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We may think of L{Z, 2] = (53(1)2(r) = $2(1)2(r) % @2(t)z(r)) where Z = (2,) as the
Lagrangian of the system. This path integral has to-be evaluated using t

ary conditions, z(}) = z and (ty) = zy. Finally, an integration over zo and zy
completes the calculation. Here ‘¥ (x;) =< x;.ti|z > is the [z > in the position
representation. It s obtained as a solution to @, (x;) = 0¥, (x)

1111 Evaluation of the Path Integral

In order to evaluate the path integral in Eq. (11.30), we use the methods we have
already introduced earlier. The path is written as the sum of two terms. The first is

So, let us continue our discussion of Coherent State Path Integrals. So, if you remember
what is coherent state path integrals, basically it is about wanting to study quantum
mechanical systems using Lagrangians. But rather than think of the Lagrangian as
involving you know the usual generalized coordinates like the position and the velocity

that is q and q dot that is how you normally think of your classical Lagrangian.

Basically quantum mechanics can be rederived or basic it can be extracted from a
classical Lagrangian by saying that you see not all paths are. So, in other words usually
what happens is that, if somebody tells you the classical Lagrangian that is L of Q
comma Q dot; then you know that if there is one path which obeys the Euler Lagrange
equations. So, that is precisely the classical path; but a quantum particle is not going to

always select the classical path.



So, what you do to study quantum mechanics is using Lagrangians is you say that, you
see all paths are allowed; but each path comes with some weight and that weight is
basically proportional to e raise to i by h bar times the action, the action is basically the
time integral of the Lagrangian, Lagrangian integrated over time from some initial to

final time. So, basically the weight itself is a complex number of unit modulus.

So, that is the funny thing about the path integral approach to quantum mechanics;
basically it does not tell us that, in fact superficially it seems like all paths are equally

probable because you see.
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Inorder 1o evaluate the path integral in Eq. (TT ﬁ» we use the methods we have
already introduced earlier. The path is written as the sum of two terms. The first is
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the classical path and the other is the quantum correction. The classical path obeys
the variational principle,
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This means,
iZe(1) = 0z (1) = 0; iZ(1) = F(r) = 0. (11.32)
The solution is,
lt) =2 ™ (11.33)
The constraint that the end points be fixed leads to the following relation between
the starting and end coherent state eigenvalues.

(11.34)

We now define z(t) = z.(t) +(t). Imposition of Z(1;) = Z(ty) = 0 ensures that z(1;)

So, basically what path integral approach says is that, if you want to find the average of
any expectation value of anything; what you have to do is, basically rewrite this in terms
of the action and divide by the. So, you integrate over all paths and then you divide by
the appropriate normalization. So, this presumably depends on the path. So, this will
depend on x x dot whatever it is; it can depend on x x dot; but bottom line is you are

integrating over all paths, all x’s.

So, if you have some x 1 t x 1 ti is your initial and x f't f as your final, then there will be
a whole bunch of possible paths. So, what this says is that, all of them are allowed in

quantum mechanics; see unlike in classical mechanics only one path is allowed, all other



paths are strictly forbidden, only one path is allowed. But in quantum mechanics all

paths are allowed, but each comes with a weight.

And the funny thing about this weight is it is a complex number of unit modulus; so that
means that if you just look at the absolute value of this weight, it is 1. So, implying
therefore, that it seems like the probability of the particle choosing any path is pretty
much the same, which seems rather counterintuitive and paradoxical. Because we expect

classical paths to be slightly more favored even in a quantum system.

But the reason why that is you know, I mean the reason why this approach is not wrong
is because you see that, your intuition that the classical path has to be slightly favored is
recovered by realization that the Planck’s constant is the one that is very small. So, when
it is very small, the this is a phase term it is going to oscillate rapidly and most of the
paths kind of they cancel themselves out; because as you move along the path, the phase
oscillates rapidly because of the smallness of the Planck’s constant. So, the only paths

that are likely to contribute substantially are those which minimize the action.

So, you see because h is already minimized and it is in the denominator and you had
better minimize the numerator also, otherwise the ratio is going to be infinite. And if it is
infinite e raise to i times infinity kind of rapidly fluctuates between plus and minus 1 and
averages out to 0. So, if you want to prevent that from happening, you should ensure that
the Planck’s constant which is very small will also imply that the action is as minimum

as possible.

So, to try to keep pace with the catch up with the smallness of Planck’s constant. So,
bottom line is that, that is how you recover classical physics from this path integral
approach to quantum mechanics. So, now, this coherent state path integral is not about
studying this path integral using this approach, where this approach is about integrating
our paths and your action depends on the position and generalized position and the

generalized velocity.

