
Dynamics of Classical and Quantum Fields: An Introduction 
Prof. Girish S. Setlur 

Department of Physics 
Indian Institute of Technology, Guwahati 

 
Nonlocal Operators 

Lecture - 47 
Nonlocal particle hole operators - Bosons 

(Refer Slide Time: 00:31) 

 

Ok. So, today, let us move to a new topic and this topic will conclude the present 

MOOCs course. And this particular topic is basically based on largely or nearly only on 

my own research that I have been doing over the last several years. So in fact, it way 

back in 1997, I published a paper with my PhD guide from University of Illinois, where I 

set out an agenda to express the properties of interacting quantum particles in terms of 

operators that correspond to particle hole excitations.  

So, this kind of an idea has a long history. And it is only in the mid-90s that people 

actually figured out how to do it in a way that is practically useful substantial way. So, in 

fact, the ideas of Duncan Haldane and others, who used this basic ideas of quantizing the 

Fermi surface that was very crucial in many of these developments. So, the work that I 

did is kind of also pretty much inspired and so to some extent even borrowed from those 

ideas. But there are some substantial differences. 



So, I will not be dwelling on the real literature on the subject. I mean to be honest if I 

have to be fair to the other authors, I have to spend a lot of time discussing literature 

survey what others have done and so on. But that is not the purpose of the present course 

anyway. It is not to be, I mean it is not meant to be an honest discussion of what others 

have done in some chronological order or something. So, it is just meant to you know 

highlight important topics that students should then make an effort to learn and fill all 

those gaps.  

Namely, they should make an effort to see who has done what when and so on and so 

forth. So, in order for them to do that I have to tell them some resources. So, for 

example, this paper that I published in physical review in 1998, even if you dislike large 

parts of it, in fact, in hindsight the fermion part of this paper is rather I mean it is kind of 

well-motivated, but it is in the end rather incomplete. 

But the boson part of this paper is quite ok. But still it motivates this the introduction of 

the so called non-local operators in a very nice way. But the most important positive 

aspect positive quality of this paper is that it has a large number of very relevant 

references which normally a reader will be hard pressed to find if it was not you know 

listed explicitly that way. So, I urge you to read this paper, if not for any other reason, at 

least for the references. But I want to convince you that it is worth reading even for the 

contents, ok. 
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So, let me start off by explaining what I am talking about. You see the idea is that 

remember that we have been discussing Hamiltonians, we have been describing 

Hamiltonian of many particle systems in terms of creation and annihilation operators.  

So, remember that I told you that if you have a system of free fermions moving in space 

you can introduce something all the annihilation field operator which is psi bracket r 

comma t, which annihilates a quantum particle it could be a boson or a fermion at 

position r at time t. And I also told you that if there are two body interactions between 

the particles, then the Hamiltonian becomes a quartic.  

That means that the Hamiltonian will involve two creation and two annihilation 

operators, when you are referring to the term that corresponds to interaction between 

particles. See, on the other hand, the kinetic energy term will only involve one creation 

and one annihilation operator. But now if you sit back and think about it, you will see 

that you see the fact that the Hamiltonian consists of these pairs of one creation and one 

annihilation makes you suspect that it might be possible to give that operator a name. 

So, instead of calling psi dagger r psi r dash as whatever I just called it, namely psi 

dagger r psi r dash is better to give it some kind of different name. So, what it does is 

basically it is a particle hole creation operator. So, it kind of it annihilates a particle 



somewhere and creates a particle somewhere else. So, in other words, it is creates a 

particle hole pair. It creates a hole and then it creates a particle. So, that is called a 

particle hole creation operator. 

So, it is better to give that a name as some you know b b dagger or something. So, let me 

tell you what I mean perhaps. So, ok let me actually display it then. So, you see if I am 

talking about see the underlying particles are bosons, right. So, then your underlying 

bosons in momentum space will have this property. So, they will have a commutation 

properties. 

So, b q, q is your usual the translationally invariant, for a translationally invariant system 

the good quantum numbers of momenta. So, you have b b dagger commutator is 

Kronecker delta and b b commutator is 0. 
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So, now I am going to define something which is somewhat peculiar, but it is basically a 

particle hole creation operator. See, what this does is it annihilates a boson with 

momentum h bar q, right. So, q is your wave vector. So, this annihilates a boson 

specifically a boson, ok with momentum and then it creates a boson with momentum 0, 

ok. 



