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We want the equation of continuity to read the same in all frames. Hence we must
have,
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Tnserting Eq. (3.3) and Eq. (3.6) into Eq (3.8) we get,
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and magnetic fields should transform under Lorentz transformations. Consider the
two equations (Gauss's Law and Ampere’s Law),
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We may now substitue the transformed opeators into Eq. (3.14)
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Figure 3.1: James Clerk Maxwell (13 June 1831 to 5 November 1879) was a
Scottish mathematician and the leading figure of one of the greatest revolutions
in physics—the theory of electromagnetism. He unified the equations governing
electricity and magnetism into one framework and studied the properties of elec-
tromagnetic waves. He contributed greatly to the kinetic theory of gases and is as-
sociated with the Maxwell-Boltzmann distribution. He laid the foundation of color
photography
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(1,x,.2) whereas, X, = (x0.x1,32,33) = (1, —x,~y,~2). To derive the transfor-
‘mation law of the four-current let us start With the equation of continuity (using
Einstein's summation convention),
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Since we expect the Lorentz transformation o be linea we write,
prt)=cooplrt)+con jelrt) jilr,t)=cy jelrt)+eoplrt).  (3.3)

We know that,
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relativity is what led to the development of special relativity

3.1 Relativistic Nature of the Electromagnetic Field

We show in this section that the equations of electromagnetism (Maxwell's equa-
tions) are comp
tions, We purposely

First we show that/* = (p, ji, jy, j:) transforms as a four-vector in the sense of

Field Theory

So in today’s class we are going to continue our discussion of the Relativistic nature of
Maxwell’s equation. So, if you recall in the last class I had shown how the collection of
density and components of current form a relativistic 4 vectors. So, if you remember |
had I had pointed out that you can construct this object which has 4 components.
Namely; the first components is the density the other three components are the xyz

components of the current density.

So, you have particle density and current density. So, by demanding that the equation of
continuity be the same in both the original reference frame and the Lorentz boosted
reference frame. You will be able to conclude that this is possible only if the currents and
densities transform in this way and then we just derived that this is nothing but c 0 is

gamma which is you know the parameter that determines length contraction in relativity.
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We want the equation of continuity 10 read the same in all frames. Hence we must
have,
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Inserting Eg. (3.3) and Eg. (3.6) into Bg. (3.8) we el

And this is going to be v by ¢ squared minus v by ¢ squared gamma. So, this is very
closely reminiscent of you know t dash going to gamma into t minus v by ¢ square into
x. So, in other words t is analogous to rho and x is analogous to j x. So, in other words
tho and j transform exactly the same way as t and x transform under Lorentz
transformations ok. So, t and rather rho and j x transform the same way as t and j x
transform under Lorentz transformation. So, now that is so, much for currents and

densities.
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We may now substitute the transformed operators into Eq, (3.14)
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Now, I am going to go and prove to you that the rest of Maxwell’s equations are also
consistent with special relativity. So, in order to do this you look at the Maxwell’s
equation. So, if you must know that there are four Maxwell equations two of which
involve sources the other two do not involve sources and they refer to the ones that do
not involve sources are basically the ones that you know the Faraday’s law and basically

the other one which tells you the fact that magnetic field does not diverge ok.

So, the point is that the source Maxwell equations with sources are the Gauss law and
Ampere’s law. So, this is Gauss law the first one is Gauss law and the other is ampere
law. Now I am remember that I have just proved to you that the sources namely rho and j
transform as components of a 4 vector under Lorentz boosts. So, now, the question is
given that information and given these two Maxwell’s equation the question is a how do

the electric and magnetic fields transform under Lorentz transformation.

So, I am going to postulate that these equations have the same form under Lorentz
transformation. So, in other words this equation looks exactly the same when I replace
the gradients with the corresponding gradients in the boosted frame and the electric field
so on so forth. So, now you see I go ahead and explicitly write down the components

and.

