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Ok. So, let us continue where we left off. If you recall in the last class, I was telling you
about how it is possible to introduce a source; that means, you pretend that there is an

external potential which depends on time. But that time all those times are on the

246 Field Theory

. 3 AT S el 4)éle.n)é (r,n) i
=8(1-2)+ ([ (e -r) ST ) 2
<T§>
(10:4124)
Consider the following identity,
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We may substitute this into the equation for G,/ to arrive at the Schwinger-Dyson
equation for G, (henceforth simply called G):
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imaginary axis you know between t equal to 0 and t equals minus 1 beta h bar.

Then, what you do is that you define your Green’s function along the time ordered
Green’s functional with times ordered along this imaginary axis in between within this
interval. So, then, it is possible to write down the equation of motion that is basically that
the time dependence, the how this green function changes with see one of those time.

See after all, the Green’s function depends on two times; it depends on the time of the

first operator which is usually the annihilation operator.



So, remember that what this Green’s function is. It is basically the time ordered; it so its
time ordered along the imaginary axis. So, I will put ¢ there just to remind myself that
the it is along the imaginary axis and this is what it is. So, I have just picked one of the
times and I have decided to find the time evolution with respect to that particular time
which is I have just selected; I could have selected t 2 also. But I have selected t 1. So,

the point is that the equation obeyed by this Green’s function is going to be this ok; yeah.

So, this typically comes with a minus 1 also ok. So, yeah because if it comes with a
minus 1, then this becomes you see this is shorthand for a spatial and time Dirac delta
function multiplied together. This is I mean this is just shorthand of writing; it is not an
the number 1 minus number 2, it is not like 1 minus 2 equals minus 1. I mean 1 means x
1t1;2means x 2t 2. So, it is just short hand because I have to otherwise write x 1
comma t 1, x 2 comma t 2. It is very irritating, but here I have no choice, I have to

explicitly write r 1 r 2 or whateverr 1, r 2.

So, I have to explicitly write that here ok; it is not x 1 I have selected r I, r 2. r 1 comma
t 1 is shorthand for that is 1; r 2 comma t 2 shorthand is 2. So, the point is that the
equation of motion obeyed by the Green’s function is basically this. So, now, you see this
involves two creation and two annihilation operators; is not it? So, but then, I told you
that the whole purpose of introducing this external time dependent potential which is
anyway not there and you know trying to complicate matters by introducing something

that is not there.

It had better have a valid benefit that is if it does not benefit me enormously, I have no
business complicating matters by introducing something that dint exist before. So, you
will soon see that it is in fact very very useful. So, the reason why it is useful is that if
you take this Green’s function and formally differentiate with respect to this source that I
have introduced. So, what is going to happen is that you will see that you see after all the

source is present only in the S matrix.
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We now define the following Green functions (in equilibrium the time ordering is
on the imaginary interval, but for nonequilibrium systems it is on the closed time
loop. Here we restrict ourselves to the former case):
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The above definition is the intitive definition of a particle or a hole propagator. In
the earlier sections we had also introduced the Green function
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Note the compact notation 1 = (ry,t;) etc. We remarked that this latter definition
P

is not well motivated. We remedy that here by proving the equivalence of the nat-
ural definition in Eq. (10.107) and the version from the interaction picture in Eq,
(10.109)

And if you recall this S matrix is defined like this. So, the source is only here. So, if I
differentiate with respect to the source, I will bring down a density there which is
precisely what this term which involves four fermions interaction is ok. So, basically you

see it involves the density here.

So, it involves this is the density here; ¢ dagger r dash t 1 ¢ r dash t 1 that is basically the
density. So, by differentiating with respect to the source of the Green’s function, so this
is the original Green’s functionr 1t 1,r2 t2; r 1 t 1 is annihilation, r 2 t 2 is creation.

But now, I want to see how I can bring down a density.

So, if it is just this, there is nothing there. So, I have to difference. So, if there is an S,
there you see the S has the density in the exponent. If I differentiate with respect to the
source, I will be bringing down a density. But then, you see the Green’s function is the
ratio of the S matrix on the numerator and S matrix also in the denominator. So, now if I
differentiate with respect to the source, I will end up getting this what is called the
correlation function, it is this average. But then, I have to subtract out the average when I

pair up these operators in this way.

So, basically that is what it will amount to ok. So, now, so in other words, this term that I

was trying to see if I can write in a way that involves only one particle Green’s function



because after all this has two particle operator, it involves two creation and two
annihilation. So, now, I want to be able to express this in terms of something involving
only one particle. So, you see at the level of this equation its already clear that I have

been successful in doing that.

Because after all what is this that I have circled here; it involves two creation and two
annihilation. But here it involves only one creation, one annihilation because this is my

original Green function which involves annihilation creation.

But this also still involves annihilation creation; there is also one particle Green’s
function times and some other version of the one particle Green’s function. So, there are
all these are one particle versions of some products or whatever it is of some versions of
one particle Green’s function. So, that the two particle Green’s function has now been

expressed purely in terms of some combination of one particle Green’s functions.
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The Schwinger-Dyson equation is a funettonat differential equation. The mathe-

matics of such equations i ll-developed. The usual method for solving such cqu-

tions i by introducing the concept of self-energies. First, some notation. By [d1

) 3
we mean, [ Pan 4 ry . We first introduce the concept of inverse of F
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We make a useful observation from this identity. Just by differentiating with respect
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And that is an enormous advantage because you see now you can go ahead and I am not
sure who crossed this out; it is I mean this is not meant to be crossed out. I certainly dint
cross it out ok; yeah. So, the point is that this differential equation. So, you see once you

take this to this side, I can lump all this it becomes U plus this one times this Green’s



function ok. So, it will just involve. So, this is the original Green’s function this is

basically G full and this will involve this sort of thing. So, this is same as this.

And this is the original G full; this is G full. So, I bring this to this side and I express
only this term in terms of this plus this and this plus this is basically the effective
potential. So, it is like the average. So, physically what this means is this is the average
potential seen by a particle at r 1, t 1 not only due to the externally imposed source; but

also due to all the other particles around it.

So, this is the effective potential seen by the particle atr 1 t 1, but you do not have to call
it that. I mean formally it is just this expression. So, the point is that formally you see,
now | have succeeded in writing down the equation of motion for the one particle
Green’s function which is which involves quantum particles that are not only have
kinetic energy; but also a potential energy by way of mutual interaction between each

other pairwise potential energy.

So, I have been successful in writing the Green’s equation for the Green’s function in the
form of a functional differential equation, which only involves other versions of the one
particle Green’s function. So, in other words, it does not involve equations; it does not

involve Green’s functions where the more than two particles are involved.

