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So in today’s class we are going to continue our discussion of the Relativistic nature of 

Maxwell’s equation. So, if you recall in the last class I had shown how the collection of 

density and components of current form a relativistic 4 vectors. So, if you remember I 

had I had pointed out that you can construct this object which has 4 components. 

Namely; the first components is the density the other three components are the xyz 

components of the current density.


So, you have particle density and current density. So, by demanding that the equation of 

continuity be the same in both the original reference frame and the Lorentz boosted 

reference frame. You will be able to conclude that this is possible only if the currents and 

densities transform in this way and then we just derived that this is nothing but c 0 is 

gamma which is you know the parameter that determines length contraction in relativity.
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And this is going to be v by c squared minus v by c squared gamma. So, this is very 

closely reminiscent of you know t dash going to gamma into t minus v by c square into 

x. So, in other words t is analogous to rho and x is analogous to j x. So, in other words 

rho and j transform exactly the same way as t and x transform under Lorentz 

transformations ok. So, t and rather rho and j x transform the same way as t and j x 

transform under Lorentz transformation. So, now that is so, much for currents and 

densities.
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Now, I am going to go and prove to you that the rest of Maxwell’s equations are also 

consistent with special relativity. So, in order to do this you look at the Maxwell’s 

equation. So, if you must know that there are four Maxwell equations two of which 

involve sources the other two do not involve sources and they refer to the ones that do 

not involve sources are basically the ones that you know the Faraday’s law and basically 

the other one which tells you the fact that magnetic field does not diverge ok.


So, the point is that the source Maxwell equations with sources are the Gauss law and 

Ampere’s law. So, this is Gauss law the first one is Gauss law and the other is ampere 

law. Now I am remember that I have just proved to you that the sources namely rho and j 

transform as components of a 4 vector under Lorentz boosts. So, now, the question is 

given that information and given these two Maxwell’s equation the question is a how do 

the electric and magnetic fields transform under Lorentz transformation.


So, I am going to postulate that these equations have the same form under Lorentz 

transformation. So, in other words this equation looks exactly the same when I replace 

the gradients with the corresponding gradients in the boosted frame and the electric field 

so on so forth. So, now you see I go ahead and explicitly write down the components 

and. 


So, it is going to be a little lengthy because I am going to work it out component by 

component and when I do that you see that the first one is a scalar equation, but the 

second one is a vector equation. So, that the second one splits up into three separate 

equations for each of the components ok.
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So, now keep in mind that j dash x is related to j x and rho. So, which is what I have 

written here. So, I have been able to write and then the gradients themselves can be 

written because I know how the positions and times change under Lorentz 

transformation. So that means, the gradients are also correspondingly they get linearly 

combined in this fashion under Lorentz transformation.


So, when I do all this I put them all together its going to start to look like this ok. So, so 

these three equations can be made to for example, this equation can be made to look like 

this the one involving the derivatives of B dash can be made to look like this, but then 

keep in mind that the original in the original reference frame these were the equations ok.


So, then you can eliminate rho and j from 3 2 by using 324. So, you see. So, I am going 

to eliminate rho and j from this equation by looking at by using this. So, 4 pi by cj x is 

given by the rest of it. So, wherever there is 4 pi by cj x I can replace it by the Bs 

themselves. So, then you stare at this then you compare the two sides and then you will 

immediately conclude. So, you see what I have done right.


So, basically what I have done is that I have taken the j x which is from here and then I 

have substituted the corresponding j x into this ok. So, then I get this. So, I have 

eliminated j x as it were. So, so remember that there is only this source right and 



similarly rho also I have eliminated that way ok by using this. So, I write 4 pi rho as d by 

dx of ex and so on so forth. So, that is what I have done here right.
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So, having done that you see you simply compare the two sides. So, then you will 

conclude that this is valid only when E x is same as E x dash B x is same as B x dash, but 

B z dash is given by this interesting formula if gamma into B z minus v by c into ey ok 

and then B dash y is similarly this ok. So, similarly if you look at 3.18 ok. So, which is 

your z component and then you again eliminate the sources and then you look at the 

different terms.
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So, you will get the rest of the transformation. So, this will tell you all the how the B is 

transform B dash how does B dash transform B dash x B dash y B dash z. So, B dash x B 

dash z B dash y. So, we know how B transforms, but here from equation 3.20 you only 

know you know how all the Bs transform, but you know only how one of the x 

components of electric field transform only one of the components of the electric fields 

how they transform.


