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distance along the curve. We may now integrat the above equation to gel,
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‘The problem with this is that the length of the curve is not fixed, whereas the prob-
lem statement tells s that (x;,y;)-=0:H)-and (x7,ys) = (L

Thus we have to

rewrite ds = /dx* +dy? = dx'\/1 +y*(x). The time of flight is,
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The time of flight given by Eq. (1.102) depends on the path taken y(x). The ex-
tremum condition s (the proof tha it s & minimum is left o the exercises),

=0 (1.103)

where the variation s the difference between two paths y(x) and y(x) + 8y(x) that
both start at (x;,y;) and end at (x7,yy). Therefore 8y(0) = 8y(L) = 0. But we may
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Now we integrate by part;

also write,

(1.104)
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The middle term is the integral of a derivative so that it in the term is the bracket
evaluated at the end point which is zero, since 3y(x) vanishes at both end points
Thus the term that remains s,
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Since T is stationary, we must have 8T = 0 for each path 3y(x). The path with the
shortest time of flight obeys the Euler-Lag

ge equation,
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So, let us begin this session by recalling what we did last time, so where we left off. So,
if you remember I was discussing the brachistochrone problem which is basically the
problem of finding the path in a uniform gravitational field of an object, such that it takes
the minimum amount of time for the particle to reach the starting point which is at an

elevation and the end point which is at a lower level.

So, your nave guess that it should be a straight line connecting those two points is going
to be wrong, because that would of course, be correct if there was no gravitational field.
So, when there is a gravitational field, it is not at all clear what that should be. So, let us

try and see what is the correct answer to this question.

So, if you remember we spent a lot of time deriving the time taken for the mass to reach
the end point starting from the elevation. So, brachistochrone problem this equation

1.102 right tells you what that time taken is. So, the left-hand side capital T is the



duration the mass spends on its journey. So, x is the horizontal displacement of the mass.
So, x equal to 0 corresponds to the starting horizontal position and x equal to L is where
it ends up. So, and then y of x is correspondingly the path the particle takes. So, for every

x between 0 and L there is a y which will determine what the path is.

So, we just showed that the time taken is basically given by this formula, where H is the
y value when x is 0 ok, so in other words the height with which it starts off. So, bottom
line is that this has to be minimized. So, then if you change, so this is a functional. So,
capital T is a functional of y, the path. So, you change the function y you get a different
answer. So, T is a number y is a function. So, you change the function y, you get a

different number for T.

So therefore, T is a functional of y and then you keep changing y until you reach a
situation then T is the minimum possible value. So, to determine that we make the
assertion that the variation in T. So, basically if you remember your calculus a function is
minimum if its first derivative is 0 at some point. So, similarly a function null is
minimum if its variation with respect to changes small changes in the function itself is 0

for that particular desirable function which minimizes that time duration.

So, in other words, if y star is the function which minimizes the time duration then delta
T equals 0 whenever y is exactly that desirable function y star, which basically is the
path the particle takes. So, that the time taken is minimum. So, we use the conventional
rules of calculus to find delta T, just like you would find delta of x you take the

derivative, but here you take the functional derivative with respect to y.

But keep in mind here that you have to even though you are varying the function y, you
are finding different functions that minimize T. But then you have to keep in mind that
those different functions should start at the same location and end up at the same
location, it is only the shape of the function that changes. So, the question we are asking

is that given the end points are fixed.

So, this the end points at the start is x equal to 0, y equal to H, finishes x equal to L and y

equal to 0. So, if that is the case, then you see variations in the path will be significant



only far away from the end points. Because in end points all the different possible paths

converge.

So, that is the reason why I have written that the delta of ys. So, the variation in y, so
delta y is the difference between the y values for two different paths, which are close to
each other. So, the delta of y is basically 0, it is exactly 0 at the starting point and at the
ending point. So, keep in mind; so keeping this in mind we can go ahead and find the

variation in T.

So, remember that T depends on two unrelated variables, namely y itself and its
derivative. So, y and y dash can be very different from one another especially for some
arbitrary curve, at this stage we do not know what y is. So, y can be anything so y and y
dash are completely unrelated. So, if you want to find the variation in T, if you have to
first differentiate with respect to y and then find the derivative with respect to the with
respect to y dash and multiply with respect to the multiply with the variation in y dash,

because y and y dash are at this stage unrelated ok.

So, now, I am going to do the following. I am going to rewrite this, so basically I am
going to think of this as d by dx of delta y, then I am going to take this derivative outside,
but then I will be making a mistake by doing that because then I will get a spurious
derivative with respect to this, which I will cancel out by putting in a minus sign. So, |

got this spurious term which I am by hand cancelling out.

So, if I really want to take the derivative outside for obvious reasons, then this becomes
the integral of a derivative which I know how to do. But then the price I have to pay is
that it introduces this term, which was not there earlier which I have to necessarily get

rid of by subtracting it out this way.

