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So, let us continue our discussion of Noether’s theorem. So, we have if you recall we 

succeeded in showing that associated with a continuous symmetry of the Lagrangian, 

there is a conserved quantity and that conserved quantity is called Noether’s constant and 

it may be written in this way. 

So, we have successfully showed that Noether’s constant has an expression in terms of 

the Lagrangian and how the generalized coordinates change with respect to the 

symmetry transformation. So, that is d q by d s would be that. Whereas, the Lagrangian 

the generalized velocities will be involved next to that rate of change. 

So, bottom line is that the knowledge of the Lagrangian together with the transformation 

that leaves the Lagrangian unchanged is sufficient for you to, sufficient to allow you to 



construct explicitly the conserved quantity associated with that symmetry. So now, let me 

give you some examples that will convince you of the usefulness of this idea. 

But before I do that, I want to point out that it is very necessary for the symmetry in 

question to be continuous. In the sense that there should be a continuous variable called 

s, when you continuously change that variable. So, the generalized coordinates 

continuously change with respect to that variable, it is only when that happens can you 

differentiate with respect to s. 

So, remember that this Q involves d by ds of the generalized coordinate. So, implying 

therefore, that Q at the very least is a continuous function of s ok. So, bottom line is that 

there has to be a continuous symmetry. But the question is why cannot you have a 

discrete symmetry also leading to a conserved quantity?. 

Well perhaps you can that will be an accident, but the fundamental reason why this 

particular formalism does not allow you to make such a statement is because you see if 

you take a discrete symmetry such as Lagrangian, which is unchanged if you flip the sign 

of the generalized coordinate of the generalized velocity, that is certainly a symmetry and 

it is a discrete symmetry. 

Because we are just changing the sign of; so you either change or you do not change. So, 

that is a discrete symmetry, but then that does not obviously, lead to any conserved 

quantity because in this particular way of thinking about it you need something to 

differentiate with. So, you need to, you need to start with an assertion such as d by ds of 

L equals 0. 

So, there is no continuous parameter there. So, because of that discrete symmetries are 

not part of this discussion ok. So, let me go ahead and explain to you some or point out 

some interesting applications of this Noether’s theorem. 
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So, imagine I have a Lagrangian of a point particle subject to a central force. So, that is 

what I have described in this equation. So, you have a Lagrangian subject to a central 

force directed towards the origin. So, now, I want to ask myself, what is the symmetry of 

this Lagrangian there are many symmetries, one of them is what I am going to discuss 

and the specific symmetry I have in mind is the symmetry that rotates the position vector 

by a certain angle about some axis.  

So, basically that sort of a rotation is obviously, captured by this kind of an orthogonal 

transformation. So, that means, its replaced by r subscript s where s is continuous and 

that r subscript s is basically an orthogonal matrix called capital M subscript s right. So, 

times position vector. So, I am going to assume this is an orthogonal matrix. So, if you 

recall an orthogonal matrix is something whose transpose is it is inverse, is not it. So, I 

have an orthogonal matrix here ok. 

So, this would be the most general sort of rotation that you can think of. So, for some 

general orthogonal matrix this would correspond to some general rotation. So, now, 

obviously, this M s is a function of s, but not of time. So that means, at a given time you 

rotate all the position vectors that may be, if you have just one particle there is nothing 

else, but if you have more than one particle you are supposed to rotate all of them. 



So, in this particular example there is only 1 position vector. So, therefore, the velocity 

vector is just going to be the time derivative which is given by this. And since M is 

orthogonal the velocity changes, but the speed does not change ok, because the speed is 

the square of the velocity vector and the square of the velocity vector involves you know. 

So, if you remember r s dot square is nothing but r M transpose M r ok. So, it is r M 

transpose M r, is not it. 

So, this is nothing but 1, so this is r r; so which is r squared. So, in other words velocity 

changes r dot becomes r dot subscript s, but the square of the velocity does not change, 

because it is an orthogonal transformation. So, given that the square does not change and 

the magnitude of r s for similar reason does not change, which is which is r without a 

bold face is basically the magnitude of the position vector. 

So, that does not change and the velocity square does not change, which is the speed 

square. So, that means, the Lagrangian is unchanged with respect to this transformation. 

So now, you see that this is a continuous transformation which preserves the Lagrangian. 

So, if it does then you can see that there is Noether’s theorem guarantees that there is a 

conserved quantity and that conserved quantity is precisely this. 