But if you want to know the rest you just look at any one of the other ones like 3.18 and 

they do the same thing eliminate sources then you will conclude that the other 

components transform in a very similar way. So, this is pretty much the whole story; that 

means, now we have successfully told you how the components of the currents and the 

density transform under Lorentz transformation. So, now, we have also successfully said 

that how the electric and magnetic fields transform under Lorentz.


So, now having done this we are now ready to make further interesting observations 

about the relativistic nature of the electromagnetic field. So, one of the important 

observations is that if you square the electric field you will see that in the primed 

reference frame and the unprimed reference frame they of course, are going to be related 

the square of the electric field in the primed reference frame is related in a complicated 

way to the electric fields and the magnetic fields in the unprimed reference frames.




But however, when you take the difference between the so, I have to also remind you 

that I am working in CGS units. So, that in CGS units the electric and magnetic fields 

have the same units same dimensions. So, that is why I am able to do this ok. So, if I 

subtract these two that will be the square of the electric field in the primed reference 

frame minus the square of the magnetic field in the primed reference frame.


You will see that the complicated dependence on the right hand side especially the 

dependence on the boost factors namely the relative velocity between the reference 

frames disappears and you have this very beautiful result which says that E squared B 

squared is independent of which reference frame you are looking at. So, in other words is 

a Lorentz invariant.


So, similarly you can also show that E dot B is a Lorentz invariant ok. So, if E dot B has 

a certain value in a certain reference frame it has the same value when you move to a 

different reference frame which is moving relative to this frame. So, this sort of 

completes the proof and description of the relativistic nature of the electromagnetic field.


So, remember that it is we have done a thorough job because we have also included 

sources. So, it is the most general description of the electromagnetic field. But now we 

can go one step further and introduce certain quantities which are called potentials. So, 

see the way electric and magnetic field transforms they are not exactly similar to 4 

vectors, but they somewhat resemble 4 vectors, but not quite.


However you see the density and currents are exactly like 4 vectors. So, if you go back 

and see this rho dash transforms exactly the way t dash does. So, remember that t dash is 

gamma t minus v by c squared x. So, similarly rho dash is gamma rho minus v by c 

square j x. So, its a as if rho is interchangeable with t and rho dash is interchangeable 

with t dash and j x is interchangeable with x.


So, the bottom line is that you see that rho and j x j y j z form a 4 vector, but; however, E 

x E y E z of course, there is no 4 fourth component at all in the case of electric and 

magnetic field there six spatial components namely E x E y E z and B x B y B z there is 

no analogous time component. So, it is hardly surprising that electric and magnetic fields 

do not transform as 4 vectors.




However, we want to write electric and magnetic fields in such a way in terms of other 

things which we can identify as 4 vectors. So, we want to write the electric and magnetic 

field in terms of quantities which finally, transform like 4 vectors. So, to do that we 

introduce what are called electric basically we introduce what are called scalar potentials 

and vector potentials. So, you will see that the scalar potential transforms as the time 

component of a 4 vector the vector potential transforms as the space component of the 4 

vector.


So, that is the reason why we introduce potentials. So, it is to make the analogy with 

special relativity as close to the special coordinates as possible. So, the electric field can 

always be written like this because see I choose to introduce quantities called phi and A 

which obey this. So, you will see that this sort of identification immediately solves the 

source free Maxwell’s equation. 