So, bottom line is that the price I have to pay to do that, that is the price I have to pay to
avoid introducing four particle rather two particle, three particle, four particles etcetera
Green’s function. So, the price I have to pay to ensure that the equation for the Green’s
function only involves one particle Green’s functions or some version of the one particle

Green’s function.

So, the price I have to pay is that I have to introduce artificially an external time
dependent source that is defined along the imaginary axis. But then, you might say that
given that in the end, it is not there, how do I get rid of it? So, obviously, the answer is
that once you somehow are successful in solving this equation, by the way nobody
knows even know, how to solve such equations. So, these are functional differential
equations which not only involve partial derivatives in the usual sense, but they also

involve functional derivatives.



So, there is no there is no well-developed mathematical theory to solve this. It is just you
know writing this is useful because it allows you to develop perturbation scheme in a
very systematic way because that is the only scheme we have at our disposal to solve this
because we just end up expanding in powers of this. So, we pretend there is a lambda
here and you just expand and you expand your G’s in powers of lambda and substitute
and compare both sides and that sort of thing. Pretty much see that is all you can do. So,

this allows you to do that in a systematic way; that is it.

So, now, the question is how do I get rid of that external source? So, the answer is that if
somehow you develop a perturbation scheme or whatever and truncate it in the mains
and so on and so forth, then you go ahead and set that external source to 0 and then, you

have gotten rid of it that way.

Yeah, so that that is the whole point. So, this is called the Schwinger Dyson equation;
Schwinger Dyson equation ok. So, the rest of this chapter just tells you how to
implement that perturbation scheme that I was talking about. So, basically you define

something called the self-energy.
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Then the self-cnergy function £(1,2;U) is defined as
E(1,2:0) (f“‘ L2U) -G (1,20), (10.132)

where the inverses are in the matrix sense. Postmultiply Eq. (10.126) by
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This can also be written in the form below, which is called the Dyson equation:
G(1,2U) = Gy(1,2.U r/d*/dl(fwl.?.l JEQ2,3:0)G(3,1:U). (10.136)

By making these substitutions we conclude that,
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To evaluate this, we observe that since [d2 G(1,2;U)G™'(2,1;U) = 1, we may
differentiate this to get
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So, I think I will going to skip that because basically that is only if you are interested in

actually carrying out that perturbation series in some systematic way. So, that you will



end up with something called the GW approximation to the leading order. So, your; self-
energy can be expanded in powers of this coupling and the lowest order contribution is

called the GW approximation which itself is pretty formidable and it cannot be done.
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Green function we are trying to compute, making this a coupled integral-differential
led GW approx-
imation involves neglecting the derivative of the self-cnergy on the right side of the

equation. Thus an exact approach is out of the question. The so-

above equation, This means,
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Substituting for G, " from Eq. (10.134) we get,

3 . | N ' (1)
L\]]:L“;(;\H,l\/x/r\“n r‘/klzy_ /

J W(r'n.)
gy (1L130)601, 130 (10.141)

The effective Coulomb interaction v,y is defined as,
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Therefore, the formal solution for the Green function is
Therefore, the formal solution for the Green function is
G, 15U) = (G, (1,150) - E(,150)) (10.145)

where the inverse is in the matrix scnsc and £ s given by the GW approximation
L(L1LU) 2 iveyy(1,1:0)G(1L 1L (10.146)

10 be determined self-consistently. All these ideas also apply (o systems out of
cquilibrium, provided the time integration from 0 to —if is replaced by integration
along the contour described earlier. While the GW approximation is no doubt a
popular approximation in the literature, the jury is still out on whether, and if so

Green Functions: Matsubara and Nonequilibrium 19

in what sense, is this u ‘controlled approximation’, One must be wary of making
approximations that cannot be thought of as a conscious cxpansion in powers of a
dimensionless quantity that is demonstrably small compared to unity. In this strict
sense, the above and nearly all approximations used in physics, are not “controlled

approximations”. The computations using this formalism are y nontrivial even

with present-day computing
difficult. However, the s

exources, For noncaquilibrium systems, it i even more

ed potential in case of  highly nonequilibrium laser-
excited semiconductor has been evaluated using what may be described as  con-
trolled approximation (see references).

W In this example, we consider the application of the creation annihilation oper-
ators o study stimulated and spontancous emission. We have chosen to present a
complementary description of these phenomena to those found in standard texts
on quantum mechanics. There, one uses time-dependent perturbation theory and
Fermi's golden rule to evaluate the emission rate. In order to extract a meaningful
answer, one has to posit a continuum of states. Here we choose instead to illustrate

So, the whole thing is still non-linear even after. So, the functional derivative aspect goes
away at the first order. The moment you truncate, you can get rid of the functional aspect

of the problem. But then, you will still be forced to reckon with the non-linear partial



integro differential aspect of the problem. So, it will remain an integro partial differential

equation.

Yeah, [ mean it is kind of one runs out of adjectives to describe these sort of equations.
So, bottom line is the incredibly hard to solve and nobody even with present day

computers even the GW approximation cannot be solved in any convincing way alright.

So, I am going to stop here as far as this particular topic is concerned. So, basically this
particular topic was the Schwinger Dyson equation. So, the Schwinger Dyson equation is
a functional differential equation for the time the ordered Green’s function of a system of
particles interacting mutually and also, with an external source that is defined on the
imaginary time axis. So, it only involves the, that Green’s function the one particle time

ordered Green’s function and nothing else. So, that is as far as that topic is concerned.
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excited semiconductor has been evaluated using what may be described as a con-

trolled approximation (see references).

W In this example, we consider the application of the creation annihilation oper-
ators to study stimulated and spontancous emission. We have chosen to present a
complementary description of these phenomena to those found in standard texts
on quantum mechanics. There, one uses time-dependent perturbation theory and
Fermi’s golden rule to evaluate the emission rate. In order to extract a meaningful
answer, one has 10 posit a continuum of states. Here we choose instead to illustrate
the phenomenon in a setting more typically found in quantum optics viz. that of
atwo-level system interacting with a single-mode radiation field. Depending upon
whether the radiation is treated classically or quantum mechanically, one is able to
investigate the phenomena of stimulated and spontaneous emission.