So, it is rate of change of the position vector with respect to the continuous parameter s 

times the generalized momentum as it T L by d r dot is the generalized momentum right. 
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So, now the question is, well this is not particularly illuminating. So, I want to given that 

this L has this particular specific form, I want to be able to explicitly write this in terms 

of the functions that are present in L. So, in order to do that so you see d L by d r dot by 

definition and construction it only is just M times r dot ok. So, there is nothing important 

there. So, that is why I have written M times r dot, it is just the momentum. 

So, now what I am going to do is that, I have to now commit myself to a specific form of 

this orthogonal transformation so that orthogonal transformation now is going to be 

represented by a rotation by a certain angle about some fixed axis. So, I am going to 

assume that this axis that of rotation that I am going to think of is fixed and that is 

determined by a unit vector called n hat. 

So, the n hat is the fixed axis about which I am going to rotate. And the, but the angle 

through which I rotate is my variable that continuous transformation that I was talking 

about, that continuous variable that I am going to select is basically the angle of rotation 

about this fixed axis ok. So, the axis is fixed, but the amount of rotation is a variable 

which is s ok. 

So, if that is the case then obviously, I can write this r vector as a component a projection 

of r along n cap and this is the rest of it. So, r r parallel is defined as the projection of r 



vector along the unit vector n hat. And r perpendicular is whatever else is remaining in r. 

So, once you subtract out r parallel from r whatever is remaining is r perpendicular. 

So, if that is the case then you can see that, as I do the rotation r parallel will not change, 

because it is parallel to the axis of rotation so that vector will not change. So, if I put a 

subscript s, it is the perpendicular vector which changes, but the parallel vector does not 

change. But now so, as a result if I since Noether’s theorem calls for the finding, the 

derivative of r s with respect to s you see that this derivative with respect to s drops out 

because it does not depend on s. 

So, there is only a derivative of r perpendicular with respect to s. So, you see you have a 

axis and you are rotating by some angle s ok and you have a r perpendicular which is 

pointing like this ok. So, that r perpendicular is your function of s and that is going round 

and round as you rotate it. 

So, now how do you describe a vector that is going round and round by some angle s? 

And this is how you would describe it right. So, if s is the amount by which it this vector 

twists in the plane perpendicular to n cap. So, that twisting is determined by this obvious 

orthogonal transformation. So, given this construction it is easy to see that the rate of 

change of r. 

So, you see the plane perpendicular to n hat is a plane. So, vectors in a plane has to be 

described using a basis and I have selected some arbitrary basis called e 1, e 1 hat and e 2 

hat. And so, these are mutually perpendicular basis vectors which are lying in the plane 

perpendicular to n hat. So, and r 1 is basically the component of r perpendicular, r 

perpendicular comma 1 means the component of r perpendicular along this e 1 cap which 

is arbitrarily chosen. 

So, bottom line is that having chosen it, then this sort of a rotation implies that the rate of 

change of r perpendicular which is parallel to e 1 is basically r perpendicular parallel to e 

2 and so on. Similarly, for other derivative with respect to r 2. Now, we go back and try 

to write down the rate of change of this with respect to s. But, notice that this continues 

to drop out because the rate of change does not involve s and only this is there ok. 



So, r s perpendicular is nothing but r 1 perpendicular e 1 hat plus r 2 perpendicular e 2 

hat so that is what I have done, but then the rate of changes will involve this with a 

minus sign ok. So, you can easily convince yourself that this is what it is. Now, I go 

ahead and substitute this expression all the way there ok and I go ahead and substitute 

this here ok. 

So, as usual you see because r s perpendicular is in the plane, which is perpendicular to n 

cap. So, and it is being dot producted with r s dot, I have to ensure that only a 

components of r s which are perpendicular to n cap or involved. So, which is why there 

is no n cap component. So, it is r s is of will have n cap also, but then I have ignored that 

the r parallel part will drop out because that; so even though it is in principle there, but 

when you take dot product with respect to this which is in a plane perpendicular to n cap 

it drops out. 

So, I have just decided not to include that for brevity, alright. So, the moment you take 

this dot product you end up getting this and this is nothing but the component of the 

angular momentum right in the minus n cap direction. So, you can easily convince 

yourself that this Q, the Noether constant is nothing but the component of the angular 

momentum of the particle in the direction of minus n cap. 