But I want to study, I want to write down a Lagrangian not in terms of the usual
generalized position, generalized velocities; but I want to write it in terms of the classical

analog of creation and annihilation operators. Because see generalized position,



generalized velocities are classical versions, I mean the classical variables. But however,
you see in quantum mechanics when you rewrite your Hamiltonian in terms of creation

and annihilation operators, you get A and A dagger, which then these are complex.

So, if you want to now study the same system, which is now expressed in terms of this
creation and annihilation operators which are complex operators; then you are forced to
invoke the notion of a complex eigenvalue of these operators, which you can then use to
construct a Lagrangian in terms of the eigenvalues of A and A dagger. So, which is

precisely what we have done here, this is what that is.

This is basically the e raise to i by h bar; again I keep forgetting the h bar that is there.
So, it is e raise to 1 by h bar integral of the action and this is my action for the harmonic
oscillator in terms of the coherent state in terms of the eigenvalues of the creation and
annihilation operators. So, now, as usual you see this is if I wanted to calculate the
expectation value of some, I mean some Green’s function; but let us only focus on this
ok, because I have to integrate over end points and all that, so I have done, but let us

focus only on this.

So, now, if [ want to evaluate a path integral how did we do it in the case of harmonic
oscillator when we were studying it in the x and x dot language; that means in terms of
the original position and generalized velocity language. So, the way we did that is we
looked at the classical solution of the extremum the path which extremis the action, so

that we can then go ahead and expand our path around that extremum.

And so, in order to find the extremum we look at the variation of the action and set it
equal to 0 and following very standard methods, we get these equations. So, this is the

classical path that comes out.
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‘This means,
iz:(t) = 0z(t) = 0; iZ(1) = 0Z(1) = 0. (11.32)

The solution is,
(1) = ™" (11.33)

The constraint that the end points ads 1o the following relation between

the starting and end coherent state

w=2lty) (11.34)

We now define z(r) = z.(f) +Z(t). Tmposition of Z(1;) = Z(ty) = 0 ensures that z(1;)
20 and z(17) = zy. This means we may write the action as
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since the classical action vanishes identically. The Green function may then be
written as,
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Due to the periodicity, we may write 3() = L, sin —) ¢x. Now we evaluate
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Now, you see we have to also ensure that the; so if the starting path is I mean the z value
when it starts off at t equal to t 1 z 0, then z when it at the end point t equal to t f we
postulate that the z value is z N. So, that therefore, the z N and z 0 are related in this way,
they are related to t f and t y t I; again I keep listen I mean I have put h bar equals 1,
otherwise it is h bar omega into, oh sorry you know now it is still omega, omega is

frequency t is time that is fine ok, here it is fine, but there I should have introduced it.

Now, but nevertheless bottom line is. So, now, what you do is, you re rewrite your path
as the classical path plus deviation from the classical path. So, this is this z tilde basically
deviation from the classical path and because all paths start and end at the same point,
the deviation should become 0 at the starting and ending points, ok. So, now, if you
substitute that you will see that, all cross terms drop out and you will get a classical

answer multiplied by this quantum fluctuation, ok.

So, the point is that you see the advantage of you might think why do we always split it
up this way; why do we split up the path in terms of a classical path plus a quantum
fluctuation? See the reason why we do that is because the quantum fluctuation now
obeys periodicity; because the original path there is no periodicity, at t equal to t i1 z 0, at

t equal to t f it is some unrelated z N.



So, there is no connection between z 0 and z N; but however by construction z tilde is 0
at t plus t 1, it is also O at t equal to t f. So, that implies that this periodic function of its
argument, where the period is basically t f minus t i. So, that is what I have done here.
So, I have constructed a Taylor series, where the function vanishes at both t i and t f and
it 1s periodic with respect to time with period t f minus t 1. So, this is the most general

way of doing that. So, now, you can go ahead and evaluate this particular integral, ok.
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and,
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The solution may be written as,
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The constant C' is evaluated below. We may also write,
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Going back to Eq. (11.37)
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We may now evaluate the same quantity using conventional Hamiltonian methods.
For this we invoke the occupation number basis.
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Field Theory
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So, if you evaluate this particular integral; look I have used conventional methods now to
evaluate this path integral. So, I have just pointed out that you could do it this way. So,
rather I have evaluated the rest of it; I have evaluated this, this, this. So, you see when I
do that, I end up with this. So, this is still there, this is the integration over quantum
fluctuations; the rest of it has been evaluated, yeah because finally, we are going to be

able to compare.