So, namely this no divergence of magnetic field that is the lack of magnetic monopoles is 

obeyed by this correspondence and the Faraday’s law which basically tells you that curl 

of E is minus 1 by c d by dt of B is automatically. So, if you take curl on both sides you 

get back this Faraday’s law. So, these are the source free Maxwell equations that are 

automatically obeyed by this choice.
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So, now you go ahead and ask yourself how do phi and A transform under Lorentz 

transformation. We can answer that of course, because we already know how E and B 

transform under Lorentz transformation. We have found that E and B do not transform 

well even though the transformation laws are simple they still do not transform like 4 

vectors.


However we expect now that phi and a should transform like 4 vectors namely phi is the 

time component of a certain 4 vector and A is the special component of that 4 vector. So, 

to prove this let us go ahead and find out how E transforms under Lorentz transformation 

when expressed in terms of the potentials. See when expressed in terms of the potentials 

you see that as usual you write down the gradients and the time derivatives also in terms 

of a the Lorentz transformed versions. 


And then now you go ahead and. So, you know that the x component of the electric field 

does not transform at all, but the y component transforms in this peculiar way. So, the y 

component transforms it gets mixed up with the z component of the magnetic field. So, 

when you do all that and you insert it into your earlier transform transformed electric 

field in terms of the potentials then you will be successful in proving this transformation 

for both the inverse and the forward and backwards transforms.
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So, in other words you will be successful in proving that the vector potential in the 

transformed frame transforms like this whereas, the scalar potential transforms like this. 

So, you can see that this is certainly reminiscent of a what we would normally associate 

with. So, this phi by c is analogous to time and A x is analogous to x and A y is 

analogous to y and A z is analogous to z. So, you can see that. So, if you think of this as 

x dash I mean analogously. 


So, this is going to be x dash is gamma x minus v phi is phi by c is t. So, you will get 

back your familiar result that x dash is gamma into x minus v t. So, you can see that from 

here the phi by c and ax a y a z are transforming exactly like the components of 4 vector. 

So, now, you see so, I have in this description purposely avoided using you know these 

field tensor type of ideas which makes all the proofs very compact. So, if you write down 

Maxwell’s equation in terms of what are called field tensors the relativistic nature of 

Maxwell’s equations becomes so obvious that there is nothing left to prove.


But I find that kind of an approach is somewhat opaque and it you know obscures some 

of these details of how these transformations work. So, I have purposely explicitly 

pointed out how the transformations work. So, that then you can go ahead and 

confidently work it out using the more you know concise 4 vector notation and you can 

be confident that you have understood the underlying meaning of what is happening.


So, now that is exactly what we are doing now you see I am going to define the 4 vector 

in this way. So, where these are my derivatives the contravariant derivatives will involve 

the derivatives respect to the corresponding covariant coordinates and this is how I 

define my. So, the field tensor is called the field tensor and basically a collection of 

electric and magnetic field components arranged in such a way that the field tensor is 

fully anti symmetric. So, in other words f mu nu is minus f nu mu.


So, therefore, all the diagonal components are 0 and the off diagonal components are 

negative of each other. So, basically you see that there are. So, for skew symmetric 4 by 

4 matrix the number of independent components are only 6 because these are the only 

independent component. This once you specify this is already known because its the 

negative of that. You specify this is already known, this is specify this is already known.




Similarly, if you specify this is known specify this is known and so on. So, you have 

totally six. So, that is perfect because we know that we need six. So, ex ey ez is three and 

B x B y B z is another three. So, put together six we really need all six to describe a field 

tensor, but the point is that the field tensor is really a tensor it is not really a 4 vector or 

anything. 


So, that is why we had to define it in this peculiar way and that is why it was not at all 

obvious how the I mean. So, it is only when you replace the or express the electric and 

magnetic field in terms of potential then only you will be successful in linking the 

electric and magnetic fields to 4 vectors because through the potentials the potentials are 

4 vectors. But the electric magnetic field themselves are not 4 vectors they are 

components of a rank 2 tensor ok.
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So, in my book I have several exercises which I will encourage you to do on your own. 