So, bottom line is that when I do this that you see this is easy because the integral of the
derivative is this function itself and this function itself is being evaluated at x equal to 0
and x equal to L. I just told you that delta y is 0 at x equal to 0 and it is also 0 at x equal

to L, because that is the change in y for different values of x.



So, having gotten rid of this middle term, we can just go ahead and combine this and you
know separate out or you know take this delta y as common factor outside. And then we
get this nice looking formula for the variation in the time duration or the time taken for
the mass to end up at this end point starting from its initial location. So, keep in mind
that, so this is going to be 0 ok. So, the bottom line is that this delta T should be 0 for any

change in y.

So that means, that regardless of what this delta y is this should still be 0. So, for any
delta y obeying the constraint delta y at x equal to 0 equals delta by at x equal to L equals
0. So, so long as that is obeyed this delta T should be 0 for every delta y, which obeys

those end point constraints. So, that is going to happen only if this itself is 0 ok.

So, that is precisely what will determine, that the path that the particle will take in order

to minimize the time duration, the time it takes for it to reach the end point.
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Altematively, if we wite T = f{dx £(y(x),y’(x),x), then it s also true that

Af(y(x),y (x),x)  d f(y(x).y (x),x
y(x de ()

0. (1.108)

2% Field Theory
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and from the

where now 2 is an ordinary partial derivative.

So, this is analogous to the Lagrange equation. So, if you recall, so there was a situation
where this was the; so if instead of x you imagine it was time and you imagine this

capital T is your Lagrangian; then what would this correspond to?



d
This is —(——) = —(L). So, imagine this is g, imagine this is L, imagine this is t and
dt dq dqg

d
this is ¢. So, this is going to be —(——) = —(L). So, Lagrange equations, this is not
dt dg dg

surprising because Lagrange equation themselves are consequence of an extremum

principle ok. So, bottom line is that we really have to work this out ok.

So, now let us work this out. So, if you work this out delta T by delta y dash is just this.
So, you think of y and y dash has two independent variables, because now we know what

T is, T is this. So, just work out the derivatives ok.
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behind one that i sliding down a cycloidl path when both are released from st

and from the same height

where now % is an ordinary partial erivative

Direct substitution gives,
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After simplificaton, the Euler-Lagrange equation becomes,

X) 4y (0) 4+ 2(=H +y(x)y (x) =0 (L1

af(y(x),y (x))
f(y(x),y () =¥ (x) (L112)

oy'(x)

where C'is a constant.

So, delta T by delta y dash is this and delta T by delta y is this. So, then you just
substitute these two into your Euler Lagrange equation which is this one. So, which will
then tell you the equation that y of x has to obey this equation in order for T to be

minimum.

So, if T has to be a minimum y has to obey this equation. Well, there are some technical
issues which mean that you can avoid the second derivative type of equation, which is
somewhat complicated to deal with. So, you can actually work with a; just like you know
you can avoid solving the second order Newton’s second law equation by; so that is what

the Lagrange equations would be it, would be second order in time.



So, you can avoid that by using the Hamiltonian approach, where the Hamiltonian you
know is a constant and that is basically equal to you know p and q and p is itself a first
order in the generalized coordinate. The first-time derivative of the generalized
coordinate. So, similarly even in this case you can do this and analogous idea in the, in

this context is called the Beltrami identity, ok.
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Proof of Beltrami identity: Consider

d Af(y(x),y (x),x)
£,y (1),0) =¥ (x
dx ay(x)

df(y(x),y (x),x Af (v(x),y (x),x)
¥ (1)
dx ()

d 3f (y(x),y ().
¥ (x
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We now use the Lagrange equation Eq. (1.108) to write
d | o\ df of of
(f-yx ¥l ¥ (L114)
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as required.

This follows from the stronger version of the identity which sates that the equation
obeyed by i

d ' Af (y(x),y (x).x) | 9f(v(x),y (x).x) .
fy(x),y (x).x) =y (x 0. (L117)
dx ay'(x ox

The proof s given in the box. We shall focus only on its application. Therefore,
of 1

5
f-y (W< const (L118)
Oy Ly i il 2
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obeyed by s
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The proof is given in the box. We shall focus only on its application. Therefore,
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This means for some constant A,
(H=y(0)(1+y*(x)) =24 (1.119)
The solution to this i transparent in the following parametric form:

H=y(t) = A(1 = cos(t)); x(t) = A(t = sin(1)).

2 Field Theory

To see this we evaluate,

(H=y(0x))(1+y*()) = A(1 = cos(1))coseclt/2]* = 24,




So, that is analogous to using energy conservation. So, that is; so when you do that you
get this sort of an equation. So, I will allow you to go through the details yourself from
the notes and the book. So, I otherwise it is a little bit technical I do not want to bore you
with the details. So, bottom line is that you can you know introduce the analogue of the

Hamiltonian and make the assertion that that Hamiltonian is a constant.