So, this is the coherent state path integral, this is the coherent state path integral version
of the Green’s function. So, it is basically is the coherent state path integral version of the
Green’s function; but there is also the Hamiltonian approach to this calculating the
Green’s function if you recall. This is the traditional Heisenberg picture; well in this case
it is yeah is the Heisenberg picture. Well, you can think of it as, it is actually Schrodinger
picture; because see the states, this is a state which evolves with time. So, it has evolved

fromtitotf
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Here, Wo(x) =< {0 ound state wavefunction of the harmonic oscilla-
tor in the position spac w use the Zassenhaus formula to write ¢ *¢

! .
e @ex*  This means, e & f(x) = ¢ f(x+c )e2 . Thus we may write,

So, you can go ahead and evaluate that, ok.
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The ground state wavefunction is given by,
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The simplified expression reads as follows,
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This expression in Eq. (11.57) is of course identical to Eq. (7.79) obtained using
the conventional path integral. This is the so-called coherent state path integral for

the harmonic oscillator. Of course, there is no particular advantage to writing this
the harmonic oscillator, being simple, its Green function can be
methods—many of them simpler than this a

So, if you evaluate that you will end up with this result; I mean it is a little bit of a
tedious algebra, ok. So, you will end up with this result, ok. So, now, this is the, this is
the result that you have obtained and this is equal to whatever we got way back. So,
basically what this approach tells you is, it tells you how to evaluate. So, remember that

this was some constant.

So, this was some constant which was unknown; it was one of those G t f minus t 1 types.
So, that is what it was. So, bottom line is that yeah it was something like that. So, that is
what it was g t f minus t i1 and the rest of it gets evaluated; yeah, so it is a lot of tedious
algebra and you have to go through it. So, most of the interesting dependencies are

already contained here, this is that G of t bar t f minus t i, ok.

So, bottom line is that with some effort you can convince yourself that the coherent state
path integral approach for the harmonic oscillator gives you the same Green’s function as
you would get if you did the conventional path integral for the quantum harmonic

oscillator using position, coordinates and generalized velocities and so on.
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usefulness lies when applied to systems with infinitely many degrees of freedom

where one encounters fields. The noncommuting quantum fields in the Hamiltonian

framework are replacd by simple functions n the n framework, which is

when this approach becomes useful. Now we discuss the same idea in the context
of fermions.

11.2 CSPI for a Fermionic Oscillator

A fermionic oscillator is analogous to the harmonic oscillator except that the num-
ber of possibilities for the occupation number are limited to only two, namely zero

266 Field Theory

or one. Thus we postulate that the full Hilbert space is spanned by two vectors |0
and |1 >. Now we write,

i 0> ¢'[1>=0. (11.58)

Thus within this Hilbert space ¢ = ¢'2 = 0 and cc' +c'c = 1. In this case the
coherent states involve objects that are a generalization of complex numbers called

Grassmann numbers. For example we write,

(1159

n>=nmn

n with ¢ and using the identity ¢* = 0 leads us to conclude that ° = 0.

e properties of a Grassmann number, Similarly, we could define

So, that is important and it is important for you to understand that; because you will see
that in the end I am going to be able to generalize these two fields, because after all these
the systems that we are studying of quantum fields. So, till now I have only introduced
point particles, so that is one must tied to one spring and I am studying that quantum

mechanically using a whole bunch of approaches.

You know whether it is starting from the original Schrodingers approach of wave
functions Hermite polynomials then writing in terms of creation annihilation and
studying in terms of those ladder operators and so on and so forth. Or studying the
quantum harmonic oscillator Green’s function using the conventional path integral which
is, which involves position generalized position generalized velocity, in this case x X t

and x dot t.

So, and lastly I studied the classical counterpart of A dagger A plus half into h bar
omega. So, that is basically the coherent state path integral approach. So, you construct
the adjoint of the Hamiltonian is Lagrangian and the Lagrangian will be basically
classical; because it will be classical because Z and Z dash are complex numbers which
are commuting with each other. And you integrate over all possible such complex
number paths and then you get the same Green’s function as you would if you had done

conventional things.
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A fermionic oscillator is analogous to the harmonic oscillator except that the num-
ber of possibilities for the occupation number are limited to only two, namely zero
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or one. Thus we postulate that the full Hilbert spage is spanned by two vectors [0
and |1 >, Now we write,

Lol 0>;¢'[1 0. (11.58)

Thus within this Hilbert space ¢* = ¢'* = 0-and c¢’ +¢'c = 1. In this case the
coherent states involve objects that are a generalization of complex numbers called
Grassmann numbers. For example we write,

cn>=nn> (11.59)

Acting again with ¢ and using the identity ¢ = 0 leads us to conclude that 1> = 0,
This is one of the properties of a Grassmann number. Similarly, we could define
another coherent state |§ > such that,

c'lg>=EJ5> (11.60)