So, it is going to be a little lengthy because I am going to work it out component by
component and when I do that you see that the first one is a scalar equation, but the
second one is a vector equation. So, that the second one splits up into three separate

equations for each of the components ok.
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Now we substitute Eq. (3.1 into the right hand side of Eq. (3.14) and Eq. (3.15)

and reexpress p, j n terms of the unprimed electric and magnetic fields,
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We may eliminate p, j from Eq. (3.20) using Eq (3.24). For exampl if we replace
pand j, from Eq. (3.20)
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Since cach derivative i independent we must have

E=E, (3.28)

So, now keep in mind that j dash x is related to j x and rho. So, which is what I have
written here. So, I have been able to write and then the gradients themselves can be
written because [ know how the positions and times change under Lorentz
transformation. So that means, the gradients are also correspondingly they get linearly

combined in this fashion under Lorentz transformation.

So, when I do all this I put them all together its going to start to look like this ok. So, so
these three equations can be made to for example, this equation can be made to look like
this the one involving the derivatives of B dash can be made to look like this, but then

keep in mind that the original in the original reference frame these were the equations ok.

So, then you can eliminate rho and j from 3 2 by using 324. So, you see. So, I am going
to eliminate rho and j from this equation by looking at by using this. So, 4 pi by ¢j x is
given by the rest of it. So, wherever there is 4 pi by ¢j x I can replace it by the Bs
themselves. So, then you stare at this then you compare the two sides and then you will

immediately conclude. So, you see what I have done right.

So, basically what I have done is that | have taken the j x which is from here and then I
have substituted the corresponding j x into this ok. So, then I get this. So, I have

eliminated j x as it were. So, so remember that there is only this source right and



similarly rho also I have eliminated that way ok by using this. So, I write 4 pi rho as d by

dx of ex and so on so forth. So, that is what I have done here right.
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We may eliminate p, j from Eq. (3.20) using Eq. (3.24). For example if we replace
p and j, from Eq. (3.20)
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Since cach derivative is independent we must have,
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we find after matching term by term,

So, having done that you see you simply compare the two sides. So, then you will
conclude that this is valid only when E x is same as E x dash B x is same as B x dash, but
B z dash is given by this interesting formula if gamma into B z minus v by ¢ into ey ok
and then B dash y is similarly this ok. So, similarly if you look at 3.18 ok. So, which is
your z component and then you again eliminate the sources and then you look at the

different terms.
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Focus on the electric field,
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So, you will get the rest of the transformation. So, this will tell you all the how the B is
transform B dash how does B dash transform B dash x B dash y B dash z. So, B dash x B
dash z B dash y. So, we know how B transforms, but here from equation 3.20 you only
know you know how all the Bs transform, but you know only how one of the x
components of electric field transform only one of the components of the electric fields

how they transform.

But if you want to know the rest you just look at any one of the other ones like 3.18 and
they do the same thing eliminate sources then you will conclude that the other
components transform in a very similar way. So, this is pretty much the whole story; that
means, now we have successfully told you how the components of the currents and the
density transform under Lorentz transformation. So, now, we have also successfully said

that how the electric and magnetic fields transform under Lorentz.

So, now having done this we are now ready to make further interesting observations
about the relativistic nature of the electromagnetic field. So, one of the important
observations is that if you square the electric field you will see that in the primed
reference frame and the unprimed reference frame they of course, are going to be related
the square of the electric field in the primed reference frame is related in a complicated

way to the electric fields and the magnetic fields in the unprimed reference frames.



But however, when you take the difference between the so, I have to also remind you
that I am working in CGS units. So, that in CGS units the electric and magnetic fields
have the same units same dimensions. So, that is why I am able to do this ok. So, if I
subtract these two that will be the square of the electric field in the primed reference

frame minus the square of the magnetic field in the primed reference frame.

You will see that the complicated dependence on the right hand side especially the
dependence on the boost factors namely the relative velocity between the reference
frames disappears and you have this very beautiful result which says that E squared B
squared is independent of which reference frame you are looking at. So, in other words is

a Lorentz invariant.