So, here also there is some analogue of that and that is going to be a constant; and then.
So, the equation is going to simplify a lot. So, instead of being second order like it was
earlier, it is going to be first order ok. So, the first order equation that I am going to be
required to solve is 1.119, which is this one ok. So, that is not difficult to solve because

you can easily see that the solution that we are looking for has this parametric form ok.

So, you can just go ahead and substitute this and you will see that it is obeyed ok. So, of
course, you might think that that is a little too quick. So, well you can do it the long way,
but bottom line is this is a very standard problem and everybody knows the answer to
this. So, nobody spends too much time understanding how these answers were arrived at,
but bottom line is that, you know worst case you can just assume this is the answer and
substitute this back into the equation and then convince yourself that this is indeed the

solution.
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Figure 1.10: A cycloid isthe locus of points drawn by the ip of a spoke of a wheel

asthe wheel olls along the ground.

We have to now relte A to the given data, namely H, L. The initial point may be

chosen as 1 = 0 5o that y(0) = H and x(0) = 0 as required. Now the final point is,
H—(17) = Al - coslty) = H: Xoy) =Aly—sin(ty)) =L | (1124)

The quantity A has to be determined from the above transcendental equation by
climinating 7. This can only be done numericaly

152 Fermat's Principle in Optics

der Fermat's principle in optis. This principle is
e Ferma, I states that the path taken by

point 0 final point i a refracting medium s the

quickest one among all possibilities. If we denote by
PR
ds .
1=[a= (1125)
I
The velocity v of light in a medium depends on the refractiv index. Typically we

have cither two or more optically homogencous media separated by boundaries that

The Countable and the Uncountable 29

give rise 0 spatial dependence of the refactive index, or for example in an optical




So, you see it also obeys; so, we have to of course, this these it involves some integration
constants like capital A and all that. So, we have to relate that to some other things that
we are more familiar with. So, now, assume that t f is the time taken for the mass to

reach the end point, in that case you can see that this t f and A are linked in this manner.

So, this is going to be this because remember at the end point y is 0 and in the beginning.
So, well at the end point x is L and y is 0. So, that is how it looks ok. So, that is going to
indirectly tell you what the time duration is and you can be guaranteed that this time
duration that you arrive at by solving these equations so; that means, by L. So now, there
are two unknowns t f and A, but then there are two equations this and this. So, you can

eliminate them and get both.

Of course, t f is more interesting. So, that will tell you the time duration t f is the time,
the mass takes to slide from its starting point to its ending point. And the path it takes is

what is called a catenary right. So, that is the path it takes.

So, and the time duration is t f and is guaranteed to be a minimum ok. So, this is one nice
application of the variational method and you can see that it involves the use of
functional derivatives and that is basically the infinite dimensional version of the
ordinary derivative, which is why it deserves to be under this chapter which is titled

countable and uncountable.

So, I am just trying to introduce you to the concept of fields, through an example where
the number of degrees of freedom are infinite and this is one such example where you

have a functional, it depends on infinitely many variables in a continuous way ok.
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So, the other example of functional calculus so, the earlier one was the brachistochrone
problem the other example is Fermat’s principle in optics. So, even Fermat’s principle in
optics is similar, he stated that the time duration to go from. So, if you imagine a beam of
light passing through refractive medium, the time duration for the light to reach from its
starting to ending point is the one which minimizes basically the time taken. So, but the
time taken is basically the distance travel divided by speed and then speed is of course,

function of the refractive index.

So, then if you go ahead and write v as ¢ by n, you are going to get this as your time
taken, but then your refractive index can be path dependent. So, basically it depends on
what path your light takes. So, imagine that your path taken is determined by x. So, its
path is by definition a one parameter family of points and that parameterization can be

done by choosing z as your parameter. So, z is the z coordinate of the point.

So, that itself can serve as a parameter in which case x and y depend on z. So, therefore,
it gives you a one parameter family of points which is basically a path. So, now, what
you are going to do is you are going to be called upon to minimize a function like this.
Now, this is a functional of not just one unknown function like x or y, but it is a function

of both of them x and y both.