Imagine a collection of atoms, each of which can either be in the ground state with
energy Eq or an excited state with energy £). In the absence of any other fields, the
Hamiltonian may be written as,

H = Eqalag + Eralay (10.147)

Obviously, No = ayao is the number of atoms in the ground state and Ny = alay is
the number of atoms in the excited state. We assume that there is no restriction on
the number of such atoms in each state, so that N, Ny =0,1,2,.... We now couple
this o a photon described by creation operator b'. We ignore all other labels such
as momentum and polarization, anticipating that when two levels such as Eg and
Ey are involved, photons that have maximum influence on the processes between
these levels are the ones with energy 1o ~ Ey — Ey. Thus we only consider these
photons and suppress all additional labels. The interaction of this radiation with the
atoms is included a coupling term,

Heoupt = & (a}ab+ajard’ (10.148)
A term such as a, agb says that in order to create an atom in an excited state, we not
only have to annihilate one from the ground state but also annihilate a photon from
the surroundings, for that is what supplies the energy difference (§ is the strength
of the coupling). Then there is the energy of the photon itself,

(Refer Slide Time: 14:26)
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One last term needed to be added, namely the source of the electromagnetic field
Hyurce = (bf (1) +b"f*(1)) (10.150)

where f(r) is the source. The reason why a term linear in b,b" enters the Hamilto-
nian may be seen by realizing that in the presence of a radiation field, the interaction
term in elementary quantum mechanics has the form <A -p and noting that the
vector potential A is nothing but a linear combination of b and b". Thus the overall
Hamiltonian is,

Hio = Eualao+ Eralay +& (afagh +ajaib!) + ho b'b+ (b (1) +b' (1
(10.151)
Now we write the light field as the sum of two pieces—a classical average and a
qQuantum fluctuation
blt) =< b(r) > +e(t). (10.152)

where ¢(t) = b(t)= < b(r) >. The average < b(1) > is chosen to be the ave

when only the source of the radiation is present, but the atoms are absent. The
condition is, 2 (0 b'b+ (bf(t) +b' f*(1))) = 0. This means,

W
ho <b(t) > +/*(1) =0, (10.153)
Thus we may rewrite Eq. (10.151) as
Hiu = Eoalao+ Evalay +8 (afag < b(1) > +ajay < b(1) >*),
+§ (ayaoc +agic’) +ho e+ E(1) (10.154)

where E, is a time-dependent commuting quantity (classical average of the photon
and source encrgies)

Rabi Oscillation: In this example we ignore the quantum nature of light (i.c., ig:
nore the ¢ ¢ anerators in Fa (10 15411 This allows us to write the semiclassical

So, the this the other topic that I have introduced in the next chapter is some other
simpler versions of the non-equilibrium situation, where see earlier I was talking about a
continuum problem, where the degrees of freedom are truly infinite. But here, I have

reverted to a system with a finite in fact just two level systems.
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Rabi oscillations are periodic oscillations in the distribution functions brought
about by energy being exchanged by radiation and the atoms. This frequency is
determined by the intensity of the incident classical radiation and is typically much
smaller than the frequency of the applied field. Thisis seen clearly by the following
analysis

In order to simplify proceedings, we make the substitution,

< No Ny (1) >= e~ FREHMED o(No Nj:r) (10.160)

In addition to substituting Eq. (10.160) into Eq. (10.159), we also set < b(r) >
b(0) > ¢ "™ This leads to the following simplifications.

i i
m‘—hq NoNist) =& /(No+ )Ny €91 <b(0)> eF=ErtED) o(Not 1Ny = 13t

HE VN FINg e @1 <b(0) >* e HEED g(No— 1N +13r) - (10.161)

It is easy to understand the meaning of the two terms on the right-hand side. The
first corresponds to an atom in the excited state leaving and reaching the ground
state accompanied with the emission of light. The second term does the reverse and
therefore corresponds to absorption. Now we have to use the initial condition in Eq,
(10.156) to solve the above equation. To simplify the solution as much as possible
we consider a situation where there is precisely one atom in the higher state and
inquire about the nature of the time evolution of this state. This means,

2(No,N1:0) = 8y, 0y, (10.162)

Thus we need be concerned about only two functions g(0, 1;¢) and g(1,0;1).

| i y
m‘“m(mw & <b(0) > ek -ErtE) g(1 o1 (10.163)
I

Just to tell you that if you get rid of the field aspect of the question; that means, after all
the title of this course is dynamics of classical and quantum fields. So, strictly speaking

this part of the topic should not even have been there in the textbook.
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Now imagine the matrix clement < Ny, Ny |y(r) >. Keeping in mind that
No,Ni[E alag < b(1) >=& /(Ng+ )N < b(t) >< No+ 1Ny 1], (10.158)

this also obeys

ih i No.Niw(r) NoEo+ N Ey) < No,Ni(r)
d

& \/(No+ )Ny < b(r) >< No+ 1Ny = 1|y(r)
+& /(N 4+ 1)No < b(r) >* < No= LNy + 1|y(r) > (10.159)
Rabi oscillations are periodic oscillations in the distribution functions brought
about by energy being exchanged by radiation and the atoms. This frequency is
determined by the intensity of the incident classical radiation and is typically much

smaller than the frequency of the applied feld. This is seen clearly by the following
analysis

In order to simplify proceedings, we make the substitution,

< No,Ni(r) >= ¢ T REAMED o(No Ny:r) (10.160)

In addition to substituting Eq. (10.160) into Eq. (10.159), we also set < b(r) >
b(0) > ¢~ This leads to the following simplifications

| . "
AI!‘I,(.\W Nizt) =8 /No+ DN e 9" <b(0) > et EoE) g(Ny 1Ny~ 11t

FE N+ DNg €O < b(0) >* e FEEED o(Ng— 1Ny 4 131) (10.161)

It is easy to understand the meaning of the two terms on the right-hand side. The
first corresponds to an atom in the excited state leaving and reaching the ground

state accomnanied with the emission of lioht. The second term does the reverse and

But it is there only because it tries to tell you that if already you know with, in systems
are not in equilibrium, there is lot of interesting physics even at the level of finite number
of degrees of freedom. So, there is something called Rabi oscillation and so on and so

forth.

(Refer Slide Time: 15:28)

d i
i< 0(0.1,0:) =& ™ g(1,0,131) (10.176)
dt :
d BN -
ih— g(1,0,1;1) 144 2(0,1,0;1) (10.177)
dr

whereas before hA = ho — (E - Ey) was the detuning. The important point of the
above formulas is that these equations do not contain an external field and yet have
nontrivial solutions as we shall see below.

8(0,1,0,1) = ¢ cos(Qpt) + ——sin(pt) (10.178)

iA
20
i g Sin(Qpr)
TN

The square of the amplitudes oscillate with the vacuum Rabi frequency,

g(1,0,1,1) = =2i (10.179)

(10.180)

The figure depicts the probability that the higher state s occupied viz. g(0,1,0.1)*
as a function of Qg for two different values of detuning A = 0,Q. One sees that
there is an initial decay of the state followed by revival. We may define the lifetime
of the excited state as half the period of oscillation (¢ = 5-).