So, you might be wondering why did I define it in this peculiar way, and there is a reason 

for that. But more than just that, you see I am also going to be forced to for reasons I will 

tell you later. But basically I am going to then multiply this by 1 by square root of N 0, 

where now N 0 is actually now itself an operator. See, this is what makes this subject so 

difficult because these are what are called non-local operators. So, that you know you 

have operators that appear in the denominator. I can just give you some simple flavor of 

what non-local operators can be. 

See, for example, you see if I say d by dx. So, this is an operator. So, it takes a; why is 

this an operator? Because you can act it on some function and you will get some other. 

So, if you fix x, it will act on the function and it will produce some number which is 

basically the derivative. So, d by dx is called an operator for that reason. But then you 

see if I want to make sense out of this. 
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Suppose, I want to make sense out of some function of d by d x. So, what does this 

mean? So, this function if it is very simple like whole squared, so then d by dx whole 

squared is basically means d by dx then again d by dx, that is what this means. So, now, 

if it is whole squared, this is perfectly fine, cubed it is fine like that. But d by dx to the 

power 0 is also fine. That is same as not doing anything. But, what is d by dx to the 

power minus 1? So, this is where things start to get a little funny. 



So, this is basically the inverse of the derivative which we know as integration. So, if 

you have integer powers you can at least make sense out of it this way. So, d by dx 

whole squared is differentiating twice, d by dx whole cube differentiating 3 times, d by 

dx raise to the power minus one is integrating once, d by dx raise to the power minus 2 is 

integrating twice. 

So, then you can make sense out of things like you know d by e raise to a, d by d x. So, 

this is perfectly valid because then I can expand this in 1 plus a d by dx plus a squared d 

square by dx square by 2 factorial etcetera. So, this because d by dx makes sense; d by 

dx whole squared is basically d by dx acting twice. So, all of this makes sense and 

addition makes sense. 

So, similarly, you can write even crazier things, like you know you can write, sin of you 

know 1 by whatever yeah you can write crazier things like this. So, if you want to write 1 

by sin d by dx, that is basically inverse of sin of d by d x. So, you can make a lot of sense 

whenever Taylor series is possible.  

But things become even funnier when you ask questions like what is d by dx to the 

power half, what is square root of d by dx. So, these are what are called non-local 

operators. So, in fact, d by dx to the power minus 1 is already non-local because you see 

yeah, ok, let us not go there. 

Bottom line is that this is certainly non-local. So, because you have to first make sense of 

this. See, what does this mean? This mean this is an operator which has the property that 

if you act this operator on some function, twice it is the same as differentiating it once. 

So, that is what this operator does.  

So, if you call this operator O. So, O acting, O acting on f of x means the same as it is 

that operator when you act twice is same as differentiating it once. So, the question is 

you might say that like what if I just want to know how it acts once, I mean I know it if it 

acts twice as same as differentiating it once. 

So, in order for you to do that I will I will not be able to spend a lot of time explaining, 

but basically you can make sense out of this through Fourier transform. So, you express f 



of x in terms of some plane waves as a linear combination of plane waves. And basically, 

if you do that then d by dx is nothing but it gets replaced by i k. So, if your basis states is 

i k x, then d by dx is same as multiplying doing d by dx is same as multiplying by i k. 

So, therefore, doing square root of d by dx is same as multiplying by square root of i k.  

So, basically your Fourier components gets multiplied by square root of i k. And then, 

when you do the transform again you will get the meaning of that. Now, you see that 

will, so the meaning of that will means that the this operator square root of d by dx 

acting on f of x will not depend upon f of x only or f dash of x or f double dash of x, 

basically it will depend on all the derivatives of f of x at x. So, basically it is non-local in 

that sense. 

So, non-local means is same as this. If I take x f of x plus a this is non-local because the 

answer for what this is does not depend on how this function behaves close to x equal to 

a. It depends on how it behaves far away from because a can be anything. So, f of x plus 

a to know, what is f of x plus a it is not enough to know how this behaves close to f of x. 

That means, you have to know how f of, you have to know that function at all points. It 

is not enough to know what it is close to x. So, as a function of x its non-local, because it 

depends on how the function is at a point far away from x. 