Here too we find & = 0. Now we make the following observation. Since all second
and higher powers of a Grassmann Variable are zero, a function can be at most
Jinear in such a variable. Thus £() = £(0)+1f (0) for any f. Iftis a function of
two such variables £(1,0) = £(0,0)+af " (0,0)+n719(0,0) + nas " (0,0)
and so on. This means,

n>=0>+[l (11.61)

where ¢[0>=0and |1 >=¢"[0>. One can see that this obeys the defining equation

So, now, the question is how do you. So, this was all the harmonic oscillator a dagger a
plus half; so that means the commutator of a and a dagger is 1, but then the commutator
is 1 means basically you are studying bosons. But in nature you know that there are other
types of particles called fermions. So, you should be able to study fermions also; because
after all you know electrons are fermions, all these quarks leptons these are all fermions
and the bosons are all the force carriers like photons, gluons, W and Z bosons and

whatever. So, those are all bosons.

So, typically bosons of force carriers and material particles of fermions and since both
exist in nature we should be able to study both quantum mechanically. And both are
thought of as excitation of some field. So, just like quarks and leptons are excitations of a

suitable matter field, quark field or lepton field.

So, similarly photons are excitation of the electromagnetic field and W Z bosons are
excitations of the electro weak field. Basically, you know Weinberg, Salam and Glashow
unified the big force with electromagnetic force. So, that is called the electro weak

theory.

So, the fields there correspond to basically excitation of the electro weak field, so that

could be either photons or the W boson or Z bosons. So, then you have strong forces that



which is responsible for holding the nucleus together. So, the strong nuclear force the
material particles of quarks, but the force carriers are gluons. So, basically you need a
theory which describes not only gluons like a dagger a would correspond to; because

gluons bosonic particles, so they correspond to a dagger a type of thing.

But fermions will be also important, because you see the material particles of fermions.
So, we should be able to do, we know how to do the conventional type of quantum
mechanics using creation and annihilation operator for fermions that is quite easy;
because after all in if you have a finite system, then if you have a suppose you have a
state, you want to create a fermion, you cannot create one more unless that fermion

comes attached with some label like spin up or spin down.

So, if it does not come attached with any label, then you can create either one fermion in
that level or no fermions, yeah. So, the question is the following. So, how do you study
fermions using path integrals? That is an important question; because you see in order to
study anything using path integrals, you should first construct a classical Lagrangian. So,
even though you are studying quantum mechanics, you have to first construct a classical

Lagrangian and then you construct the classical action.

But then you do not, then that is where you stop, then you do not go ahead and write
down the Euler Lagrange equation; rather what you do is you insert the classical action
in the exponent of some weight, so that means you construct a weight of the form e raise
to 1 by h bar times the action. And that weight is what tells you how much weight a
certain quantum mechanical path; basically how much weight a path has when a

quantum particle traverses along that path.

So, that weight is basically proportional to e raise to 1 by h power s. So, therefore, in
order to do path integral approach to quantum mechanics, it appears that you really need
a classical Lagrangian. But the funny question now is, how can you construct the
classical theory of a fermion; because that is what it seems to imply. Because you see
there is a classical theory of a mass tied to a spring this is basically the classical

harmonic oscillator.



Because the quantum particles or the excitations of mass tied to a spring manifest
themselves as bosons, because a and a dagger they have the commutative property, that
is commutator of A and A dagger is 1. However, there are particles in nature that do not

manifest themselves as boson, they manifest themselves as fermions.

So, now the question is, are there objects in nature that correspond to classical analogs of
fermions? Because you know that there is a mass and there is a spring and you know tie
them together that is what classical analog of a boson would look like; meaning in some
sense the boson comes out by quantizing a mass tied per spring. So, the question you can

naturally ask is what classical system when quantized gives you fermions?

Is it mass tied to a spring? No, it will give you bosons; then what tied to what we will
when quantized give you a fermion? So, the answer to that is basically nothing that, there
is no classical analog, at least that is the conventional answer. So, there is no classical
analog of a fermion; so that means there is nothing which when quantized gives you a
fermion. The fermion is already quantum, basically there is usually you are given the
impression that quantum mechanics is kind of not possible unless you have a classical

description to begin with.

That is how you are taught quantum mechanics and of course, with good reason; because
most of the systems do have classical analogs. So, it makes perfect sense like the
electromagnetic field; it has a classical analog and with the classical Maxwell equations
and then when you quantize it, you get photons. So, the question is now which classical
set of equations which when quantized will give you something like an electron; which is

a quantum particle?

So, the answer is unfortunately nothing, there is no classical system which when
quantized will give you an electron. An electron is already quantum and there is nothing
classical about it, that there is no classical version of an electron; there is a classical
version of a boson, which is must tied to a spring, there is no classical version of a

fermion.