So, similarly you can also show that E dot B is a Lorentz invariant ok. So, if E dot B has
a certain value in a certain reference frame it has the same value when you move to a
different reference frame which is moving relative to this frame. So, this sort of

completes the proof and description of the relativistic nature of the electromagnetic field.

So, remember that it is we have done a thorough job because we have also included
sources. So, it is the most general description of the electromagnetic field. But now we
can go one step further and introduce certain quantities which are called potentials. So,
see the way electric and magnetic field transforms they are not exactly similar to 4

vectors, but they somewhat resemble 4 vectors, but not quite.

However you see the density and currents are exactly like 4 vectors. So, if you go back
and see this rho dash transforms exactly the way t dash does. So, remember that t dash is
gamma t minus v by c¢ squared x. So, similarly rho dash is gamma rho minus v by ¢
square j X. So, its a as if rho is interchangeable with t and rho dash is interchangeable

with t dash and j x is interchangeable with x.

So, the bottom line is that you see that rho and j x j y j z form a 4 vector, but; however, E
x E y E z of course, there is no 4 fourth component at all in the case of electric and
magnetic field there six spatial components namely E x E y E z and B x B y B z there is
no analogous time component. So, it is hardly surprising that electric and magnetic fields

do not transform as 4 vectors.



However, we want to write electric and magnetic fields in such a way in terms of other
things which we can identify as 4 vectors. So, we want to write the electric and magnetic
field in terms of quantities which finally, transform like 4 vectors. So, to do that we
introduce what are called electric basically we introduce what are called scalar potentials
and vector potentials. So, you will see that the scalar potential transforms as the time
component of a 4 vector the vector potential transforms as the space component of the 4

vector.

So, that is the reason why we introduce potentials. So, it is to make the analogy with
special relativity as close to the special coordinates as possible. So, the electric field can
always be written like this because see I choose to introduce quantities called phi and A
which obey this. So, you will see that this sort of identification immediately solves the

source free Maxwell’s equation.

So, namely this no divergence of magnetic field that is the lack of magnetic monopoles is
obeyed by this correspondence and the Faraday’s law which basically tells you that curl
of E is minus 1 by c d by dt of B is automatically. So, if you take curl on both sides you
get back this Faraday’s law. So, these are the source free Maxwell equations that are

automatically obeyed by this choice.
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So, now you go ahead and ask yourself how do phi and A transform under Lorentz
transformation. We can answer that of course, because we already know how E and B
transform under Lorentz transformation. We have found that E and B do not transform
well even though the transformation laws are simple they still do not transform like 4

vectors.

However we expect now that phi and a should transform like 4 vectors namely phi is the
time component of a certain 4 vector and A is the special component of that 4 vector. So,
to prove this let us go ahead and find out how E transforms under Lorentz transformation
when expressed in terms of the potentials. See when expressed in terms of the potentials
you see that as usual you write down the gradients and the time derivatives also in terms

of a the Lorentz transformed versions.

And then now you go ahead and. So, you know that the x component of the electric field
does not transform at all, but the y component transforms in this peculiar way. So, the y
component transforms it gets mixed up with the z component of the magnetic field. So,
when you do all that and you insert it into your earlier transform transformed electric
field in terms of the potentials then you will be successful in proving this transformation

for both the inverse and the forward and backwards transforms.
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be thought of as components of a 4 x 4 maix whose components are s follows;
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We see that F0 = E; where i = 1,2, 3 and Ey = E, etc. Thisis will be used n the
subsequent example

@ A Lorentz transformation from (x,f) to (x ¢ ) preserves the indefinite metric (no
fixed sign), namely 2 — %2 = x - ¢, We wish to make

resemble Euclid
transformation and we m:
This means that the time




So, in other words you will be successful in proving that the vector potential in the
transformed frame transforms like this whereas, the scalar potential transforms like this.
So, you can see that this is certainly reminiscent of a what we would normally associate
with. So, this phi by ¢ is analogous to time and A x is analogous to x and A y is
analogous to y and A z is analogous to z. So, you can see that. So, if you think of this as

x dash I mean analogously.