So, in fact, you can translate that into this other language, I told you about. You can 

Taylor series this in powers of a and when you do that you will get all derivatives of f of 

x. So, in other words, these two descriptions are equivalent. So, saying that this function 

depends on what this argument is far away from x is same as saying that it depends on all 

derivatives of f at that value x, ok. So, that is basically what typically one means by non-

local. And in some similar sense this N 0 is also non-local, ok. 
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So, this is non-local for a similar reason that there is an operator and a square root of the 

operator and that operator is in the denominator. So, in that sense, it is also non-local. So, 

now, you see if q is 0, I choose to not define it using this formula. So, that definition is 

this. So, now so the question is this is certainly a some kind of a particle hole creation 

operator because it creates a hole because b q annihilates a boson therefore, it creates a 

hole and b dagger 0 and creates a boson, but at the value q equal to 0.  

So, therefore, it is particle hole creation. But then its non-local particle hole creation 

because this d is non-local because of this extra term there. So, you might be wondering 

why I selected b dagger 0. So, there is a specific reason for that because you see for non-

interacting bosons the ground state is basically a condensate. So, that means, that all the 

bosons are sitting at q equal to 0. So, this is in some sense a kind of an operator that takes 

a boson outside the condensate and leaves a hole behind in the condensate, or it does the 

reverse. 

If there is some bosons sitting outside the condensate and a large number of bosons in 

the condensate it brings it back to the condensate. So, it is kind of; so, d actually does 

that, d brings back a Boson from outside the condensate into the condensate. Whereas, d 

dagger does the reverse, it takes a boson from the condensate and puts it outside the 

condensate. 



So, these are basically particle hole creation operator for bosons in the situation where 

you have a condensate. So, now, mathematically, so you do not have to necessarily 

interpret that way. You can just say this is the mathematical definition. Now, the 

important question is there are two important questions, first is you see the b satisfy 

simple commutation rules they are after all exact bosons. Namely that b commutator 

with other b is 0, b commutator with b dagger is Kronecker delta. 

So, now the question is what about the ds. So, the commutator is it ds are also bosons 

yeah that is the important question. So, you will see that because I have defined it this 

way, it so happens that the ds are also exact bosons. So, in fact, that is a very fascinating. 

So, just like these are exact boson these are exact bosons only if so long as I include this 

very funny non-local factor. If I do not have that non-local factors then these are not 

exact bosons. So, that is the important thing. 

So, now, that is one facet that is very important aspect. So, which is what makes is likely 

to make it useful, it is only if your particle hole creation operators are also bosons. See, 

the reason is because you see the Hamiltonian will be writable as something involving b 

dagger b plus if you are in interacting interaction between bosons it will have b dagger b 

b dagger b something, some something into b dagger b plus something else into b dagger 

b b dagger b. So, this would correspond to the two body interactions between bosons. 

Now, the point is that you see if you are successful in rewriting these I mean these 

products of particles in terms of, so these are products of bosons, but then this peculiar 

combination of products of bosons are also bosons. But they are individual annihilation 

operators. So, these are products of creation annihilation operators, but they are peculiar 

non-local combinations. But then, the end product is still a above annihilation of a of a 

different boson. 

So, now if you are successful in doing that then, you can suspect that there is some sense 

in which this Hamiltonian will then become basically quadratic plus perhaps a linear 

term. So, there will be a quadratic term. In fact, this will not be linear for reasons I will 

tell you later, this will also be quadratic, ok. So, bottom line is that this whole thing will 

become quadratic in the new bosons, even though your original Hamiltonian was quartic 



in the original bosons. So, this is basically the fundamental property which makes this so 

called bosonization technique useful. 

So, you might think that why am I calling this bosonization. Everything is still a Boson. 

bosonisation means you are turning something that is not a boson into a boson, but the bs 

were bosons, the ds are bosons. So, there is nothing mean. So, in other words, in this 

context bosonization means turning one kind of bosons into other kinds of bosons. 

But later on you will find that the more interesting version of bosonization is to turn 

objects which are fermions into bosons which is really remarkable. But I will not be fully 

successful in doing that. I will be success I will be well let me get there. But bottom line 

is that for Bosons it is an exact thing that, this non-local correspondence immediately 

gives you a canonical bosons, yeah. 

So, now the question is that what should I do with this. Why is this useful? See, this is 

useful so long as I am able to express some general operator b k, b k dash, in terms of 

these ds. So, if I am able to write; in other words, if I am able to invert this I want to 

invert. So, if I can invert this, then write b k dagger in terms of these ds then I am likely 

to be able to use it. Because after all my Hamiltonians are of this sort. So in fact, it so 

happens that you can do that and this is how you do that.  