So, the question is how do you do that? Of course, you do it the same way and you keep
repeating your approaches, means you differentiate with respect to one of them and you

differentiate with respect to the other subsequently.
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30 Field Theory

Figure 1.11: A French lawyer, Pierre de Fermat (17 August 1601? to 12 January
1665) was an amateur mathematician who heavily influenced number theory, ana-
Iytic geometry, and optics. His famous conjecture remained unsolved for more than
ebraic number theory. He introduced

300 years and led to the development of a

the principle of least ime in optics, a version of which is found in Lagrangian and

Hamiltonian mechanics and is connected to Huygens principle of opics

@61 o il
u(z ¥2(0)+y2(e) (L131)
ay(z v

We illustrate this method using two concrete examples. The first concems the
derivation of the law of reflection. To do this, we imagine two homogeneous re-
), which is a perfect condue

gions, The firs is 2 < 0, which a i vacuum, and z
tor. The interface 2 = 0 i a reflecting surface, This means that light only exists in
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Figure 1.11: A French lawyer, Pierre de Fermat (17 August 16017 to 12 January
1665) was an amatcur mathematician who heavily influenced number theory, ana-
Iytic geometry, and optics. His famous conjecture remained unsolved for more than
300 years and led to the development of algebraic number theory. He introduced
the principle of least time in optis, a version of which is found in Lagrangian and

Hailtonian mechanics and is connected to Huygens principle of opics

an(x(z),¥(2),2) " " L131
ufz (2)+y2(z (1.131)
oz v

We illustrate this method using two concrete examples. The first concerns the
derivation of the law of reflection. To do this, we imagine two homogencous re-
gions. The first is z < 0, which a is vacuum, and 2 > 0, which is a perfect conduc-
tor. The interface 2 = 0 is a reflecting surface. This means that light only exists in
the region z < 0. Furthermore, we assert that the reflection takes place in the y = 0

plane. This means 0,50 that we may deduce,

(L132)

where C is some constant, This means,
X()=muz (1133)

where mis some other constant, Consider now two situations, one where the beam
is approaching the interface and one where it is receding from the surface. In the

So, I am not going to bore you with the details, but bottom line is that just like that
Beltrami type of idea, you can apply it the similar type of ideas here also and you can

then derive some analogous equations ok. So, I have applied this idea to study reflection



ok. So, for example, the; so this idea can be used to study various or not just study, but
derive various laws which are well known in optics, such as the law of reflection, then

Snell’s law of refraction and so on.

So, I have used this idea to derive the law of reflection so; that means, angle of incidence
is same as angle of reflection. So, that can be proven by, so you do not have to assume

that you can think of that as a consequence of Fermat’s principle ok.
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former case, z s incr

g 50 that u(z) = 1. In the latter case z is decreasing so that
1. Thus while approaching the interface the path of the light bean is,

x(z) = mz+x(0), (1.134)

and while receding itis
x(2) = ~mz+x(0) (1135)

\/

Figure 1.12: Fermat's principle says that the time taken for light to traverse AOA
is  minimum when © is a point on the interface. Similarly time taken t0 traverse
AOBis a minimum

So, I have just gone ahead and do it, I do not want to spend too much time discussing the

details you can read it yourself.
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Figure 1.12: Fermat's principle says that the time taken for light to traverse AOA
is a minimum when O s a point on the interface. Similarly time taken to traverse
AOB is a minimum.

This shows that the angle of incidence i equal to the angle of reflection, which

I beam alwa
this stuation is that u(z)
direction ofincreasing z. As before,

So, similarly, I have I have studied refraction. So, you have two media, one of them is
homogeneous with refractive index n 1, but then there is a surface beyond which there is
another medium homogeneous with refractive n 2. So, the in homogeneity is abrupt at
the surface. So, when light is incident on the surface interface between these two media,
then you will see that there is not only refraction which you expect there is also an

reflection.

So, whenever you have an interface between two media, you also have a reflection. So,
then you can work out, you can derive both these. So, Snell’s law rather Fermat’s
principle directly tells you that not only is there a refraction that is going on that obeys
Snell’s law. But Fermat’s principle also for the same effort tells you that there is a
reflection going on that obeys the laws of reflection, namely the angle of incidence is

equal to the angle of reflection.

But of course, as you very well know the angle of refraction is certainly not equal to the
angle of incidence, because that is going to be determined by Snell’s law and the relative

refractive index across the medium, across the two media ok.
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So, that is the bottom line. So, you get this famous Snell’s law, n 1 sin theta 1 equals n 2

sin theta 2. So, this is a consequence of Fermat’s principle.

So, even in Fermat’s principle you can see that the derivation of Snell’s law and the law
of reflection involves first writing down the time taken as the minimum and as an
extremum of some functional and then deriving the form of that functional in different
situations ok. So, this is another example of functional calculus which is basically

another way of thinking about systems with infinitely many degrees of freedom.

Field Theory

In region z < 0 we may write,
¢
(1.137)
V-
In region z > 0 we may write,
¢
Xz (L138)
Vi-c
But we can see that i
dx
= Tal® (L139)
50 that for z <0,
C
¥ (2) = Tan(8;) (L.140)
V-
and for z >0,
C
¥ () = Tan(8y) (1141
yB-¢
Thus,
y no m
Cuefy) = 5 Ce(ly) = ¢ (1.14)
From this we get ny sin(8) = ny sin(85), which is nothing but Snell’s law

153 Least Square Fit

We may use the variational method o approximate a st o data points with a func-
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ale that the error should be thought of (and defined) as a positive quantity so that
minimizing it would mean the difference between y; and f(x;) is as close to zero
as possible rather than large and negative. Thus we wish to minimize the function
A0, 2y €m) = iy (3= £ €9 (x)? with respect to the variables ¢;.