104  Exercises

QI Verify Eg. (10.13),

Q2 Reconcile Eq. (10.66) and Eq. (10.73) with Eq. (10.70) using Lehmann’s rep-
resentation,
Ak,0)

Glk.0) / o (10.181)
T (b =

So, you can have spontaneous stimulated emission etcetera. I am just introducing that

just to highlight the fact that non-equilibrium systems are already reasonably



complicated, even when you choose to study a system with finite number of degrees of

freedom or oscillators with just few labels.
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QI Verify g, (10.13),

Q.2 Reconcile Eq. (10.66) and Eq. (10.73) with Eq. (10.70) using Lehmann’s rep-
resentation,
Ako)

G(k0) / o (10.181)
w 0=+ (ho -u)

Q.3 Consider fermions interacting mutually with a delta function potential V(r
r') =48 (r~r). By expanding all the formulas in the chapter in powers of 4, find
the Green function up to second order in A.
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g

Figure 10.4: Periodic oscillations in the probability that the higher level is occu-
pied is seen even in the absence of an external field. The excited state decays but
eventually revives in this model.
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Figure 10.4: Periodic oscillations in the probability that the higher level is occu-
pied is seen even in the absence of an external field. The excited state decays but
eventually revives in this model

Q4 This chapter discussed fermions as a continuu. Imagine the reverse where
there is only one quantum particle in the presence of a nonequilibrium external
potential. What would be the analogs of contour ordering and the Schwinger-Dyson
equation?

QS5 In the earlier question, imagine there are two quantum particles interacting
f anonequilibrium external
g and the Schwinger-Dyson

with each other via a potential V(r—r ) in the presenc
potential. What would be the analogs of contour orde:

equation?

Q.6 Try to solve the rate equations of stimulated and spontaneous emission numer-
ically (e.g., try solving Eq. (10.175) with Ny = 0,N} = 10,Ny =0 atr =0.)

But then, that would not be consistent with the title of the textbook which is dynamics of

classical and quantum fields. So, let us get back to fields.
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Chapter 11

Coherent State Path Integrals

In the earlier sections, we introduced creation and annihilation operators as alter-
icle

systems,. The description using creation and annihilation operators has been so far

natives to position and momenta in recasting quantum mechanics of many

tied to the Hamiltonian framework. Just as we did earlier, it is natural to ask whether
ie creation and annihilati

e introduced through a La-

in framework, I of this section known as the
tstate path integ

gree of freedom.

¢ the concept in the context of

11.1  CSPI for a Harmonic Oscillator

Consider the familiar harmonic oscillator,
1
H=Mold'a+5) (11
First, one introduces the notion of a coherent state. A coherent state, simply put, is
an eigenstate of the creation operator.
dli>=1 (112)

Since the creation operator @' is non-Hermitian, the eigenvalue 7 is complex. The
annihilation operator a may be thought of as the derivative with respect to this
variable Z

3.

So, if I decide to get back to fields, the other topic I have to next discuss is basically the
idea of coherent state path integrals. But as usual you know before I get to fields, I have
to introduce the version of this for system with finite number of degrees of freedom. So,
usually that is how in fact not usually, that is the only way to do it. You introduce it for a
finite discrete number of degrees of freedom and then, pretend that that index is now

continuously large ok.

So, what is this coherent state path integrals? So, if you remember, we studied the
quantum harmonic oscillator using the creation annihilation language; but that involves
that still involves dealing with the Hamiltonian. So, you see the Hamiltonian involves
creation and annihilation operators, but remember the spirit of the path integral approach.
So, the spirit of the path integral approach is that you should be able to do quantum
mechanics not merely with always with Hamiltonians, but you should also be able to do

quantum mechanics using Lagrangians.

So, now, the question is you see now I have in front of me the harmonic quantum
harmonic oscillator in terms of creation and annihilation operators. So, the question is
can I now write down the Lagrangian of the quantum harmonic oscillators not in terms
of position and momentum, but again still in terms of creation and I mean some. So, you

see | want to de quantize the creation and annihilation operators because after all you see



in quantum mechanics, the annihilation operators basically an operator which is in some
sense complex. Because it is the complex linear combination of two self-ad joint
operators. So, the question is you see the de quantized version of the annihilation

operator would simply be a complex number.

So, now the question is I want to be able to see if I can introduce a path integral approach
to this problem in terms of the eigen values of the annihilation operator. So, that is the
peculiar point of view; but it is a it is a valid question to ask. You see there is the

Hamiltonian is now expressed in terms of creation and annihilation operators.

Now, remember how it is in the original path integral. So, if the original Hamiltonian
was position and momentum and they were operators the quantum mechanics of such a

system using Lagrangians will involve actually the classical Lagrangian.

That means, it will involve e raise to i h bar integral d t of 1, where 1 is the classical
Lagrangian, where you have to sum over all the classical paths. That means, the all the
classical paths connecting some initial and final end points. So, those classical paths will
have some classical positions and classical velocities. So, similarly, here you see I have a

quantum Hamiltonian involving creation and annihilation operators.

So, now, if I want to study this using not the Hamiltonian picture, but using Lagrangians,
I will now be writing this you know in terms of the path integral of the form e raise to i
by h bar integral d t of 1, where now 1 is the Lagrangian in terms of the de quantized
versions of a and a dagger. Just like in the case of path integrals, I had to write down the
Lagrangian in terms of x and x dot, which are x is basically the de quantized version of

the position operator because now it is now a classical object.

So, similarly m x dot is the de quantized version of the momentum operator p. So,
similarly, here I want to be able to write down a de quantized version of a and a dagger.
So, that I can express my Lagrangian in terms of those objects, which would then

correspond to the classical paths that the system is taking.
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dE>=1 12

Since the creation operator @' is non-Hermitian, the eigenvalue  is complex. The

annihilation operator @ may be thought of as the derivative with respect to this
variable Z.

g d -

ofi>=glt> (1.3)

We may see that this is consistent with the commutation rule [a,a’| = 1 since,
ala'lz>) =adZ (11.4)
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a'laz lz>. (11.5)

Subtracting one from the other gives,

7>= 0,7 (11.6)

This means [a,Z] = 1 when acting on |2 >. This means we may set @

aje>=1lz> (1L7)

as an eigenstate of a. If we wish to determine the meaning of @' |z >, it is useful to

use Bargmann's representation.