So, this is going to be x dash is gamma x minus v phi is phi by c is t. So, you will get
back your familiar result that x dash is gamma into x minus v t. So, you can see that from
here the phi by c and ax a y a z are transforming exactly like the components of 4 vector.
So, now, you see so, I have in this description purposely avoided using you know these
field tensor type of ideas which makes all the proofs very compact. So, if you write down
Maxwell’s equation in terms of what are called field tensors the relativistic nature of

Maxwell’s equations becomes so obvious that there is nothing left to prove.

But I find that kind of an approach is somewhat opaque and it you know obscures some
of these details of how these transformations work. So, I have purposely explicitly
pointed out how the transformations work. So, that then you can go ahead and
confidently work it out using the more you know concise 4 vector notation and you can

be confident that you have understood the underlying meaning of what is happening.

So, now that is exactly what we are doing now you see I am going to define the 4 vector
in this way. So, where these are my derivatives the contravariant derivatives will involve
the derivatives respect to the corresponding covariant coordinates and this is how I
define my. So, the field tensor is called the field tensor and basically a collection of
electric and magnetic field components arranged in such a way that the field tensor is

fully anti symmetric. So, in other words f mu nu is minus f nu mu.

So, therefore, all the diagonal components are 0 and the off diagonal components are
negative of each other. So, basically you see that there are. So, for skew symmetric 4 by
4 matrix the number of independent components are only 6 because these are the only
independent component. This once you specify this is already known because its the

negative of that. You specify this is already known, this is specify this is already known.



Similarly, if you specify this is known specify this is known and so on. So, you have
totally six. So, that is perfect because we know that we need six. So, ex ey ez is three and
B x B y B z is another three. So, put together six we really need all six to describe a field
tensor, but the point is that the field tensor is really a tensor it is not really a 4 vector or

anything.

So, that is why we had to define it in this peculiar way and that is why it was not at all
obvious how the I mean. So, it is only when you replace the or express the electric and
magnetic field in terms of potential then only you will be successful in linking the
electric and magnetic fields to 4 vectors because through the potentials the potentials are
4 vectors. But the electric magnetic field themselves are not 4 vectors they are

components of a rank 2 tensor ok.
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“This matrix s such that the function P(A) = Der(F - A1] is unchanged under or-
thogonal transformations (similarity transformation with orthogonal matrices) of
the matrix F. In this case, P(A) is the following polynomial

P() =~ NY(E* - B?) - (E-B)} (3.50)

invariants.

W Show that the Lorentz force equation (in special relatvity) can be written in a
covariant form,

uy F, (351)

4 i the four-momentum und 3 = (ct,x,,2) and
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show this is to

where p® = mi® =

6 Field Theory

So, in my book I have several exercises which I will encourage you to do on your own.
So, perhaps I will assign these exercises to you and some of the tutorials that you will be
encountering shortly. So, I am going to skip these assignments and well these are not
really assignment these are worked out examples, but these are also things that you

should try and do on your own ok.
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3.2 Lagrangian of the EM Field

Consider the four Maxwell equations in CGS units,
V-E=dnp;V-B=0 (3.62)
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We wish to think of these as 1
For this we have to identify suitabl ized coordinates. It is well known
derably by working with
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We identify the generalized coordinates as ¢; —+ (0(r), A(F)) where the vector r
the index . Just as we would have written L(Q.0) = £,Li(Q.0)
many degrees of freedom, we may suspect that the Lagrangian would be

of the form,
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04 Field Theory

But just to maintain the continuity of my presentation I will skip the examples because
those are meant to illustrate certain specific points which you should try to study on your
own. So, now, let me go to the basic promise I made in the beginning namely that every
dynamical system the equations of every dynamical system can be thought of as the

Euler Lagrange equation of a suitable Lagrangian.