7 d 2 3
M) =5 Y Z‘M‘O )P =0 (1.143)

Thus we see that we have (o solve a linear system of m equations (typically much

smllr ha the number of data poins N) and ot heceficens .

¥ n N
LYoo= ¥ a Y alxe ) =0 (1.144)
==

This uniquely fixes the function /(x), which passes ‘close’ to all the points in the
list £. Indeed it is frequently the case that this function does not pass through any
of the points i that lst, but merely passes close to all of them

Next we consider the question of solving the eigenvalue problem to find an

ariable (say). We also assume

value. Consider a space of functions of a sing
a suitable inner product has been defined such as (v,0) = [ w(x)y(x)o(x)dx
where w(x) is a weight function, Typically, for applications to quantum mechan
ies we set w(x) = 1 and the interval [a,b] could cither be finite (f periodic bound
ary conditions are assumed) or be all of the real line. For applications to Sturm
Liouville problems, () is prescribed in the interval [a,b] (tink of Legendre o
Hermite polynomials). Here we rewrite the equation Ay = Ay in a weaker form
Ay

as k=24 = (£,4f), where f(x) = —===, Here A could be some differen-
) Vv

tial operator such as % +u(x). As before, choose a setof basis functions so that
f(x) = Ly e (x). Note that (£, f) = 1 s0 that we have to impose the constraint

0 cacy [2dsw(x)gu(x)9y (x) = | while minimizing. This means we have to

minimize,

)
A=(f,Af) ):(‘(‘/4/\;\\w¢‘u\xp_u (1.145)

Kk

So, the last example is the least square fit which of course, is more obvious and I think I
will skip this, because it has less to do with infinitely many degrees of freedom; it is

closer to what we were basically it is just another way of minimizing the error and so on.
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12
Figure 1.13: A collection of data points being it by a basis containing polynomils

of at most the second degree (source: Wikipedia).

wih respect (o variables c; subject (o the said constraint, The well-known proce.
dure in calculus is to use the method of Lagrange multipliers. We write,

Fid= Y acdye-n Y ety (1.146)
o) v

Minimizing means solving for ¢'s where . Flc| — 0. This means,

Yc=-n Y =0, (1.147)

or. Det(A ) ~ 0. This has to be supplemented with the constraint condition
namely,

Y an, (1.148)
[yt

From g, (1.145) we get

A= Y acdy (1.149)
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0 1 2
Figure 1,13: A collection of data points being fi by a basis containing polynomials

of at most the second degree (source: Wikipedia)

with respect 0 variables c; subject 0 the said constraint, The well-known proce-
dure in caloulus s 0 use the method of La

u Y agy (1.146)

Minimizing means solving for ¢'s where 5*F(c| = 0. This means,

Y ey ‘ui‘ 1 =0, (1.147)

or, Det(A ~ pi) = 0. This has 1o be supplemented with the constraint condition
namely,

¥ aety=1 (1.148)
From Eg. (1.145) we get
P );"‘.‘.a (1.149)
v

From the eigenvalue equation Eq(1.147) we get

A=Y aqAy=n ¥ agty=p (1.150)
1 k=1
The Countable and the Uncountable 3%

But it, since it has less relevance to systems with infinitely many degrees of freedom I
am going to skip it, but I included it just because you know it has wide applications in

many areas of physics and engineering ok.
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is x(A,0) = Fsin(%) (for simplicity, in this question, assume that the band only

36 Field Theory

oscillates along the length of the band). Model the rubber band as a célection of

closely spaced masses, where the (pA)-th mass is located at (x(A,),y(h.1)) con
nected to each other by springs with constant k such that in the continuum limit the
mass per unit length p is fixed, and the spring constant goes to infinity such that the

ratio of the spring constant and the number of masses s fixed

Figure 1.14: The initial state of the rubber band in Q.5. The left half is stretched,

the right half is compressed and the ends are fixed

Q.7 Imagine a child who holds the center of the band in Q.2 and pulls it in a
direction perpendicular o the band by a distance d < L and r

s the band from
rest at 1 = 0. Decribe the subsequent motion of the band. What are the physically
reasonable boundary conditions?

Q48 How would you generalize Q2 and Q.3 if the system in question were an

clastic membranc instead of a rubber band”
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So, basically you know the end of this chapter has several exercises, as you can see here
in page 35, there are several exercises which are very important and I have spent
considerable amount of effort in creating these exercises. And as publisher insists of

course, that there should also be detailed solutions to each of these questions and which

inteed to be the one we are interested in unless the choice of basis functions

was appropriate.