So, we have to learn how to, so but then. So, now, we are stuck; because we need a

classical Lagrangian to do path integrals, but then there is no classical system as such.



So, we have to you know cook up something. So, that cooking up something will involve
using some very strange mathematics. So, that strange mathematics tells us that the eigen

values of the creation operator of say if suppose c is your annihilation of a fermion.

So, suppose you have a. So, if you have a state, you can either have one fermion or no
fermion; because it does not come with any other label. So, if I take that state which does
not contain any fermion and I try to annihilate it, I am going to get 0. Now, I can
construct a state with one fermion by acting the creation operator on that state with no

fermions; then if I try to annihilate that, I get a state with no fermions

But more importantly if I try to create one more fermion in a state that already has a
fermion, I get 0 immediately, because of Pauli principle. So, you see now what we want
is this Pauli principle is the anti commutation rule. So, the point is what we want to do is,
we want to create. So, in other words we want to construct the eigen states of the

fermionic annihilation operator.

So, because the eigen states and eigen values of the bosonic annihilation operators are
simply complex numbers, any complex number can be. So, basically you pick a complex
number; you can construct a state labelled by that complex number, which will
automatically be by suitable construction an eigenstate of the bosonic annihilation
operator. But now if you ask the question, can I do that for a fermionic annihilation

operator?

Well, formally you can always write this; because you can say let eta be that eigenvalue
which corresponds to the eigen value of the fermionic annihilation operator and this is
what it is. But now you see keep in mind that ¢ squared is O; that is if you try to
annihilate twice, you will get 0. So, now, suppose you act this supposed eigen state

equation, eigen value equation by another annihilation.

What will you get? This will become ¢ squared which is 0, but then this will give me a ¢
times eta, which will give me eta squared; because c¢ times eta is another eta times the
state eta, so the eigenvalue times the state. So, there is already the eigen value there. So,
if I multiply the two eigen values, I get eta squared; but this is 0, ¢ ¢ is 0, so eta squared

should also be 0, because the state itself is not 0.



So, what that means, is these eigen values are nonzero; because obviously they are
nonzero, they are supposed to label some non trivial eigenvalue, but their square is 0. So,
obviously, they cannot be ordinary complex number numbers; because there is no
ordinary complex number whose which is not 0, but whose square is 0. But in
mathematics, there are objects that have these properties and they are called Grassmann

numbers.

They are called Grassmann is name of some mathematicians. So, it is Grassmann
variable Grassmann numbers. So, Grassmann numbers are numbers which have this
property that if eta 1 is a Grassmann number and eta 2 is another Grassmann number; eta
1 into eta 2 is minus eta 2 into eta 1 and eta 1 squared equals eta 2 squared equals 0, ok.
So, these are the properties of Grassmann numbers and moreover you can show that any

function of some Grassmann number at most will involve just you know.

Just so if you do a Taylor series, see if you do a formal Taylor series what is this; is £ 0
plus eta f dash 0 plus eta squared, but eta squared is 0, because eta is Grassmann number.
But eta cubed is also 0; because eta square eta cubed is eta squared into eta, but eta
squared is 0, so eta cubed is also 0. So, everything is 0, except eta to the power 0 which
is 1 and eta to the power 1 which is eta and all higher powers are 0; if all higher powers
are 0, any function of the Grassmann variable is linear. So, that makes some enormous

simplification there.
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two such variables £(1,0) = £(0,0)+@f*"(0,0)+n/"%(0,0) +naf " (0,0)
and so on. This means,

n>=[0> 41> (11.61)
where ¢/0 >=0and [1 >= |0 >. One can see that this obeys the defining equation
for a coherent state. Similarly,

E>=E0>+]1> (11.62)

Differentiation of Grassmann variables i defined as 45 (1) = f (0). We will define
integration later. As usual we wish to evaluate the overlap. For this we observe that
on the one hand

el >=n <&n>. (11.63)

We may choose to write ¢ = 3 in the same representation in which ¢” =&, From

this we may see that cc’ 4+ c'c = 1, since now {§, %} = I where

{4,B} = 1. This means,
(11.64)
This means,
<Em>=e=1+6n, (1165

In order to understand how to resolve the identity, we have to introduce the mean-
ing of integration over Grassmann numbers. One way to do this is to introduce the
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notion of a *Fourier transform’. The Fourier transform of a constant is a delta func-
tion. Hence we first focus on trying to represent a delta function using Grassmann

So, basically what will happen is that, you can now go ahead and construct coherent
states with these types of properties. So, now, you can show that basically the Grassmann
variables have these funny properties like this; because usually you think that you know
if you use your usual approach like x and p type of thing you know that you see what is

this is.