So, clearly, those are necessarily just like the de quantized version of the position
operator is just the position eigen value. So, similarly, the de quantized version of the
creation operator is just the eigenvalue of the creation operator which in this case
happens to be complex. So, if I decide to introduce this, then I postulate that there has to
be some state labelled by its eigenvalue z with a bar on top ok. So, that is supposedly the

complex eigenvalue of the creation operator.

So, the claim is that if I decide to define the state in this way that is this is in directly the
definition of the state basically tells you how the state comes about. It is the eigenstate of
the creation operator. So, now, you can easily convince yourself that the eigenstate of
annihilation operator is similarly given I mean it is given by in this case it is given by
multiplying that state by some z; I mean its eigen value. So, basically it is the now an
eigen state. So, if this is the eigenstate of creation operator, there is absolutely no reason

why it should be the eigenstate of the annihilation operator also. So, in fact it is not.

So, if you take the annihilation operator and act it on the state, you will get a different
state. But it so happens that that different state is obtained by simply differentiating that
state with respect to the eigen value. So, of course, you might think that this seems kind
of completely out of the blue; how do I know this? So, I know this because if I go ahead

and apply this claim to this state rather than some other state, if I apply to this state. So,



remember I have claimed that a time this is basically this. Now, what is this? This is after

all the eigen states. So, I can write it like this. So, first I do this.

So, I first take a act it on a dagger z; but then what is a dagger z? It is z with a bar times z
state z with a bar. But if I do the reverse, so if I do the reverse, clearly this particular state
is yeah. So, I will have to justify this ok. So, yeah. So, this is not a very nice way of
writing this. So, the bottom line is that you see what is the claim? The claim is that if I

act look just take this here, you act this is the claim; claim.

So, if I act this on a, what is this supposed to be? It is supposed to be this ok; but then,
what is a dagger a? It is basically 1 plus a dagger, rather it is minus see a dagger minus a
dagger a is 1 that is the commutator of a and a dagger is 1. So, it is basically. So,

basically a dagger a is a dagger minus 1.

So, this is basically a dagger minus 1 acting on z state z ok. So, the point is that if I take
this. So, what is this? This is basically a acting a dagger acting on state z minus state z,
but what is this one equal to? This is basically a acting on z minus state z ok. So, now, if
I say that the action of this on this state is same as d by d z, then you see clearly yeah.
So, this will clearly give me what I am looking for. So, a the action of a on this state is

same as acting this on that state.

So, what is d by d z bar acting on this state? First, it will act on this it will give me z, but
that is getting cancelled by this. So, then, this a will go and sit in the middle here. So,
that is basically it will tell me it is z a times z ok. So, basically what it is saying is that

this particular state.
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a'(az a)z> (115)
Subtracting one from the other gives,

(%44 (11.6)

This means [a,Z] = 1 when acting on [z >. This means we may set a = ; since
0.3 = $i-28 = 1+2% - 23 = 1. Justas one may form eigenstates of momen-
tum in the position representation as an exponential < x|p >= e, here too we
ates of the annihilation operator (conju-
We set,

may enquire as to the nature of the cig
gate to the creation operator) in the Z s|

al:>=2zlz> [(iN)]

as an eigenstate of a. If we wish to determine the meaning of @' |z >, it is useful to
use Bargmann’s representation

>=¢"10> (11.8)

where [0 > is the vacuum state, a|0 >= 0. It is easy to verify that the Bargmann
representation obeys the definition of a coherent state namely, Eq. (11.7)

dz>=aej0>=¢" (¢ uv”)(lr

& (a=da'd])[0>=26" 0>=2z (1.9

So, in other words, this is it is consistent with this identity ok. So, the idea is that these
two are consistent; but you can also do it the other way. So, you can introduce a coherent
state with respect to the eigen values of the annihilation operator rather than the creation

operator ok.

So, in that case, you can go ahead and write this operator in terms of this state which is
annihilated by a and you can show that this is these two are consistent. So, I am going to
allow some of these statements to be proved in the exercises perhaps because it is kind of

confusing for me to explain everything verbally.

So, I think you just have to work it out. So, for example, here I have worked it out. So, if
you see the claim is that the. So, these are called coherent states; for reasons, I will again
explain later on what is. So, coherent about it. So, the point is that right now for our
purposes, it is just a state, which is an eigenstate of the annihilation operator for example
this one. See the earlier one was eigenstate of the creation operator. So, these two are you
know in some sense dual to each other. So, the point is that this is the eigenstate of the

annihilation operator.

So, the claim is that this is this state can also be explicitly constructed this way. So, see

we all know how to what this means. This is the ground state of the harmonic oscillator.



So, it is annihilated by the annihilation operator. So, what this says is that you know
formally expand this out in powers of z and act it on the ground state of the harmonic
oscillator and whatever state you get is the coherent state. So, whatever state you get will
be an eigenstate of the annihilation operator with this complex eigen values z. So, the

question is how do we show that?

So, you simply write this in terms of a times this and then, you do your normal means
you multiply and divide by this operator and then, you just expand in powers of z, you
will see that all terms drop out except the linear term. There was Oth power z to the
power 0 survives z to the power one survives all others drop out because you know the

commutator of.

So, if you have a commutator of a and a dagger, it is just proportional to identity. So, all
further commutators become 0. So, it is z to the power 0, z to the power 1. So, now, if

you work this out, it is simply this. So, that proves; it is very easy to prove this.
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Hadamard's formula states,
Xy Ve wyna ) ;o
Ve E 2V 4K Y]+ S XX+ XK XY+ (110)
This is proved by first defining f(s) = e"Ye * and expressing f(s
£0) +5£ (0)+ 5 (0)+ 3,/ (0) + .. und evaluating f(0) - ¥, £ (0]
X, ¥ and so on. Baker Hausdorff theorem states,

k- iy )

The dual of this is the Zassenhaus formula,

KR (1112

In most n physics, [X, Y] is proportional to the

M el IR (11.13)

Xo¥ 4X
& w el (11.14)

e ¥y (XY (11.15)
Here we have used Hadamard's formula ¢! Be A = B+ |A,B] + 51/A, A, B]| +
(see inset), From this it is clear that
]
d'le>==|t> (11.16)
o
Now we wish to evaluate < Z[z >, Consider the matrix element < Za|z >. On the
one hand
<dafz >=2 <Fz > (1117
on the other hand,

So, basically this is the eigenstate of the annihilation operator. So, it is the coherent state.
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Here we have used Hadamard's formula ¢*Be™ = B+ [A,B] + /A, [A.B]| +
(see inset). From this it s clear that,
)
a'le>==z> (11.16)
0z
Now we wish to evaluate < Z[z >, Consider the matrix element < Z[a|z >. On the
one hand,
<Zajz >=z <z > (1.17)
on the other hand, A
’ [
<Zalz =<z (11.18)
oz

Equating these two we get,

=<t >=z <z > (11.19)

(11.20)
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It is also true that < Z|w ", Now keeping in mind that z = x +iy and
£ =x —iy and the Jacobian relation,

didg =% % | axdy

So, you can also work out this overlap. You see I told you that this state is the eigenstate
of the creation operator. So, how are they related? So, they are related in a similar way to
how x and p states; remember how this is its e raise to i X p by h bar. So, if you have
eigenstate of momentum and eigenstate of position, these are somehow conjugates to
each other and their overlap is basically exponential of the two Eigen, product of the two

eigen values.