1.6 Exercises

QuI Verify all the steps leading up to Eg. (1.13)

Q.2 Generalize the concept of Legendre transformation to many variablgs

Q.3In thermodynamics, the entropy is a function of internal energy and volume and
number of particles S(E, N, V). Perform a Legendre transformation with respect to
energy and obain the transformed function keeping in mind that temperature T is
defined as 1 = 4. Try out all other possibilities. Successively transform N (you
should get a chemical potential somewhere) and V' (you should get pressure
also transforming two variables together and finally all thee of them. Can you rec-
ognize any of the transformed functions as the standard ones from thermodynamics
textbooks?

Q4 Verify that the Lag
dependent Schrodin

inge equation of Eq. (1.94) is nothing but the familiar time-
quation. Show that in this case, N(r) = [ dx y*(x.0)y(x.1)
is independent of time. If we regard y(x,r) as a field obeying the classical field
equations of this Lagrangian, then the statement that N(r) is time independent is
true only in an average sense following Ehrenfest’s principle.

QS The Brachistochrone problem showed that the path which ensures the time
of fight (Eq. (1.102)) an extremum is a cycloid. Prove that this extremum is a
minimum (the second derivative should be posidive),

Q.6 Consider a rubber band whose ends are tied to two stubs separated by a dis-
tance equal to the relaxed length L of the band. When the band is plucked it is
going to vibrate. The problem is to find the tension 7'(A,r) and the net strain en-
contained in the band given that at £ = 0 the displacement of each point A

is x(4,0) = fssin(%) (for simplicity, in this queston, assume that the band only

Figure 1.14: The iniial state of the rubber band in Q5. The left half is stretched,
the right half is compressed and the ends are fixed.

Q17 Imagine a child who holds the center of the band in Q.2 and pulls it in a
direction perpendicular o the band by a distance d < Land rel
restat £ = 0. Describe the subsequent motion of the band. Wha
reasonable boundary conditions?

es the band from

are the physically

Q8 How would you generalize Q.2 and Q.3 if the system in question were an

elastic membrane instead of a rubber band?

QU Deive the equation for the shape of a slender rope hanging under its own
weight supported at two ends at the same level, This shape is called a catenary

Figure 1.15: A rope with mass uniformly distributed along is length, hangs freely
supported at the ends only. The shape made s known as a catenary,

is available with the publisher.




So, it is not like these questions I have just been thrown at you and there are no solutions
possible. So, I have made sure that each of them can be solved and there are sensible
solutions available if you are interested in knowing what they are. So, I strongly urge you
to work out these questions on your own and contact me if you have any doubts about

any of those answers ok.
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Chapter 2

Symmetries and Noether’s Theorem

ymmetries. Typical amony
certain physical quaniite
ntinuous transformat

So, now, I am going to go ahead and jump to another topic which is extremely important
and that topic is basically the idea of symmetries and how they lead to conservation laws.
So, we can see that you know the word symmetry is a very familiar one and we use it in
our everyday conversations. So, symmetries are ubiquitous in nature. So, we admire for
example, the symmetrical an intricate patterns on the wings of a butterfly the simple and

symmetrical I am just reading of this paragraph.

So, the simple and symmetrical ripples formed on the surface of still water which is a
simpler type of symmetry and then yeah so there are several such visual symmetries that
you can think of, that you encounter constantly in your everyday life, but then
symmetries are not restricted to visual phenomena. So, there are other types of
experiences which are also which also lend themselves to description in terms of

symmetries.



For example, in music. So, in music typically pleasing composition will have a phrase
that repeats frequent or periodically and that is pleasing to the ear and even drums. So,
you have drums when they are played, you know there is a pattern which repeats and that
pattern before it repeats it can be quite intricate and complicated, but then the same

pattern repeats and that is typically a hallmark of some melodious piece of music.

So, if there is no repetition of any kind, we usually do not think of such auditory
experiences as being musical. So, bottom line is that some sort of a symmetry is there in
all our day-to-day experiences and it looks like the human biology is uniquely tuned to
be sensitive and pick up on these symmetries. So, they are very good at picking up on

these symmetries.

So, we can actually define mathematically the notion of symmetry can be made quite
rigorous by defining symmetry as the property of an object, that is unchanged under
some transformation. So, I define symmetry as the property of an object which remains
unchanged if I do a certain transformation. So, I have given this example, it is not an

example that you usually encounter in other places, but I found this interesting.

For example, a palindrome. So, palindrome is basically a word which looks the same if
you read it backwards, but then that is exactly the symmetry that I am discussing. So,
then you flip the first letter with the last, the second with the penultimate one and so on
you get back the same word. So, there is the palindromic words are symmetrical or
invariant under this particular transformation, but they are not symmetrical under other

types of transformations.