So, if you act p x p like this. So, on the one hand it is the eigen value p into x p, but on
the other hand this is basically minus i h bar d by d x. So, therefore, you will get an
equation. So, if you solve you will get p x p by h bar as your overlap. So, x overlap p is e
raise to 1 p x by h bar. So, similarly here also you will get the overlap between this and

this is something like that.

But then you see because these are Grassmann numbers; if you Taylor series only if
zeroth order and first order term survive, all higher order terms are 0, because eta

squared is 0 and eta dash squared is 0 etcetera, etcetera.
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eus on trying (o ref [
uld like to know what 8(n =1 ) means. One property

Keeping in mind that 8(n) = ¢+ d for some constants, we conclude that ¢ = 0

and d # 0, which we set to unity = 1 in anticipation. Therefore,

3m) =1 (11.66)
N(f(0)+n/(0)) = n/f(0), since the delta function forces the argument of any

function multiplying it to be zero. Now we invoke the notion of
know that the delta function integrated over all values of an argument yields unity

/unéum I (167

This means,

/Jn n=1 (11.68)
We also know that the delta function admits a Fourier representation, In particular,

justas [ a5 = §(x- 1) weexpect (x, 4 = 1, {§.6} = 1),

/d;r“ W=§m-n)
In other words,
/J; 1+8M-n))=(n v|'\ (11.70)
Therefore, we must also have,
/J;[ 0 D)

Now we prove a rather amusing result that this the same as differenti-
ation with Grassmann variables. Notice that th f Grassmann variables
we have used so far implies that the

variable, i.c., it is a definite integral rather than an indefinite integral. Now consider,

So, similarly the Dirac delta function has this funny property that; because we expect
Dirac delta to be x delta x is 0, because you see the Dirac delta this whole thing is 0 if x
is not 0, but if x is 0, it is still 0 because the coefficient is 0. So, the entire generalized
function is 0. So, if you think of this x as now a Grassmann number, so now, you can see

that because any function can only be written like this.

So, it is therefore, mandatory that the Dirac delta function is the Grassmann itself. So,
and if you integrate over Dirac delta, you will get 1. So, integral of the Grassmann is 1.

So, it is basically something like a definite integral.
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/,/Ew'l ) =3(n-n). (1169

In other words,

/d; 1+&M-n))=( v]\ (11.70)

Therefore, we must also have,

/JZ;I 0 kD)

Now we prove a rather amusing result that this integration is the same as differenti-
ation with Grassmann variables. Notice that the integration of Grassmann variables
we have used so far implies that the range of integration is over all values of that
variable, i.e., it is a definite integral rather than an indefinite integral. Now consider,

/JH/ )= /11(-)‘/ 0)+8f(0)=0+1f(0)=f(0)= g f(6).) (1.72)
J do
Therefore, integrating out a Grassmann variable is the same as differentiating with
that variable. Since the functions are at most linear in these variables, both opera-
tions get rid of that variable. Normally, a definite integral can never be written as a
derivative of some function, unless the range of on s finite and the func-
tion is linear. In the present case, the functions are always linear, so it works and
Grassmann numbers are in some sense bounded since n* = 0. Coming back to the

268 Field Theory

question of resolving the identity, we assert that for some weight function W/(6,6)
10 be computed,

/ué‘mu\e;é: 6><f=1 (11.73)

So, like that you can construct many many such and the integration is same as, that is the
most bizarre thing about Grassmann. So, the thing is that if you integrate; if you integrate
the Grassmann variable, so this is some kind of a definite integral. So, it is the same as
differentiating the; because once you differentiate this whole thing becomes a constant,

because f theta is anyway linear in theta. So, if you differentiate, it becomes a constant.

So, definite integral of a function over the Grassmann variable is same as its derivative,

which is something very hard to believe, but it is true
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Fay /JM) (1-00)(1+By+0 + o6y, (1.77)

‘This means,
I+oy

/ 406 (14 By-+ 08 + 086y / 4o (66)

/ b6 by / A6 (1.78)

since all other terms drop out. Now we make use of the idea that every Grassmann
object commutes with every other. Therefore, 6 8 = ~8 @8 and this makes the
second term become equal to unity. On the other hand, «86 = 66a so that the net
result is 14 oy as it should be. Therefore, we resolve the identity in Grassmann
variables as,

/ué‘m(‘ 0 95c|=1 (179)

We now wish to use this to write, down the [

gian approach for a fermionic
oscillator, We wish to compute the'fermion propagator defined as,

Gl (1)e(r)|G >= efE6 < Gl (0)e HMe(0)G > (11.80)

where H|G >= Eg|G

lator, this means cither Eg;

is an cigenstate of the Hamiltonian. For a fermionic oscil-

0Oor Eg = ho. As usual we rewrite this as,

<Gl (e(t)|G >= ek < Glh(0)e T, e 1M c(0))G >, (11.81)
¥
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Now we imagine inserting the resolution of the identity between each of the in-