So, here also you get something similar. So, if you work this out, you will see that the
overlap of the eigenstate of the annihilation operator and the overlap of the eigenstate of
the position, I mean creation operator are very similar to overlap of position and

momentum operators that is basically the exponential of the product of the eigen values.



(Refer Slide Time: 29:56)

260 Field Theory

It is also true that < Z|w >= €"*. Now keeping in mind that z = x +iy and
7 =x iy and the Jacobian relation,

didg =% % | axdy

1 I
; ’Aul\ 2idxdy, (.21

we may write,

ddE g dedf _f! Sl
/ i ¢ SefZS / i ¢ L

e =<iw> (11.22)
This means,
dzdz ;)
et < ><E|w><lw> (11.23)
[%
or,
/(I:r/f / | 1124
et e ><t|= (11.24)
i

This is the so-called resolution of identity and it means that we may insert the left-
hand side into any expression with impunity since it is equal to unity. As before,
we are interested in the propagator of the harmonic oscillator

Glxitisxg, ) E< X3 lilp by > (11.25)

But you can also go ahead and prove complete. So, yeah. So, there is something
remember that there is something called completeness. So, if you have a set of if you
have Hermitian operators you can show that the eigenstates of self-adjoint operator are
complete. In the sense that you can write down basis in terms of those eigenstates of
such a self-adjoint operator; but here, a and a dagger are not self adjoint. So, they are

actually complex.
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This means,

didi g;
/"k < ><dw><iw> (11.23)
i

/(I;’/lw I ><|=1 (11.24)
mi

This is the so-called resolution of identity and it means that we may insert the left-
hand side into any expression with impunity since it is equal to unity. As before,
we are interested in the propagator of the harmonic oscillator

Gxiytxp,ty) =< xitilxp e > (11.25)

L h=hoda

‘This may also be written using the evolution operator as (€ N

and H = h+ }ho),
Witis A1) = Al

RO ¢l K TR (11.26)
Y
We now insert the resolution of identity in Eq. (11.24) jn between each fragment of

the evolution factors,

Glxi tisxpty)
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o / didz] 'y
¢
i
N-1
xitlo > T] < ale ™|z >< 2oyt (11.27)
k=0

Now we have to evaluate the matrix element,



So, in some sense that contain more information than a self-adjoint because self-adjoint
operators are in some sense real operators. So, here the it is a complex operator which
has real and imaginary parts. So, the eigenstates of this are probably there is probably lot
of you can suspect that there will be a lot of duplicacy; that means, that there will be
unnecessary duplication of the states that they will not all be linearly independent and in
fact that is in fact true. So, in fact, the eigenstates of these operators are basically called

over complete.

So, if you want to introduce a resolution of identity, the way you write like this. So,
remember you write this sort of thing. So, if x is the position operator and this is the
eigenstate of position you can go ahead and write like this resolution of identity. So, you

can do similar things with this.

But then that means, that you have to introduce a weight which compensates for the fact
that these states are over complete. So, you can show that this is how you have to resolve
the identity. So, I will allow you to work this out and perhaps the exercises or if I do not

get around to that you have to simply follow these steps. So, just follow all these steps.

So, now, you see the original question I wanted to ask was answer was how do I study
the Lagrangian version of the quantum particle using not x and t, but using creation and
annihilation operators. See I know how to study the quantum harmonic oscillator using
the quantum versions of x and p. I know how to study the quantum harmonic oscillator
using the classical versions of x and p, but in a path integral form. That means, you see |
want to study only the quantum harmonic oscillator, I do not want to study classical

harmonic oscillator.

But if I want to study quantum harmonic oscillator using x and p operators, then of
course, | have to use the Hamiltonian approach. But if I want to study the quantum
harmonic oscillator using Lagrangians, then I should use the classical Lagrangian, but I
have to remember to do a path integral. That means, that it is not no longer the Euler
Lagrange equation, it is the sum over all paths, with each path being weighted by an
appropriate factor, which is proportional to the exponential of the action multiplied by

imaginary unit divided by h bar.



So, similarly, here now suppose I want to study the quantum harmonic oscillator using
creation and annihilation operators, I would certainly be using the Hamiltonian approach.
So, that has the advantage of immediately giving me the eigen values for free because it
is just Hamiltonian is h bar omega into a dagger a plus half and a dagger a is integer

eigenvalues.

So, it is n plus half. So, that is easy. So, but the question is suppose I want to study the
quantum harmonic oscillator using the Lagrangian obtained from the Hamiltonian which
is written down in terms of creation annihilation operator, not in terms of x and p. So,
now. So, in other words, the de quantized version of a and a dagger. So, how do I do

that? So, that is what we are trying to answer.

So, the answer to that is we have to develop a path integral approach which now involves
the de quantized versions of the creation annihilation operator which are simply complex
numbers. So, [ have to introduce. So, just like there I have to introduce the eigenstates of
position and momentum to resolve the identity and insert a sequence of states in

between.

So, I divide up the time interval into small pieces and then, insert identities by resolving
identities and so on. I have to do the same here, but now I have to insert the resolution of
identities in terms of the coherent states which is why I require this over complete

resolution of the identity; I mean resolution of the identity using coherent states.

So, as usual, I start off with this question, if I want to calculate this Green’s function of
the system this is what it is. So, now as usual I split this up into smaller pieces and I end
up getting yeah. So, what is this h? So, remember h is basically h bar omega into a

dagger a plus half. So, this h is this small letter h is h bar omega into a dagger a.

So, this plus half omega I have put it outside. So, that is anyway constant factor. So, now
you see [ write t f minus t i as t f minus t i by n and etcetera. So, I split this up into many
pieces; sigma n pieces. So, that is what that is. So, and this will appear in the exponent.