So, perhaps I will assign these exercises to you and some of the tutorials that you will be 

encountering shortly. So, I am going to skip these assignments and well these are not 

really assignment these are worked out examples, but these are also things that you 

should try and do on your own ok.
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But just to maintain the continuity of my presentation I will skip the examples because 

those are meant to illustrate certain specific points which you should try to study on your 

own. So, now, let me go to the basic promise I made in the beginning namely that every 

dynamical system the equations of every dynamical system can be thought of as the 

Euler Lagrange equation of a suitable Lagrangian.


So, in other words for example, Newton’s second law is can be thought of as basically 

some consequence of some Lagrangian exactly in the same way I am going to see if I 

can think of Maxwell’s equations themselves as a consequence of a suitable as the Euler 

Lagrange equation of a suitable Lagrangian ok. So, the question is how would I do that. 

So, to do that I am going to first write down these four Maxwell’s equation the first two 

are the ok. 


So, in other words the second and third are the source free Maxwell’s equation the first 

and fourth are the Maxwell’s equation with sources. By the second and third Maxwell’s 

equations which do not have sources are automatically obeyed by re expressing the 

electric and magnetic fields in terms of the corresponding potentials. So, when I do that 

and I insert it back into the sourced Maxwell equation. So, when I so, this automatically 

solves my source free Maxwell’s equation, but then I am going to insert it into the 

Maxwell equation with sources ok. So, I get this result ok.
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So, the claim is that these equations namely 3.64 and 3.65 are basically the Euler 

Lagrange equation of some Lagrangian ok. So, but to do that you see I have to the so the 

claim is that there is some Lagrangian whose Lagrange equations are these 2 sourced 

Maxwell equation. But then in order to make this claim of course, I have to first identify 

the generalized coordinates. So, it is clear what the generalized coordinates are because 

you see this most time derivatives of the potentials.


So, therefore, the generalized coordinates are likely to be the scalar and vector potentials 

themselves. So, I am going to make that claim and then I am going to say that the 

Lagrangian should exist which has that property ok. And besides remember that this has 

the form. So, you see this is my generalized coordinate. So, what do I mean by this what 

is r? r takes on the role of some index i. 


So, so you remember in a dynamical system with finite number of generalized 

coordinates it would be labeled as qi where i is discrete index like 1, 2, 3. So, you have a 

finite number of degrees of freedom in that situation, but here we are talking about a 

field. So, a field not only has an infinitely many degrees of freedom it also has a 

continuously infinite number of degrees of freedom so; that means, that i gets replaced 

by a continuous index called r vector ok. 




So, r vector plays the role of the index i. So, just as we would have written for a system 

with finite number of generalized coordinates we have written the Lagrangian as the sum 

over all the you know different coordinates. So, the Lagrangian due to the time 

derivatives of a you know say if you are talking about r theta phi you would have mr dot 

square plus r square theta dot square plus r squared sin squared theta phi dot squared. So, 

like that we would have written it separately as the dot product of the first generalized 

coordinates squared second etcetera etcetera. 


So, so that is what you were written it if there were a finite number of generalized 

coordinates. But now that there are infinitely many of them this summation over i gets 

replaced by an integral over r because remember that i gets replaced by r, but then 

because there are sources. 


So, this is if there were no sources by I mean by implication that this script L 

corresponds to the Lagrangian of a system with no sources, but if there are sources we 

suspect that it is going to look like this. But now I am going to postulate that. So, in other 

words I have to now figure out what this is in order for the Euler Lagrange equations of 

3.66 to be exactly the same as 6 4 and 6 5 ok.


So, obviously, there are two equations namely 6 4 and 6 5 and we expect 2 Lagrange 

equations because one is with respect to phi the other is with respect to A. So, the Euler 

Lagrange equation for the phi is basically this and the Euler Lagrange. So, it is a 

derivative with respect to phi dot and d by d t of d L by d phi dot is equal to d L by d phi. 

So, similarly d by d t of d L by d a dot is equal to d L by d A. 