So, I invite you to verify this. All you have to do is insert this formula here and show that 

it is an identity. So, you have b dagger k plus q by 2 b k minus q by 2 is an exact result. 

This is an exact result. See it is if both are 0, it is N 0. If one of them is 0, it is either d or 

d dagger, but if none of them are 0, yeah. So, if one of them is 0, anyway by definition 

this is supposed to be 0. So, if one of them is 0, it is either d or d dagger. And if none of 

the k plus q 2 or k minus q, none of them are 0, then this is same as this.  

These two are same which is quite amazing. So, this is something you have to verify on 

your own. And N 0 can also just like N 0 can be written like this it can also be written 

like this. So, the N 0 original definition involved the bs, but you can also write the N 0 in 

terms of the ds, where N is the total number of particles which is fixed. So, N 0 is the 

number of bosons in the condensate, yeah. 



So, so in other words, any Hamiltonian which involve involves the bs because they are 

always necessarily going to involve b dagger bs sort of thing. So, you can always insert 

this formula into your Hamiltonian and then start studying it. So, in fact, you see there is 

some sense in which; so, if you have a situation where your condensate is very large. So, 

if your N 0 is very large, you can suspect that this is the dominant term, this is the next 

dominant term, this is the sub dominant term. So, you might as well decide to work with 

this. 

In fact, if you approximate b dagger b with this, you are essentially doing what is called 

Bogoliubov’s theory, so which is well known in solid state physics. So, that is effectively 

saying that the condensate is very large. So, you are looking at small excitation. So, 

small number of particles can get excited from the condensate and small number can 

which are already excited can return to the condensate. So, there can be small 

fluctuations of the condensate. 

So, if ignoring this will amount to studying Bogoliubov’s theory. So, Bogoliubov’s 

theory basically allows you to, so this becomes exactly solvable in that limit because N 0 

is very large you can treat it as a number. So, its fluctuations are small. So, you ignore its 

fluctuations, and this theory becomes exactly solvable and because there are b. 

Remember the bs were exact bosons, but the ds are also exact bosons. So, and the your 

Hamiltonian is purely quadratic in the ds. So, it is exactly solvable.  

So, the Bogoliubov’s theory gives you a; so, basically it gives you all the eigen values of 

the of the excitation and so on. So, you will get the Bogoliubov’s spectrum and so on. 

So, that is the interesting reason why we decide to rewrite properties of interacting 

quantum particles. Not in terms of creation and annihilation of particles themselves, but 

rather in terms of creation and annihilation of particle hole pairs because that is how the 

Hamiltonian in all the condensed matter problems manifest themselves. 

They manifest themselves as particle hole pair operators. So, you do not have many 

situations where the number of particles in your system is not conserved a priori. So, 

yeah, so it is basically a Hamiltonian conserves the number of particles most of the time. 



So, the question is how would you deal with this? So, now, the question is how would 

you generalize this to fermions? You see the or a the bs are all bosons.  

So, if they are bosons, it is really fortunate that you can rewrite this in terms of other 

operators which are also bosons, which is quite a remarkable accident because it does 

not, it need not have been that way. In fact, the reason why it is that way is because this 

is something like a unitary operator. So, in fact, you can show that this behaves like a 

unitary operator. So, this is just a unitary operator. So, it is just unitary operator times b is 

d. So, that is clearly. So, whatever commutation rule b obeys d also obeys. 

So, bottom line is that this is very you know it is like suspiciously easy, and it did not 

have to be that way that there is no reason why this should have been exact bosons. And 

what is even more surprising is that if you invert this corresponding the pondance, there 

is no reason why b dagger b should be writable in this rather simple way. So, there is no 

reason why there should not have been you know infinitely many terms after this plus 

dot dot dot dot dot, but there is not. This is all there is to it. 