So, now, you can just go ahead and so, just like case of bosonic coherent state; you have
this over completeness, here also you will have similar over completeness. But keep in
mind that this is very simple, this is same as 1 minus theta dash theta. So, it is not really,
I mean it is overkill to write it like that. So, same procedure, we follow exactly the same

procedure.
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10
The matrix clements at the extremities are nothing but,
0yG > < Gloy

3 >
< Oyc(0)|G > 1< Gle'(0)/6g > 5 (11.84)
7 y ' '

Therefore,

- -8 9<Gloy
Gle'(1)e(r)|G >= d8d8) ————
by

s (~ 400000 +4005000)-0D(9005) 3 Bty < OWIG
et <

—. (1185
oy

This path integral has to be performed keeping in mind that 8(r ) = 8y and 8() = By
and finally one integrates over 8 and B as well,
1121 Evaluating the Path Integral

16 the path integral, we provesd ao uoual. Firot we

mann path as the classical solution plus a quantum correction

0(s) = 0,(s) +0(s) (11.86)
where 6/(s) obeys,

d oL oL

dsga(s)  08(s)

L1660 =i 6(s)6(s) - 0b(s)8(s (11.88)




And when you do you will end up some with something very similar, but except that

now you have to evaluate the path integral.
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Field Theory

i0,4(5) = -0 0,(s) (1189)

Since this is a first-order equation, the end points are not independent

(11.90)

Oy =0,(1) ="' gy, (11.91)

X - (§=1 x
B(s) = Y sin(onm o, (11.92)
= b=k
Therefore,

<Gl (1)elt)|G >= k-1 Ea /\u(m
A< GlB0 > ifjas od] e, 0 < 0y(G
ET ‘ Wy

The action may be written as,

(11.93)

5= [ dsLfid) /mué\am 00()0(s))

!

Z iln(~1+ cos(Im)cos(nm))

— 6,6, (1194
[

which is independent of £ and 1. Also since By and 8 are proportional we may
write (after ignoring terms that do not depend on r and 1 ),

Gle'(1)e(r)|G >= e /me/u‘y W (0) e W6 (1195)
where, W5(0) =< 0/G >.

Y;(0) =< Gl8 >=< Gle™ [0>=< G0 > +0 < G|1 > (11.96)

And even that is also very similar, ok.
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L Ly

The action may be written as,

§ /\mr.nm /muh\um 0(s)0(s))
! :

z iln(~1+ cos(Im)cos(nm ‘(f)“éu (1199

A [
which is independent of £ and £ Also since 8y and 8 are proportional we may
write (after ignoring terms that do not depend on 1 and 1),

<Gl (1)e(t)|G >= en=")Eo /ueuuew We(0y) e (8))  (11.95)

where, Wg(8) =< 6/G >.

<Glo>=<Gle" [0>=<Gl0>+6< G|l > (11.96)

w(0)

Therefore,

<Gl (1)elt)|G >= et Ea /‘/&.Jeu GlI> e G

i < Gl1>< 1|6 > (1197
If |G >= |0 >, the hole propagator above vanishes since the annihilation operator
annihilates the vacuum. When |G >= [1 > we get,

<Gl (1)e(t)[G >= e (11.98)

Thus fermions may also be studied in the path integral language by invoking Grass-
mann variables.

Coherent State Path Integrals

So, but when you evaluate it, you will get something much simpler than what you will
get in the case of bosons. Because there you can have as many bosons as you want in a

state, but fermions you can have either 0 or 1 and you will get a Green’s function that is



incredibly simple like this. So, I will allow you to look through these steps; because I
would not spend I probably would not even ask you these questions in the assignments,

because it is important if you want to specialize in particle physics.

I think condensed matter people do not use Grassmann variables that much; but particle

physics people use it quite a bit, at least the field theory crowd of particle physics.

(Refer Slide Time: 33:17)

Coherent State Path Integrals
11.3  Generalization to Fields

So far, we have studied the CSPI method for systems with one degree of freedom.
It is possible, of course, to generalize the formalism to include infinitely many
degrees of freedom. Using a method similar to what we saw in the earlier section,
we could easily accept that the correct way of handling this situation would be to
first ensure that the Hamiltonian is normal ordered. This means all the creation
operators are to the left of the annihilation operators. This is important because in
the CSPI approach, the identity is resolved using the eigenstates of the annihilation
operator rather than the creation opes as 4 result, matrix elements such as