So, these are the Euler Lagrange equations of Lagrangian which we still do not know 

what it is, but whatever it is it has to be constructed in such a way that the equations that 

you obtained 3.67 should be identical that there are two equations and 3.67 the one is the 

first one the second one. So, these 2 have to be respectively identical to 6 4 and 6 5 ok.
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So, the question is how would you achieve that? So, the way we achieve that is by 

choosing the rest of the Lagrangian in this way ok. First of all look if you look at 6 4 it 

does not have d by d t of phi it only has d by d t of A. So, that implies that the 

Lagrangian should be independent of d by d t of phi ok. So, which is why I have chosen 

it to be this. So, you will see that this will now involve. So, the all the phi dependence 

has been extracted. So, this is all there is to the phi dependence.


Now, I have to convince you that this is. In fact, correct because of course, I have not 

told you what this is, but this I will tell you later, but even not knowing what this is 

because the phi dependence has been extracted sufficient for us to reproduce at least 

3.64. So, to do that find the derivative of the Lagrangian with respect to phi then you will 

see that it is basically equal to one half of yeah.
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So, it is basically going to be equal to. So, this is going to be a Dirac delta function ok. 

And whereas, this is of course, source so, it is unrelated so, that is 0 and this is going to 

give you. So, this sort of thing is being evaluated here. So, this is all 0 because these two 

do not under relate it to phi. So, this is all 0 ok only this matters.


So, when you do that you get this result ok. So, I I have skipped some steps. So, bottom 

line is that if you go ahead and insert this in your Euler Lagrange equations here you will 

exactly get this ok. So, I have skipped a few steps which you have to fill in, but bottom 

line is that this particular choice is sufficient for you to reproduce the first of these 

equations 3.64. So, similarly you can figure out the rest of the Lagrangian. So, see that I 

have not told you what this is. So, I have to fix that as well.


So, based upon the rest of these observations. So, you can. So, this equation has to 

reproduce 3.65. So, the question is how would you select L dash. So, that it does that.
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So, the rest of it is basically recovered in a similar way. So, you compare the phi 

equation with the answer and the A equation with the answers and then you will be able 

to a successfully show that the Euler Lagrange equations of the this Lagrangian. So, this 

is the final answer. So, if you select this to be your Lagrangian you can show. So, even if 

you did not follow the constructive derivation of that you see I have actually tried to 

argue how to construct the Lagrangian from Maxwell’s equation. 


So, even if that constructive proof of the Lagrangian is something you did not follow you 

can certainly do the reverse that is assume that this is the Lagrangian and then try to 

derive the Lagrange equations or the Euler Lagrange equation of this Lagrangian 

assuming phi and A are your generalized coordinates.


In which case you are guaranteed to obtain the Maxwell equations right. So, the source 

Maxwell equations ok. So, that completes the Lagrangian description of the 

electromagnetic field because we have successfully written down a Lagrangian whose 

Lagrange equations are precisely the Maxwell’s equations. So, the question is. So, this is 

as far as the Lagrangian formalism is concerned.
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So, in the next class I am going to discuss the Hamiltonian formulation of the 

electromagnetic field. Because you see I have told you repeatedly that both have their 

advantages the Lagrange formalism is useful because it is the first example where you 

study a dynamical system using generalized coordinates paying attention to constraints 

without knowing all the components of the forces. So, it first teaches you.


How to bypass having to know all the constraint forces, but then the Hamiltonian 

approach is advantages in a for a different reasons one is of course, that quantum 

mechanics traditionally described in terms of Hamiltonian’s although there is no reason 

why it should because Lagrangian also are equally useful in doing quantum mechanics I 

am going to discuss that a bit later.


But the more important technical reason is that symmetries are naturally described in 

terms of flows in the Hamiltonian language. So, dynamical symmetries and other kinds 

of symmetries encountered in Noether’s theorem are described as flows which appear 

naturally in the context of Hamiltonian mechanics. So, it is important to be able to 

describe a dynamical system both in terms of Lagrangian as well as in terms of 

Hamiltonian’s.




So, now that we have successfully described the Lagrangian formulation of Maxwell’s 

equation we should be able to go ahead and now describe the Hamiltonian analogue of 

the same system. So, that is something I am going to do in the next class. So, until then I 

take care. So, I am stopping now.