But then keep in mind that n cap was any its fixed, but then it is arbitrary it can be 

anything, anything which is fixed. So, if it is anything then; obviously, if q is constant 

that is going to happen only if r cross p itself is constant not necessarily along any 

particular axis, but in general. So, its only when r cross p is actually fully constant this 

makes sense ok. So, bottom line is that you see Noether’s theorem very beautifully 

connects the concept of a rotational symmetry to a conserved quantity namely angular 

momentum. 

So, we all know that angular momentum is conserved in a central force situation. But 

what this theorem very elegantly shows is that this conservation law has a deeper origin. 

Namely, that deep origin is the fact that your Lagrangian is unchanged with respect to a 

certain continuous symmetry and this continuous symmetry is the rotational symmetry, 

alright. So, this is one very nice example. 
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So, now I am going to discuss, I am just going to mention that it is s possible to rework 

this idea in the context of Hamiltonian’s, because if you recall we discussed something 

called flows earlier and that is going to be useful now. So, that the concept of flows in 

the context of Hamiltonian mechanics was introduced that here. So, I am going to make 

use of that now.  

So, now, just like it was in the Lagrangian case, a continuous symmetry is postulated 

which leaves, now the Hamiltonian unchanged just as the earlier case it was a 

Lagrangian that was unchanged. 

So, now I am going to postulate that there is a symmetry that leaves the Hamiltonian 

unchange. So, if the Hamiltonian is unchanged, you can see that the d by d s of H 

changes so; that means, even though the generalized momentum p and generalized 

coordinate q change with respect to the continuous parameter s, the Hamiltonian itself 

does not. So, now, how would you go about evaluating the rate of change of the 

Hamiltonian with respect to this continuous parameter? 

So, you would basically do it successively. So, H depends on s through p and q. So, you 

first differentiate H with respect to q then differentiate q with respect to s, then you 

differentiate H with respect to p and then differentiate p with respect to s. But then now 



comes the really important step where we make use of the earlier idea of flows. So, 

remember that we had decided that I can think of this change with respect to s as a kind 

of a flow. 

So, if that is a flow then flow has a generator which I call G. So, the generator of the 

flow obeys these Hamilton’s equations. So, the Hamilton’s equations were usually if s 

was time ok. So, but in this particular case s is that any continuous variable which 

corresponds to a symmetry. So, given that fact the you can see that the Hamilton’s 

equation for this flow can be written like this for a suitable generator. 

So, if that is the case, then you can go ahead and substitute that here right and then you 

will see that this is writable as. So, the rate of change of H with respect to s is nothing 

but the Poisson bracket of H with the generator of the symmetry. So, given that H is 

unchanged under the symmetry, what this implies is that the Poisson bracket of the 

Hamiltonian and the generator is 0. 

So, what this statement says is that, if there is a symmetry there should be a generator 

which has a 0 Poisson bracket with the Hamiltonian, but now keep in mind that the rate 

of change of G with respect to time, now time means the actual time, the dynamical 

parameter which describes the sequence of events. So, as opposed to s which can be 

some abstract continuous parameter which correspond to some symmetries. 

So, now the time rate of change of the generator or any other operator for that matter or 

any other state function is always writeable as rate of change of that with respect to time 

is the Poisson bracket of that quantity with the Hamiltonian. Now, we have successfully 

shown that for a symmetry the that Poisson bracket is actually 0, but if it is 0 so what 

combining these two ideas allows us to conclude that this generator of the symmetry is in 

fact, not only does it generate those symmetries it is also independent of time. 

So, as a result it is the constant, it is a constant of the motion. So now, I am going to 

allow you to convince yourself that in the case of this rotations that we discussed in the 

earlier example, the generator of rotations is nothing but the appropriate component of 

the angular momentum. So, then you will be able to show that just like we did earlier, is 

the angular momentum about any axis which is a constant of the motion. 
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So, in the Hamiltonian setting it appears as the generator of the rotational symmetry. The 

angular momentum appears or makes its presence felt as the generator of rotational 

symmetry. So, now, I am going to discuss something which is somewhat less familiar to 

many people. 

And certainly, it was unfamiliar to me when many years ago I learned it on my own and 

it is an idea that is not often discussed properly in many books. And that is the concept of 

dynamical symmetries and the reason is of course, because the number of such examples 

are also somewhat limited. And in fact, I can only think of one example in the present 

situation and that is the conservation of what is called the Runge-Lenz vector right. So, it 

is called R L L R Laplace Runge-Lenz vector. So, I will tell you what that is. 