For example, you replace the odd letters with the even ones and so on. So, the message
there is that symmetries; so in other words objects are symmetrical only under certain
specific set of transformations, they may not be under other sets of transformation. So,
we have to be, we cannot make a blanked statement this object is symmetrical, you have

to say under what transformation.
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So, we can of course, so these are all visual type of symmetries which are easy to
appreciate. But in mathematics and physics we encounter more abstract kinds of
symmetries and these symmetries are the mathematical symmetries which leave certain

physical quantities unchanged.

So, for example, if; so if you have a Lagrangian which depends upon some generalized
coordinates and if q denotes the collection of all generalized coordinates, we may
imagine a transformation which changes all those generalized coordinates to some other

coordinates. So, q gets mapped to q of s where s is some continuous variable.

So, you I continuously deform each of those generalized coordinate to some other some
other one now. So, suppose I can do that and yet if the Lagrangian remains the same,
even after I do that so that is somewhat surprising. So, you should be able to find a
continuous transformation that transforms your generalized coordinates into some other
set of generalized coordinates continuously. So, that means, all the intermediate set of

coordinates are also legitimate generalized coordinates.

And then you reach the end set of generalized coordinates and you ask yourself that the
Lagrangian of the final set of generalized coordinates is that the same as what it was

earlier. If the answer is yes, then that is a kind of symmetry and that is a kind of



continuous symmetry that that means, that the Lagrangian is unchanged under a
continuous symmetry. So, you might be thinking this is very unusual and very hard to
find perhaps, but you will be surprised that it is not hard to find. In fact, it occurs very

frequently.

For example, imagine | have a particle in 2-dimensions described by position coordinate
x comma y. So, x bracket t represents the position x position of the particle at time t and
y bracket t is the position y position at time t. So, that is the position vector of the
particle in 2-dimensions at time t. So, now, [ am going to ask myself what if I rotate my

coordinate system?

So, at every time I rotate my coordinate system by an angle theta. So, then I am going to,
what I am going to do is, when I do that I will be describing the particle not in terms of x
and y, but rather in terms of x theta and y theta. And x theta and y theta are basically
linear combinations of x and y ok. So, this is an example of a continuous transformation

ok.

So, this is an example of a continuous transformation. Now, the question is that if you
are able to find a Lagrangian of a system, which is unchanged under a continuous
transformation. So, in other words your L x y x dot y dot is same as L x theta y theta x
dot theta y dot theta. So, remember that Lagrangian is a function of q and q dot. So, in
my case in this present case q is nothing but x comma y and q dot is nothing but x dot

comma y dot.

So, if your L of x comma y x dot comma y dot is same as x theta comma y theta and x
dot theta comma y dot theta so; that means, you replace x by x theta y by y theta, your
Lagrangian is unchanged then you call this as continuous symmetry. So that means, it is
a symmetry of the Lagrangian, the Lagrangian is unchanged by this transformation. So,
why am I even mentioning this? So, what means sure you can perhaps find such

Lagrangian’s which do this ok.
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So, now the main point here is that if; so this is the famous Noether’s theorem. So, what
Noether’s theorem says is that, if such a transformation is exists then you will be able to
find a quantity which of the dynamical system that you are looking at which is described
by that particular Lagrangian, you will be able to find a quantity that is conserved. That

means, it does not change with time.

So, that is the remarkable statement, because you see conserved quantities are very
important in dynamical systems and they are often hard to guess, except very obvious
ones like energy and so on. But there are other quantities which are hard to guess. So, it
is nice to know that you do not have to guess, rather what you have to do is you have to

look for symmetries of the Lagrangian and make sure those symmetries are continuous.

And if they are continuous you are guaranteed to be presented with courtesy Noether’s,
you will you are guaranteed to be presented with a quantity that is conserved for each of
those symmetries that you have uncovered. So, that is amazing and it is really worth

knowing how that comes about ok.
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2.1 Noether’s Theorem in a
Lagrangian Setting
As we mentioned carlier, a symmetry of the Lagrangian means that L{g,(1), (1))
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So, let me tell you how that comes about. So, this is before I tell you how that comes
about, let us admire this wonderful portrait by the great mathematician Emmy Noether,
whose name is associated with this famous theorem. And she was the person
mathematician who proved this theorem and Einstein regarded her as one of the greatest

mathematicians of her generation.



So, let us now go back and see how she proved this and the way she proved this is. First
let us start with the obvious assertion that; that means, So, we have said that there exists

a continuous symmetry of the Lagrangian. So, what does that mean?

So, if I change q to q subscript s. So, s is continuous right, so q has been deformed into q
of s. So, even though q has deformed into q of s which is completely different from q and
therefore, q dot also has deformed into q dot subscript s, which is also completely
different from q dot. So, even though q and q dot have completely changed now, but the

Lagrangian itself does not change. So, that is what we mean by symmetry.

So, if such a situation is possible so; that means, we have to assume that this is possible.
So, if it is possible; so now, the question is what are the consequences? So, first let us
write down the assertion of the statement that it is in fact, possible to do that. So, if that
is a symmetry of the Lagrangian what; that means, is that the Lagrangian does not

depend on s.