Zla'alzgsy > found in Eq. (11.28) are again proportional to >, which

g Alat
is why this method works. If instead we chose the Hamiltonian as H = o aa’,
the matrix element < [aa'[zy..; > would involve derivatives and would not lead
to anything useful. Therefore, for a Hamiltonian such as the one in Eq. (8.91) (we
assume it describes bosons for simplicity), the way to formulate CSPI would be to
first write the action that appears in Eq. (11.30) as,

' 1 i
Siaf [11/ /drwz:wr/::rr ::rl\:rru: Hlz2 (11.99)

where,

) | r i
Hz.7 dei(rn) afr) + /‘/r drZ(r,t)i(e 1)z(e n)z(r )V (je=r )
2m 2
(11.100)
Therefore, if the aim is to evaluate an overlap such as < ‘¥, 6[W,t; >, we would

write,
Wity 5=

/ gy par vttt
ra)=a(r)a(ry)z2xlr) 200

<Witil{zo} > €5 < {an}Wpti > (11.101)

So, it is kind of worthwhile knowing it to some extent. So, now, you can generalize this

to field. So, you see if you have an electron field, you can say what it looks like.
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inlry) < (a6 (11.107)

In order to complete the caleulation, one has to provide the ground state description
of the many-body system in the coherent state basis.

114  Exercises

Q. A Hamilionian with bosonic oscillators is given by I = fio(a'a + §

Ma"a" + aa). Develop the coherent state path integral approach for this Hamilto-
nian. This means write down the coherent state path integral for the Green function
Ta(r)a'(r)

Q.2 A Hamiltonian with two types of fermionic oscillators is given by H =
Tio(a'a+b'b) + A(b'a’ +ab). Develop the coherent state path integral approach
for this Hamiltonian,

Q.3 An unperturbed Hamiltonian with two bosonic oscillators is given by Hy =

Tio(a'a + b'h). Imagine the perturbation to be V ab +b'a'a). Develop a
perturbaive scheme using the coherent state path itegral approach or this Hanil-

tonian

Q.4 Do the same if the oscillators in the above question were fermions.
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Chapter 12

Nonlocal Operators

The description of many-particle quantum mechanics given till now does not give
us much insight into how one may go about computing the Green function of quan.
tum systems with infinitely many coupled degrees of freedom. Apart from the free

particle case and perhaps the harmonic oscillator, there are precious few exact com-
putations of Green functions of many-particle systems. Even the approximate meth-
ods are found wanting since we have already alluded to the ‘uncontrolled” nature of
most of the approximations that have been proposed to date. There is one method
that offers some hope in this regard. This method is (wrongly) called ‘bosoniza-
tion”. This method will be the main focus of much of this and the next chapter. The
'main mathematical tool used is the introduction of operators that are ‘non-local” in
asense to be made precisce later, which enables the exact computation of the asymp

totic properties of the Green function (G(x =X ,t =1 ) in the regime |x =X | = e
and/or |t =1 | = o) under some further restrictive assumptions. We wish to ease
into this subject through the study of quantum vortices in charged bosons where
the notion of nonlocality makes its presence felt in a relatively more familiar set-
ting.

12.1 Quantum Vortices in a Charged Boson Fluid

So, the coherent state path integral of electrons in a solid. Because now electrons being
fermions, you have the fermionic coherent state path integral of a fermi gas, you know in
a solid; I mean, so you can imagine that that could potentially be useful. So, I am going
to stop here as far as path integrals are concerned, especially coherent path integrals; I
may not have done full justice to this subject, especially the fermionic coherent state path

integral, but it is there in the book, so you should look it up.



So, I am going to spend the next two lectures which will conclude this course discussing
my own research. So, I have developed certain non local operators in quantum many
body theory, which I believe are extremely important; but they are very under developed,
in the sense that they show a lot of promise, but they are extremely technical and very

hard to manipulate.

But I believe that if you put in the effort and learn how to utilize them properly; they will
shed very deep light on various aspects of quantum many body theory. So, I want to
discuss those objects and they go by the name of non local operators in quantum many
body theory. So, that is the last topic of this NPTEL MOOCS course and I will probably
spend maybe a maximum of two or maybe three lectures, very likely two lectures

explaining that.

So, after that I am considering this course as more or less done. So, I continue to
encourage you to ask questions over email, over live sessions; try to ask specific
technical questions after reading the text and listening to the YouTube videos. Ask me
specific technical questions; do not ask me vague questions like I did not understand this

subject. So, ask me a specific question from the chapter and I will answer it, ok.

Thanks for going along for the ride with me. So, I hope even though you may not realize
it now, you will find this; especially if you decide to specialize in theoretical physics,
you will definitely sooner or later find whatever I have explained quite useful, even
though it may not be apparent to you right now. So, I am going to conclude in the next

two lectures.

Thanks for listening.