So, you see the idea is that if you recall earlier just a while back, we were talking about 

central forces. So, central forces are basically forces acting on a given particle which are 

directed towards some origin. So, bottom line is that the functional form of that force or 

potential is can be anything. 

So, even though that is not specified irrespective of that, we were successful in 

concluding that implies that there is a vector quantity that is conserved and that is the 



angular momentum. So, regardless of what the nature of the force is. So, long as it is 

central, the angular momentum vector is in fact, a conserved quantity.  

But now, if specifically in addition to the central nature of the force imagine it had some 

other quality namely that it was actually a columbic force; that means, that it obeyed 

inverse square law the force dies off as inversely proportional to the square of the 

distance. 

So, if it is not just central force, but also a coulomb force or a you know the Newtonian 

gravitational force, both of which have this 1 by r squared form. So, if that is the case 

then what we are going to show is that in addition to the angular momentum, there is 

another conserved quantity called the Laplace Runge-Lenz vector. And that is very 

unique to the inverse squared type of force, its not a conserved quantity if the force had 

any other functional dependence. 

So, imagine that instead of 1 by r, if the force was 1 instead of the potential being 1 by r, 

the potential was 1 by r squared, then immediately Laplace Runge-Lenz vector or there 

is no other conserved quantity other than angular momentum and total energy. So, 

bottom line is that. So, this is this symmetry is called an dynamical symmetry for reasons 

I am going to get too shortly. 
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So, bottom line what we are trying to find out is that given the fact that you can easily 

verify that this peculiar object called the Laplace Runge-Lenz vector which is defined in 

this way. So, you see A is called the Laplace Runge-Lenz vector LRL vector. So, that is 

defined in this peculiar way. So, imagine that the force acting on the particle is minus 

some constant called k divided by r squared and it is directed towards the origin so; that 

means, k k by r squared is the strength of the force and the direction is minus r hat. 

So, it is directed towards the origin then I am entitled to define a quantity called L r L 

vector which is defined in this fashion. So, it is linear momentum cross product angular 

momentum minus mass times that constant k in the r hat direction. So, this is a very 

peculiar rather arbitrary looking definition of a yet to be understood vector called LRL 

vector. 

So, it is not at all clear why we would invoke something like this. So, the reason for that 

is that it is easy to show that this is a conserved quantity. Firstly, even before that it is 

immediately obvious that this A has nothing to do with L, in the sense that A and L are 

not the same at least, I mean it has something to do with L, but A is completely different 

from L; it is not.  

So, the conservation of L does not necessarily imply conservation of A for example, 

because there is a p sitting next to the L is certainly not conserved, linear momentum is 

not conserved because there is a force acting which is the central force. So, there is no 

guarantee that A has to be conserved simply because L is conserved. This L is conserved 

because of rotational symmetry.  

So, there is no guarantee A should be conserved, but in fact, for the specific Coulomb 

force or the newtons 1 by r squared force A is indeed conserved. So, in order to prove 

that what we do is we find the rate of change of A with respect to time and you will be 

able to see that you can write that rate of change in this fashion. 

See firstly, you see the rate of change of p cross L is the rate of change of p with respect 

to time which is the force which is this one and L which is r cross p, but then I am not 

going to write the p cross d L by d t because you all know that 0 because d L by d t is 0 

because L is conserved, but then I also have to write this. So, you see r hat is nothing but 



r divided by r vector ok, r vector divided by r. So, that is what I have done I have done 

differentiate one by one and I will get this ok. 

So, if I differentiate r and if I differentiate r I get this, if I differentiate r raised to this 

right. So, this will become minus 1 r raised to minus 2 d r by d t and, but then d r by d t is 

nothing but 2 r d r by d t is nothing but write 2 r dot d r by d t. So, like that I will be able 

to rewrite it in this way ok. So, bottom line is that, if I take this out right so that there is a 

triple product, this is a vector triple product which you can expand like this.  

So, yeah there are some steps you have to go through, it is not that obvious. In fact it is 

not obvious that is the reason why I am discussing it, because it is not at all obvious that 

there should be A vector like a which is conserved. Because it is pretty much most of the 

time not a conserved quantity, it is conserved quantity only for central forces that have 

the form of 1 by r squared force if that was anything else it is not conserved. 