So, regardless of how you have deformed whether or not you have deformed this q into q
of s, the Lagrangian does not care. So, it is derivative with respect to s is 0. So, the
Lagrangian remains unchanged even though you have deformed the gs and q dots. So,
now, let us see what is the consequence right of the statement. So, the consequence of

this statement is that, unfortunately I have done this twice and this is redundant ok.

So, how do you find the derivative of L with respect to s. So, now, L depends on s
through its dependence of its dependence on q and q dot, each of which depend on s. So
obviously, you have to invoke the chain rule which now says that in order to find the rate
of change we have to first differentiate with respect to q of s, and then we differentiate

with respect to s; that means, we differentiate q of s with respect to s.

Similarly, with q dot, but now keep in mind that the Lagrange equations will tell you that
you can make this statement; that means, you can write dL by d q s as d by dT of dL by
dq dot ok, so that is Lagrange equations. So, I am going to make use of that and go ahead
and substitute. So, instead of this I am going to write this ok. So, I am going to write this,

replace this with this ok.



So, when I do that this equation which is 0, because remember what that is, that is d by d

s of L which is 0. So, that is going to be rewriteable as this ok.
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So, now this is nothing but. So, I can pull out this time derivative outside and this
becomes just this ok. So, the last result follows from the fact that the derivative with
respect to time and derivative with respect to s are interchangeable. So, this means that,

since this is 0 what this means is that this quantity is unchanged ok.

So, remember that q is a shorthand for several generalized coordinates. The system can
have several generalized coordinates, typically most interesting physical systems have
several more than 2 3 or more ok. So, in that case you see so this is; so that is the reason
why I have pointed this out. So, it is just summation over all the possible generalized
coordinates. So, what Noether’s theorem, so this is Noether’s theorem. So, we have just
successfully proved that the moment there is a continuous symmetry it implies a

conservation law.

And this conservation law is basically not only does it guarantee a conservation law. So,
it also tells you what is conserved, what is conserved is basically this quantity. So, this
quantity I have called as q and this is called the Noether’s constant ok. So, what so what

we have succeeded now in doing is that we have explicitly been able to construct a



quantity, which is conserved, which does not change with time, just because there is a
continuous symmetry in the problem. That means, the moment you are able to spot a

symmetry in the problem that immediately means there is a conserved quantity.

So, you see the bottom line is that you know humans are biologically perfectly tuned to
spot symmetries. So, for some reason, it is probably an evolutionary adaptation that we
can recognize symmetries faster than most other creatures perhaps or maybe as well as
other creatures. But bottom line is that it is something very innate and intrinsic to us and

we readily appreciate symmetries.

So, even when the symmetries are abstract, like they are in the Lagrangian it is not that
difficult for us to spot them. But however, it is incredibly hard for us to spot conserved
quantities in a dynamical system so that is the, that is the bottom line here. So, the
moment you are able to spot a continuous symmetry which is easy to spot, because we
are humans and the moment you are able to spot a continuous symmetry Noether
guarantees you that not only there is a conserved quantity, she even tells you what it is

that is conserved and that is amazing.

So, and conserved quantities are really important in physics as you very well know. So,
in the next class I will discuss the application of Noether’s theorem to various dynamical
systems and you will see that in the case of central forces, well Hamiltonian of the
system is of course, conserved, but we will even identify what is the symmetry that is

responsible for the conservation of Hamiltonian.

So, in fact, the converse is also true we just proved that for every conserved quantity
there is a or rather for every continuous symmetry there is a conserved quantity. So, the
question is the natural question is the converse true; that means, that for every conserved

quantity is there a continuous symmetry; the answer is yes.

So in fact, we will be able to identify them. So, we will be able to identify the symmetry
which makes the Hamiltonian a constant of the motion, we will be able to identify the
symmetry that makes the Lagrangian a constant of the motion. And for inverse square
forces not just central force, but you know the Coulomb’s law type of force there is a

third conserved quantity which is called the Runge Lenz vector.



And there is of course, a symmetry associated continuous symmetry which leads to the
conservation of Runge Lenz vector, but that is more subtle. So, that is what is called a
dynamical symmetry, which I am going to discuss later ok. So, but bottom line is it is

still a symmetry.

So, it is a symmetry which leads to the conservation of the Hamiltonian, is a symmetry
that leads to the conservation of angular momentum for the case of free particles it is a
symmetry, the translational symmetry which leads to the conservation of linear
momentum. In the case of inverse square forces central force is the dynamical symmetry,

which leads to the conservation of the Runge Lenz vector.

So, the moral of this lecture is that, pretty much behind every conserved quantity there
exists a symmetry, a continuous symmetry ok. I am going to stop here and in the next
class I will give you all these examples which will convince you about the power and

usefulness of this theorem ok.

Thank you, see you in the next lecture.



