF, let's
write it with a with an epsilon which you're probably more familiar with and this is the
epsilon F okay.

 So that's the Fermi energy.  So if you want to all these states are filled okay with you
know one quantum state is being occupied  by at the most two electrons one spin up and
spin down. So you need to if you need to add one electron more,  you will have to add it
here okay there is no other way  because all the states are filled and because of the Pauli
exclusion principle, they are not going to take any more electrons all right.  So in this
thing let me you know show that there are  these modes called n will tell you  what these
modes are there is a mode called m and the reflection amplitude is  let's call it as rmn and
similarly you have a tmn. So what these modes are these modes are the allowed energy
levels of the system  of the ideal conductor. So when an electron goes from left to right,



and it  incidents  on these boundaries  these boundaries  are let's  say labeled  as ABCD.

  So we have you know sort of four boundaries  so then an electron with energy n can get
scattered  into  another  level  called  m.  which  is  either  it's  called  mode  or  it's  called
channel. So n and m are modes slash channels okay.  So they are different modes or
different channels that are present in the system,  which are the electrons dispersions and
so it represents a system comprising of a scattering regime  which is sandwiched between
two ideal conductors  which are leads or the electrodes and in the ideal conductors the
electrons are assumed  to be free and the wave functions are written as a product of so
this is important, this is your let me also set the scale the coordinate axis so to say okay.
So we write down the wave function of this system  to be a product of Phi n y now that's
a y direction which is what I showed here this is the y direction so in y direction,  the
system is not infinite so I've taken a strip of the system okay and in the x direction you
can think of it as infinite.

 So in the x direction of course this is going to be an exponential i k n x  so the total wave
function is going to be the product  of these Phi n y and exponential i k n of x  So this is
equal to psi n of you know x y, and you can put a plus minus here plus would correspond
to  sort  of  moving  towards,  the  electron  moving  towards  the  right  and  minus  may
correspond to something moving towards  or the electron moving towards the left and
this thing comes  because you know exponential i pi equal to minus 1.  So if you add to
say exponential i x if you add a exponential i x plus pi,  then it becomes equal to minus I
mean exponential minus x.  So this gets the phase gets reflected so there is a k x there
which  I  forgot  okay so this  thing and so this  becomes you know it's  reflected   as  a
exponential minus i k x.  Okay so this is and there is a normalization which is given by k
n,  where k n is equal to root over 2 m E minus e n divided by h cross square.  So this e n
these denote the modes,  or the channels so this is the wave function and  I have used 1



by root   over  k  n as  the  normalization  constant  so this  is  the  wave function,  so  an
incoming wave psi n plus from the left once again let's go to this from the left of the
scattering region it incidents at this B  this region that distinguishes between an ideal
conductor  and the scattering region so it is partially reflected into a psi m minus  okay so
a psi n plus is incident from from left, and it scatters as psi m minus is reflected.

  So this is on the surface B or the surface that divides the scattering regime with the ideal
conductor and so on,  so what is this E here this E is nothing but equal to the variable
energy of the problem   that is E equal to coming from the bias voltage okay. So very
similar scenario emerges at this C as well  and there will be a reflection towards the left
and there will be a transmission towards the right okay.  So these r m n and t m n are
reflection amplitude  and t m n are transmission amplitude okay, so then what happens is
that your total transmission is in the channel n, or with energy e n is a sum over all the
m's all the other m's  and t m n mod square, so the the amplitude mod square gives you
the this transmission coefficient and the conductivity is proportional  to the transmission
coefficient okay.  So now if you consider n r channels total of n r channels in the right
and n l channels on the left on on the right and on the left then you have a S matrix which
can be written as r t prime t and r prime So I sort of I'm assuming that you know what is
S matrix,  S matrix is you know in this barrier transmission problem you write down
these the coefficients  here A and B this coefficient C and D and let this coefficient be F
and G.  So there are these two by two matrices that connect A B and C D,  and C D and F
G and these matrices have are governed by certain general properties  and these matrices
have their unitary matrices, and they are related to the scattering matrix.