So, now this vector triple product is writable in this way and you can see that, when you 

expand this out all terms cancel out in pairs and you get 0 ok. And the last result follows 

from the observation that this p is nothing but mass times velocity. So, bottom line is 

now so I have succeeded in convincing you that their exists a vector called A which is 

unrelated to L, in the sense that the conservation of L does not guarantee conservation of 

A. So, that these two distinct vectors L and A and both of which are conserved. 

So, now the question is we have successfully pinpointed the symmetry that is responsible 

for the conservation of L and that is the rotational symmetry. Now, similarly we want to 

know what is the symmetry responsible for the conservation of A, because a perfectly 

valid question which we are now going to answer ok. 
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So, the answer to that question is the following. So, I am going to think of the generator 

of the symmetry responsible for conserving A to be this some function of this A x and A 

y, where A x and A y are the x and y components of this Runge-Lenz vector ok. So, we 

might be wondering what is x what is y. So, of course, the answer is the following, that 

you see the angular momentum right points in a fixed direction because it is conserved 

its points in a fixed direction. 

Now, I think of that fixed direction as my z axis. So, the x and y directions are 

perpendicular to that angular momentum direction ok. So, given that you can define x 

and y in that precise way ah. So, it make sense to talk of A x and A y. So, a x and a y are 

the x and y components of the Laplace Runge-Lenz vector ok. So, I am further going to 

say that this alpha is defined as tan inverse A y by A x. 

So, in other words what I have done here is that I have postulated that G is the generator 

of some symmetry. So, where G is defined as inverse tan of A y by A x. Now, given that 

this is a that definition of this generator. Now, I want to see what sort of a conserved 

quantity this generator entails, means what conserved quantity does it lead to. So, 

because G is a generator of a symmetry, it should the transformation that is the putative 

symmetry that we are talking about the symmetry that this transformation implies should 

certainly obey this these equations. 



So, these are the flow equations with respect to this generator. So, d x by d s is therefore, 

equal to the generators derivative with respect to p x. Similarly, p x itself will evolve 

with respect to that continuous parameter and so on and so forth. So, now, given that 

alpha is tan inverse A y by A x ,we can go ahead and keep in mind that A x and A y can 

be explicitly written out because we know that A we know the definition of A is p cross L 

minus M, k r cap. 

So, we can explicitly write down A x and A y which is what I have done here. So, this is 

the explicit construction for A x and A y and given this we can go ahead and evaluate this 

these flow transformations ok. 
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So, you can see that ok. So, you can see that first of all that Hamiltonian description of 

Noether’s theorem guarantees that this G is a conserved quantity ok. So, if G is a 

conserved quantity then its clear that the symmetry which is responsible for conserving 

G ok is basically this dynamical symmetry, it is called a dynamical symmetry because 

you see this symmetry actually mixes momentum and position.  

So, see in the earlier case the you could at a given time just rotate the position and it 

really does not do anything the momentum components do not get mixed up with the 

position components, where the different position components get mixed up when you 



rotate. But here it is not like that, the value of the position after rotation depends upon 

not only the components of the position before rotation, they also depend on the 

components of the momentum before rotation. 

So, see earlier in the case of just ordinary physical rotation, the components after 

rotation, the position components after rotation depended only on the position 

components before rotation. But here, it is not its dynamical because the position 

components after rotation not only depend on the position component before rotation, 

like it is the case in the case of physical rotation.  

But in the case of this dynamical type of symmetry that the momentum components also 

get mixed up. So, it is a whole mix of the components of momentum, linear momentum 

position components and so on and so forth. So, they all get mixed up and give you the 

answers for the position vector and momentum vector after rotation. 

So, that is the reason why it is called dynamical symmetry ok. So, I will allow you to 

think about this and in the next class. 
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I will discuss the symmetries in field theory. So, in other words; so till now I have only 

talked about systems with just one I mean few degrees of freedom, like 3 degrees of 

freedom or 2 degrees of freedom just point particle in a central force. But this title of this 



course is dynamics of classical quantum fields. So, I have to quickly come back to 

discussing fields. So, I am that is the intention right now.  

So, in the next class I am going to tell you how to invoke Noether’s theorem in the 

context of fields. So, you can also invoke them Noether’s theorem in the context of fields 

and go ahead and derive conserved quantities in field theory by staring at symmetry. And 

that is actually even more powerful than it is in the case of point particles because 

conserved quantities in field theories are even harder to guess compared to point particle 

theories. 

So, but; however, symmetries continue to be somewhat easy to guess both in the case of 

point particles as well as field theories. So, that is a bone because then we can use that to 

generate conserved quantities even in field theory. So, I am going to stop here and I hope 

you will join me for the next class, which is all about symmetries and conserved 

quantities in field theories ok. 

Thank you.