So, in other words for example, Newton’s second law is can be thought of as basically
some consequence of some Lagrangian exactly in the same way I am going to see if |
can think of Maxwell’s equations themselves as a consequence of a suitable as the Euler
Lagrange equation of a suitable Lagrangian ok. So, the question is how would I do that.
So, to do that I am going to first write down these four Maxwell’s equation the first two

are the ok.

So, in other words the second and third are the source free Maxwell’s equation the first
and fourth are the Maxwell’s equation with sources. By the second and third Maxwell’s
equations which do not have sources are automatically obeyed by re expressing the
electric and magnetic fields in terms of the corresponding potentials. So, when I do that
and I insert it back into the sourced Maxwell equation. So, when I so, this automatically
solves my source free Maxwell’s equation, but then I am going to insert it into the

Maxwell equation with sources ok. So, I get this result ok.
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Srand Q = (0(r.1),A(r.1)) and 0 = 9,0(r.1).d,A(r.r). We have
the source terms since they appear naturally. To sce this, we

where i
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An examination of the first of the equations suggests that we have to choose £ to

be independent of 9. A choice of Lagrang
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reproduces Gauss's Law. To see this, we differentiate with respeet 0 0(r,) and set

equal (0 zer0,

So, the claim is that these equations namely 3.64 and 3.65 are basically the Euler
Lagrange equation of some Lagrangian ok. So, but to do that you see I have to the so the
claim is that there is some Lagrangian whose Lagrange equations are these 2 sourced
Maxwell equation. But then in order to make this claim of course, I have to first identify
the generalized coordinates. So, it is clear what the generalized coordinates are because

you see this most time derivatives of the potentials.

So, therefore, the generalized coordinates are likely to be the scalar and vector potentials
themselves. So, I am going to make that claim and then I am going to say that the
Lagrangian should exist which has that property ok. And besides remember that this has
the form. So, you see this is my generalized coordinate. So, what do I mean by this what

1s r? r takes on the role of some index i.

So, so you remember in a dynamical system with finite number of generalized
coordinates it would be labeled as qi where i is discrete index like 1, 2, 3. So, you have a
finite number of degrees of freedom in that situation, but here we are talking about a
field. So, a field not only has an infinitely many degrees of freedom it also has a
continuously infinite number of degrees of freedom so; that means, that 1 gets replaced

by a continuous index called r vector ok.



So, r vector plays the role of the index i. So, just as we would have written for a system
with finite number of generalized coordinates we have written the Lagrangian as the sum
over all the you know different coordinates. So, the Lagrangian due to the time
derivatives of a you know say if you are talking about r theta phi you would have mr dot
square plus r square theta dot square plus r squared sin squared theta phi dot squared. So,
like that we would have written it separately as the dot product of the first generalized

coordinates squared second etcetera etcetera.

So, so that is what you were written it if there were a finite number of generalized
coordinates. But now that there are infinitely many of them this summation over i gets
replaced by an integral over r because remember that i gets replaced by r, but then

because there are sources.

So, this is if there were no sources by I mean by implication that this script L
corresponds to the Lagrangian of a system with no sources, but if there are sources we
suspect that it is going to look like this. But now I am going to postulate that. So, in other
words I have to now figure out what this is in order for the Euler Lagrange equations of

3.66 to be exactly the same as 6 4 and 6 5 ok.

So, obviously, there are two equations namely 6 4 and 6 5 and we expect 2 Lagrange
equations because one is with respect to phi the other is with respect to A. So, the Euler
Lagrange equation for the phi is basically this and the Euler Lagrange. So, it is a
derivative with respect to phi dot and d by d t of d L by d phi dot is equal to d L by d phi.
So, similarly d by d t of d L by d a dot is equal to d L by d A.