So, sigma exponential sigma is the product. So, I will get product here.



So, bottom line is that you see now I go ahead and insert my resolution of the identity;
that means, this one and what is this one? This one. So, I keep inserting the resolution of
the identity here and then, I will give this get this over complete weighting factor from

here.
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Now we have to evaluate the matrix element,
i
" .
€™ W2y > B (1= —he)|aes
h

i
leksr > -7 < Hlhlz
h

ot i€ 0 < Fla'ajz
1 - i€ W4 )44 v @ ®OUA AN (11.28)

The above assertions are valid up to order €.

N-1
Xtz ([].‘ 014l )1 <yl (11.29)

We now invoke a time sequence f; = f;+ y (tf = ;) = f;+ke. This means we may use
the assertion, L, g Y=gt et
We now write e Li-o %t = ¢~ Lica § o) Therefore,
ddz] 1 evey
ltiga) =07 [ M s
i
Xitizo ((‘” S SR ) i (11.30)
We may think of L{Z,Z] = (52(t)z(1) = 52(1)é(t) = wE(1)z(1)) where Z = (z,Z) as the
Lagrangian of the system. This path i 5 10 be evaluated using the bound-
ary conditions, z(}) = zo and z(ty) = zy. Finally, an integration over zo and zy
completes the calculation. Here Wy, (x;) =< x;tjlz > is the |z9 > in the position
representation. It is obtained as a solution to a'¥;, (x;) = 29¥;, (x;).

1111 Evaluation of the Path Integral

And then this is what this is ok. So, we are not done yet because I have to show that this
is in some sense still it is related to the Lagrangian of the system. So, this gets multiplied
by the rest of it ok. So, it is a it gets multiplied by this successive terms. So, this is the
over complete terms times the remaining; the remaining is this. So, this is similar to what
we did earlier. So, here you see the idea is the following because epsilon is small because
what is epsilon t f minus t i by n and n is very large. So, epsilon is small. So, this is

approximately this.

So, now if I go ahead and write it this way, then you can clearly show that since h is h
bar omega into a dagger a this is clearly given by this. So, this is the eigenstate of a. So,

therefore, it is just z z k plus 1 right. So, and this is the eigen eigenstate of the other one.

So, it is basically it gives you this ok; yeah. So, it just gives you back this times this. So,

this is the eigen value. So, this is just z this is nothing but z k plus 1 into z k. It just gives



you the eigen value; similarly, this also just gives you the eigen value. So, clearly that it

is equal to and what is this? This is equal to this. These two are the same things.

So, this overlap is basically remember I told you this is the overlap. So, the overlap of z
and z bar is basically this one and that appears here also is after all the eigen values come
outside these two are the same things. So, that comes out. So, this is again, you can re

exponentiate because epsilon is small; this is equal to this.

So, now, you can go ahead and write it this way ok. So, it is going to be like this ok. So,
then you identify this, this discrete sum with basically a kind of a discretized version of
an integral. So, to cut a long story short if you discretize this integral, it gives you back

this expression.

So, I have done the reverse; you can start from here and get there that is easier. So,
discretize this integral, you will end up with this because the product is exponential of
this sum. So, the thing is that now we may think of this as a Lagrangian of the system ok.
Because this has this is something like you know p x dot minus L types; I mean instead

of p, you have z dash; instead of x dot, you have z dot.

This is L z z dash. So, it is like that. So, its z z bar minus L and this is L right. So, its
omega into a dagger a and a is a eigenvalue is z a dagger eigenvalue is z with a bar there.
So, basically this is the Lagrangian generalized coordinate is now z z bar which is capital

Z. So, that is your generalized coordinate. So, now, you have to simply.

So, the Green’s function can also be written as a coherent state path integral. So, this is
the coherent state path integral. So, it is a path integral in terms of coherent states ok
yeah. So, you might be thinking that why am I doing this. Because I can solve harmonic
oscillator quite nicely using just Hamiltonian approach; why do I want a Lagrangian
approach in that too in terms of creation and annihilation de quantized versions of the
creation and annihilation operators. See the reason for that is because in see all the
modern relativistic quantum field theories are actually thought of as the coherent state

path integral.



So, they are always phrased in terms of a coherent state path integral. So, they are
written in terms of; so, all your quantum electrodynamics in. So, you write them in terms
of so, but then, for that I have to introduce the coherent state path integral for fermions.
So, till now I have only see this a a dagger as this commutator is 1; I have to do coherent

state path integral when the anti commutator is 1. So, that I will do next.

But bottom line is that if once you are successful in doing this, then you can put in a
spatial dependence to make it fields and once you make it up field, then you can describe
you see electron field that is the field of charged particles whose excitations of are
electrons and then, you can express the dynamics of such a field; the quantum dynamics

of such a field as a coherent state path integral over these fields now.
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In order to evaluate the path integral in Eq. (11.30), we use the methods we have
already introduced earlier. The path is written as the sum of two terms, The first is
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the classical path and the other is the quantum correction. The classical path obeys
the variational principle,

0=35 / L2

" o (L8N = L8
/(IH,\\)A/HJ “5‘\/ )é(r) = (8z(r))z(r)

d 1 e I 8. - 8
u /’ LIHz."H(«\'V ) zf‘H 0i(t)) = () (0z(r)))
y
/ dr (=i(82(1))2(r) - @(8z(1))z(r))
/ dr (i(1)(8z(r)) = w3(1) (8z(1)) ) (11.31)
‘This means,

iz:(t) = 0zc(t) = 0; iZ(1) = 0Z(t) = 0. (11.32)

The solution s,
(1) =z ™" (11.33)

The constraint that the end points be fixed leads to the following relation between
the starting and end coherent state eigenvalues.

So, that is nice because it allows for a kind of a simpler description of see the matter and
forces can be treated on an equal footing in a more elegant way, when you do that
because. So, I would not get into the actual deeper motivations for why people do that,

but you know once you start using it you will see its utility to some extent.

But in the end, it is true that many of these theories are you know I mean these kinds of
changes in perspective are somewhat beneficial; but in a very deep sense they are still

very cosmetic. Because it is not as if you can solve for the properties of interacting



systems simply by transforming your perspective from a Hamiltonian to a Lagrangian

framework.