So, you see, so these are the two surprising aspects of this sort of transformation. So, on 

the one hand these are exact bosons. But then it did not have to be that way. And then 

secondly, when you invert this correspondence and write the number conserving 

products, you get just a finite number of terms, ok. So, the next important thing that well 

I think I have not done it here, but it is worth pointing out and that, is there a possibility 

you can write just the b itself in terms of the ds. 
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So, is there a way I can write b itself? So, fortunately the answer is yes? Because you see 

remember you can always write b 0 as e raise to minus X 0 times square root of N 0 see 

where X 0 N 0 is i. So, basically, X 0 is canonically conjugate to N 0. So, this is called 

density phase transformation. So, in fact, you can convince yourself that this basically 

because of this, so if you use this idea and you insert it here, so you insert it here. So, you 

can write this operator as, so you see this is nothing but b 0 1 by square root of N 0 is e 

raise to minus i X naught.  

So, if I take dagger on both sides you get if I take dagger on both sides this becomes 1 by 

square root of N 0 b 0 dagger equals e raise to plus i X 0. So, now, if I insert this here, so 

if I insert it there, so this becomes e raise to plus i X 0 times b q. So, therefore, you see it 

is nice to know that b q itself can be written as e raise to minus i X naught into d q by 2 

into q, I mean bracket q. So, you see b q, just the annihilation operator itself has a 

formula in terms of the ds, provided you also invoke this one. So, this is the canonical 

conjugate to your the number of bosons in the condensate. 

So, it is nice to know you can do things like this. But the really important useful version 

of this is when the bs that I am talking about here are not bosons, but the original 

particles of bermions. But I still want the number conserving products to be actually 

bosons. So, you might be wondering why that is. Because, after all you see if bs are 



bosons, then d being boson is not that surprising. But what I am trying to imply is that if 

bs are fermions, ds are still some version of ds which I am going to define later. They 

will still be bosons or I want them to be bosons. 

But the question is why do I expect such a eventuality or a possibility? Why do I think 

that number conserving products of fermions should have anything to do with bosons? 

So, the reason is given in this sentence here. One starts off with the observation that the 

object b dagger b with different momentum levels is the only one that enters in the 

Hamiltonian of number conserving systems. 

Furthermore, it satisfies closed commutation rules. So, regardless of whether the bs are 

bosons or fermions, the number conserving products of these operators away closed 

commutation rules among other members of its kind. One is therefore, led to look for 

formulas for these objects in terms of other bosons, not see because they obey closed 

commutation rules. 

So, the number conserving products of two operators see whether regardless of whether 

the original underlying particles of bosons or fermions. The number conserving products 

of those objects will obey closed commutation rules, even though the original 

annihilation operators may have obeyed anti commutation rules with their creation and 

annihilation counterparts. 

So, even though they may have obeyed anti-commutation or commutation, the number 

conserving products will obey commutation rules among other members of its kind, with 

other members of its kind. So, therefore, we are led to look for formulas for these objects 

in terms of other bosons because they obey commutation rules rather than anti-

commutation rules. So, that is the that is the motivation for looking for a Fermionic 

version of this correspondence which is incredibly hard to deduce. 

Well, this is already hard if you think about it is. I mean once I explain it to you it does 

not seem that hard, but it took me a long time to figure this out. And the point is that the 

Fermionic version I figured out after a gap of several decades, maybe a yeah almost a 

decade, from here to took me that long. So, maybe even more than a decade. 



And in fact, it took me a long time to even understand that rigorous Fermionic analog of 

this might be needed because I was able to circumvent, in fact, as I have explained in this 

paper and my later papers that a lot of physics can be extracted even by circumventing 

these technical issues. And so, that kind of put the mathematically rigorous analysis of 

these transformations on the back burner. So, for a long time I did not do it. 

So, it is only when referees of various journals insisted, started thinking about it. And 

finally, I did it and its part of chapter 12 of my of that textbook that you are using right 

now. So, it is already there in print. Namely, it is there in my text book in chapter 12. So, 

that is the Fermionic version of whatever I have just described which is only to be found 

in this paper that I wrote in 1997, as part of my PhD thesis. 

Next, I am going to explain to you the Fermionic version of whatever I have explained 

and then I will explain to you why that is so incredibly interesting and important. So, and 

that would conclude this MOOCs course on Dynamics of Classical and Quantum Fields. 

So, this is the most advanced topic in this course. And it has a kind of a research flavor. 

So, a lot of the topics, I mean a lot of questions that I am going to pose in the very last 

lecture which is the next one, will have no easy answers. And I strongly urge those of 

you who want to specialize in quantum field theory and many body theory and so on to 

give it a serious thought and see if you can contribute to the research literature by 

thinking about those issues, ok. I am going to stop now. So, let us meet for the final 

lecture.