So, these are the Euler Lagrange equations of Lagrangian which we still do not know
what it is, but whatever it is it has to be constructed in such a way that the equations that
you obtained 3.67 should be identical that there are two equations and 3.67 the one is the

first one the second one. So, these 2 have to be respectively identical to 6 4 and 6 5 ok.
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where i = [d’r and Q = (0(r.1),A(r.1)) and Q = 9,0(r.1),dA(r.1). We have
expli ource terms since they appear naturally. To see this, we
write the ons,

8L ol 8L Ol

o = ot dme— = o (367)
89,0(r.1)  d0(r,r)" 3 A(r1)  SA(r)
An examination of the first of the equations suggests that we have to choose £ to
be independent of d;9. A choice of L n such as,
I [a Ion
L 77/41, ol )dmp(e 1)+ =V 20(r 1)+ -9V - A(r 1)
i 2 ¢
+L (A 0A (3.68)
reproduces Gauss's Law. To see this, we differentiate with respect to 9(r,f) and set
equal to zero,
L
(1)
1[0 1 )
/uf 2 aap(e )+ 5200 1)+ -9V -A(e' )
I (r.1) 2 c
| 3’ 8§ o 1
&ro(r 1)z dnp(r 1)+ 5V 70(r 1) +-0,V -A(r ,1)). (3.69)
3(r,1) 2 ¢

stems with a finite

e g = 5, in the present ey

1
8(r—r ), namely the Dirac delta function. The second term reads as

follows,
3! LI 3 1oe
/drmr 1) =—(=V9(r 1)) /:/u‘r/‘\'mr r)
32 2

n i " o
/L/‘rﬂ'or‘::,mr )= 5(Vo(r) (370)

The last result follows from integration by parts : [ [V =~ [Vf Vg = [¢V?f

Thus this term added to the first term reproduces Gauss's Law. The part of the

So, the question is how would you achieve that? So, the way we achieve that is by
choosing the rest of the Lagrangian in this way ok. First of all look if you look at 6 4 it
does not have d by d t of phi it only has d by d t of A. So, that implies that the
Lagrangian should be independent of d by d t of phi ok. So, which is why I have chosen
it to be this. So, you will see that this will now involve. So, the all the phi dependence

has been extracted. So, this is all there is to the phi dependence.

Now, I have to convince you that this is. In fact, correct because of course, I have not
told you what this is, but this I will tell you later, but even not knowing what this is
because the phi dependence has been extracted sufficient for us to reproduce at least
3.64. So, to do that find the derivative of the Lagrangian with respect to phi then you will

see that it is basically equal to one half of yeah.
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L(AA (3.68)

s Gauss's Law. To see this, we differentiate with respect to ¢(r,r) and set
equal to zero,

L

So(r,1
1800 I 1.

/,, dmp(r’ 1)+ V200 1) +=0,Y -A(r 1))
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I [a 5 1 1, o
/(lr or 1) : Arp(r 1)+ =V70(r 1)+ -9,V -A(r 1)). (3.69)
4n 8o(r.1) 2 ¢

stems with a finite number of degrees of free:

8, in the present case we should instead write,
i) _5
2etd-=3{r~r'), namcly the Dirsc deta funcion. The second tem reads as
follows
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The last result follows from integration by parts : [ fV2g = — [Vf.Vg = [gV?f
Thus this term added to the first term reproduces Gauss's Law. The part of the

n involving the vector potential may be deduced as follows, First, it is

easy 0 suspect that,

g -
dy A @

From g, (3.65) we have,

1o, 4n oo 02 19 27
ds=A=—)-V(V-A)+VPA-V-20, (372)
dn cor
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So, it is basically going to be equal to. So, this is going to be a Dirac delta function ok.
And whereas, this is of course, source so, it is unrelated so, that is 0 and this is going to
give you. So, this sort of thing is being evaluated here. So, this is all 0 because these two

do not under relate it to phi. So, this is all 0 ok only this matters.

So, when you do that you get this result ok. So, I I have skipped some steps. So, bottom
line is that if you go ahead and insert this in your Euler Lagrange equations here you will
exactly get this ok. So, I have skipped a few steps which you have to fill in, but bottom
line is that this particular choice is sufficient for you to reproduce the first of these
equations 3.64. So, similarly you can figure out the rest of the Lagrangian. So, see that |

have not told you what this is. So, I have to fix that as well.