 I'm skipping that discussion here  but we'll probably come back later and r and t are the
reflection and the transmission coefficients for these ideal conductor you know these two
ideal conductor, so actually it's a t m n is getting transmitted but something is getting
reflected also so there is a t m n here as well which is towards this okay and we'll call for



the second ideal conductor,  we'll call this as t m n prime and so that is the prime.  So
these two are the r and t they correspond to the the ideal conductor on the left and r prime
and t prime they correspond to the ideal conductor on the right okay and these S matrix
because of this has a dimension, which is nl plus nr multiplied by nl plus nr okay.  So if
you call this as n this s matrix is a n cross n where n denotes the total number of modes
that exist okay, and what is your mu 1 and mu 2 so mu 1 and mu 2 is nothing  but eV
okay so that's the biasing voltage so what you have done is that you have biased it here so
you have biased it here okay. So it is like this okay you know so this is a voltage V I did
not  want  to  draw  it  earlier  but  the  understanding  is  the  same  that  these  baths  are
connected to battery okay.  So, this mu 1 minus mu 2 equal to eV and then we have this d
I n so that's an elemental current in the nth channel, from left to right is written as rho n V
n and t n which is the transmission coefficient which is a function of this biasing voltage
and this is also the Fermi distribution function  which is E minus mu 1 and a dE so that's
the current that flows  from left to right from left to right that's the current.



  So, what is rho n V n is basically the velocity and rho n is the basically the density
which is equal to 2 pi h cross V n so rho n and V n would cancel  and what eventually
you will get is that d I n L by r is equal to E   over pi h cross t n of E okay and F of E
minus mu 1 and dE. Similarly you will get a d I n r 2 L is equal to E by pi h cross the 2
will cancel and now you have it as 1 minus sum over m  because it's at the other junction
which we have called it as C the junction C so this is r m n prime and square okay.  So
this is and then of course E minus mu 2 and dE so this is the current that's flowing from
right to left and the other current the one that is here is from left to right and  this is right
to left so the net current will actually be the difference of 1 minus 2, so net current it's 1
minus 2 okay and in calculating that we can have we can see that it's E minus mu 1 and E
minus mu 2 these are the respective chemical potential and this is like a minus del f del E.
I leave it to you to figure out that this is indeed equal to these, where I have done a Taylor
series expansion of f about the energy E. So the total current is equal to mu 1 minus mu 2
divided by pi h cross   and then dE and  a minus del f del E and sum over m n and t m n E
mod square so this is the current expression and that will give rise to the conductance, so
the conductance will be I over V, so we divided by this V is equal to mu 1 minus mu 2
divided by E, we have said that earlier.



  So when we divide it by that your your G becomes equal  to a dE minus a del f del E
and a trace of t dagger E r t E okay and so at very low temperature or at zero temperature
at very  low or at zero temperature the del f del E is nothing but a delta function  which
you understand because once again this is like this so it is everywhere 0 but here it is
infinity okay so because there is an discontinuity there.  So that gives you that at low
temperature or at zero temperature so this is equal to  2 e square by h trace of t dagger E
and t of E okay.  So this is called as the Landauer formula,  and this is what we wanted to
find out and so this is the conductivity given in terms of the transmission amplitudes
which are t so this is t dagger and as I said that this t's are matrices which are 2n nl plus
nr cross nl plus nr so it's like n cross n matrices and so on and this 2 is coming for the
spin degeneracy  okay and it's a very good formula because it takes into account the
effect of the contact resistance between the electrodes and the the system which is the
scattering  regime  okay.   So  the  electrons  actually  enter  from left  to  right  from the
electrode  to  the  scattering  regime,  and  they  see  a  different  environment  and  that
environment actually scatters them.  Okay so this gives you so basically the trace of t
dagger t, it gives you the number of modes  and these number of modes will depend of
course on the Fermi energy and as the system  is driven the Fermi energy rises so it
accommodates  more  and  more  electrons  and  so  this  there  are  farther  you  know
conducting channels that open up in in general you know  this G is actually even in
presence of a magnetic field this G is actually even okay.



  So so what we have seen is that we have taken a sort of experimental system where you
have sort of a material whose resistance you are going to find out  so you will put leads
and  and you will put battery the leads are the ideal conductors and the battery gives it
drives  the system it supplies electrons it sort of manipulates the Fermi energy and in this
condition,  we have seen that it's like a simple scattering problem of electrons across a
boundary and that gives rise to this nice formula which is called as the Landauer formula
okay.  As I said that this is very general okay it's not restricted to Hall effect or you know
quantum Hall effect but we'll see that this is a general you know scheme  of calculating
resistance  or  conductance  of  a  mesoscopic  system,   which  we'll  be  talking  about
throughout this course.