So, based upon the rest of these observations. So, you can. So, this equation has to

reproduce 3.65. So, the question is how would you select L dash. So, that it does that.
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Combining with the Lagrange equations we get,

L |

4n ) J
- J-V(V-A)+VA-V-2¢ 6m)
OA(r,1 ¢ cor
3L LA 3.74)
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WAr) @
This may be integrated o give,
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A comparison of Eq. (3.68) and Eq. (3.75) shows thatthe overall Lagrangian may
be writen s
4 lus 1,
il /‘/,mr 0dmp(e’ 1)+ 57200 1)+ -9V -Ale )4
2 :
o | "
[ 36 0)-Aw' )= [ M)V A )
< 2

| 3 myru Y
bas [0 QAP +5 [ A )V AE D). 676

Tt left to the reader to verify that this may be written more compactly as,

i 1 fa
L /(/r o e’ ) ‘/uw ) Al

1 ) )
e [ B ) - B ) (377)

So, the rest of it is basically recovered in a similar way. So, you compare the phi
equation with the answer and the A equation with the answers and then you will be able
to a successfully show that the Euler Lagrange equations of the this Lagrangian. So, this
is the final answer. So, if you select this to be your Lagrangian you can show. So, even if
you did not follow the constructive derivation of that you see I have actually tried to

argue how to construct the Lagrangian from Maxwell’s equation.

So, even if that constructive proof of the Lagrangian is something you did not follow you
can certainly do the reverse that is assume that this is the Lagrangian and then try to
derive the Lagrange equations or the Euler Lagrange equation of this Lagrangian

assuming phi and A are your generalized coordinates.

In which case you are guaranteed to obtain the Maxwell equations right. So, the source
Maxwell equations ok. So, that completes the Lagrangian description of the
electromagnetic field because we have successfully written down a Lagrangian whose
Lagrange equations are precisely the Maxwell’s equations. So, the question is. So, this is

as far as the Lagrangian formalism is concerned.
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erify that this may be written more compactly as,
VRN Y
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One may alternatively describe the dynamics using the Hamiltonian, As is well
e transformation, We have to first identify
the canonical momentum. This is defined as,

[ E )-8 6m

i
Py(r,r) 3.78)
0= A %)

ince the Lagrangian does not depend on the time derivativ of the scalar poten
is n0 need 1o introduce th

onical momentum in that case. Using the
Lagrangian we just derived for the electro

netic field, we may conclude that,

|
Palrt E(r,1). (379
dnc

6 Field Theory

Legendre’s transformation tels us tht,
HO.APy) /‘/‘y Pa(r,t)-4A(r,1) - L (380)

Therefore,

So, in the next class I am going to discuss the Hamiltonian formulation of the
electromagnetic field. Because you see I have told you repeatedly that both have their
advantages the Lagrange formalism is useful because it is the first example where you
study a dynamical system using generalized coordinates paying attention to constraints

without knowing all the components of the forces. So, it first teaches you.

How to bypass having to know all the constraint forces, but then the Hamiltonian
approach is advantages in a for a different reasons one is of course, that quantum
mechanics traditionally described in terms of Hamiltonian’s although there is no reason
why it should because Lagrangian also are equally useful in doing quantum mechanics |

am going to discuss that a bit later.

But the more important technical reason is that symmetries are naturally described in
terms of flows in the Hamiltonian language. So, dynamical symmetries and other kinds
of symmetries encountered in Noether’s theorem are described as flows which appear
naturally in the context of Hamiltonian mechanics. So, it is important to be able to
describe a dynamical system both in terms of Lagrangian as well as in terms of

Hamiltonian’s.



So, now that we have successfully described the Lagrangian formulation of Maxwell’s
equation we should be able to go ahead and now describe the Hamiltonian analogue of

the same system. So, that is something I am going to do in the next class. So, until then I

take care. So, I am stopping now.