So, the fundamental problems namely that you are dealing with a strongly coupled
system and so on that will still remain and there is nothing much you can do about it. So,
ok. So, in an. So, basically what I have done next is [ have shown you how to evaluate
this path integral. So, remember in the case of quantum harmonic oscillator in terms of
these actual physical paths x as a function of time, I had shown how to evaluate the path

integral from using some saddle point method.
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/ dr (iE(1)(8e(r)) - 3 (1) (8z(1)) ) (11.31)
This means,
iZc(1) = 0z (1) = 0; iZ.(1) = 0% (1) = 0. (11.32)
The solution s,
(t) =z ™" (11.33)

The constraint that the end points be fixed leads to the following relation between
the starting and end coherent state eigenv.

w=elty) =g e (11.34)
We now define z() = z(r) +Z(r). Imposition of Z(1;) = (/) = 0 ensures that z(1;)
z-and z(t7) = zy. This means we may write the action as
s= " ar (S0 - S50 1135
| H‘rl.\u‘ I.H‘.H‘ WZ(1)Z(r)). ( )
since the classical action vanishes identically. The Green function may then be
written as,
e (1032 e
) =e 10l / ¢ (11.36)
2N
Xistil i “) vl i > (11.37)

3| ~ (11,
Due to the periodicity, we may write () = L, sin

o Now we evaluate

< x|z >, Keeping in mind that,
» n

m ]
iy et 0= e =iy (11.38)
Vamho 2o Vanlo 2o

a

So, here also I should be able to show you that it can be evaluated and you get what you
expect from traditional means in terms of the Green’s function should agree with that not
only you should agree with the x and p path integral, should agree with the Hamiltonian

version of the Green’s function also.
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and,
a<xz>=z<az (11.39)

we see that,

2>=1iz 2> 40
x| Rl X (11.40)

<afe>=dV T C (11.41)

(11.42)
50 that.
/dnlf
X X
ni
SRV P Lol (143)
A choice,
[2me)
G e (11.44)
h
ensures that,
Xe>< I >=8(x-x) (1145)
Going back 10 Eq. (11.37)
Glxitixpty) = e~ 1071 g0
i/ -is et [2mo

So, I am going to spend the next lecture probably explaining to you how that comes

about.

(Refer Slide Time: 44:32)

/"“" <Al <A 3= dx-x (1145)

e
i

Going back to Eq. (11.37)

Glxi tisxp,ty) = e e

(11.46)

/ dad:
i

We may now evaluate the same quaniity using conventional Hamiltonian methods

For this we invoke the occupation number basis.

Gxitixyly) =< xi e MO0

¥ <xitin ><nlpyty > ¢ A0 1)

264 Ficld Theory

+iy/ o)

< xtin = 50>
V!
(phzd =i/ .
<nfxp = = <0y > (1147
V!
s0 that,
Glxi,isxgty)

= Q)
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%4 Field Theory
(~RA=L +i )
Amho %V Zha .
Xl >= — Yo <x0
vn!
ih_d T e )1
Ty ~'V 26 )
<Ap i > <Oy > (1147
Vn!
50 that,
Glxitixpyty)
" (0;0)"
{01
¢ L= <alo><0y
= 2001 xp|0101] < x{0>< Oy >
10 expl0}0] <xij0>< Oy (1148)
where,
0= ih 9 ['m 1149
¢ =t o) ( )
Vamhodx \ 2o
g, i [m
) =€ iy =0y (11.50)
b Vmhodsy V20"
We may use the so-called Hubbard-Stratanovich transformation to write,
doddt gy )
£/ / 00,90} 50, (151
i
Glxitixp,ty)
olty1, /z/mlﬁ &
e 1% ¢
i
STt e g

But in the meanwhile, you should go ahead and read all this quite I mean

details can be somewhat overwhelming.
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I n
@iy /o - L
Lk Wyl
e iy [pmarproe Y B )
e Y a3 Y (xs (11.52)
Here, Wy(x) =< x|0 > is the ground state wavefunction of the harmonic oscilla-

tor in the position space. We now use the Zassenhaus formula to write ¢**¢

e fiekee  This means, ¢ & f(x) = ¢ f(x-+ )} Thus we may write,

Glxi,tinxg,ty)

-1 / dodt g

i
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it [T\ i
i/ A \
V2mho
eIV 30 (x4 ——) (11.53)
V2mho
The ground state wavefunction is given by,
me i 2
W)= (=) e (11.54)
\nh
The simplified expression reads as follows,
Glxiatixyty)
oft-1) - (d+e) (MO

Because I do not know how much I can explain to you.

the technical
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v 155

/ dodbe gy 5igee
U
2mi

This may be evaluated using the substitutions ot and G =X —iY and

dadd. _ dXdY

5 (11.56)
2 T
| Expl Tl
- ey 2 sl .
Glxtixpyty) =€ T (=) Qo (11.57)
h (2i sin((ty =1;)))?

This expression in Eq (11.57) s of course identical 0 Eg, (7.79) obtained using

the conventional path integral. This is the so-called coherent state path integral for
the harmonic oscillator. Of course, there is no particular advantage to writing this
expression since the harmonic oscillator, being simple, its Green function can be
obtained using several methods—many of them simpler than this approach. Its true
usefulness lies when applied to systems with infinitely many degrees of freedom
where one encounters fields. The noncommuting quantum fields in the Hamiltonian
framework are replaced by simple functions in the Lagrangian framework, which is
when this approach becomes useful. Now we discuss the same idea in the context
of fermions.

112 CSPI for a Fermionic Oscillator

A fermionic oscillator is analogous to the harmonic oscillator except that the num-
ber of possibilities for the occupation number are limited to only two, namely zero

Because all the steps are here. So, you should not complain that I have not explained
because I have explicitly derived everything nothing is missing. So, you just have to
follow all the steps. So, if I even if I verbally describe what is going on, it will pretty
much be just saying the same thing that you are seeing here. So, you just have to go

ahead and work this out.
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or one. Thus we postulate that the full Hilbert spac is spanned by two vectors [0
and |1 Now we wite,

c0>=0; |1 >=¢'[0>; ¢]l >=10>; ¢'[1 >=0, (11.58)

Thus within this Hilbert space ¢ = ¢ = 0 and ¢’ +c'c = 1. In this case the
coherent states involve objects that are a generalization of complex numbers called
Grassmann numbers. For example we write,

cn>=nn> (11.59)

Acting again with ¢ and using the identity ¢= = 0 leads us to conclude that n* = 0,
This is one of the propertics of a Grassmann number. Similarly, we could define
another coherent state |§ > such that,

=g (11.00)
Here 0o we find €2 = 0. Now we make the following observation. Since all second
and higher powers of a Grassmann variable are zero, a function can be at most
linear in such a variable, Thus f(1)) = f(0)+n/f (0) for any f. Ifitis a function of
two such variables f(1,0) = £(0,0)+0f D (0,0) +1/"%(0,0) +nws™"(0,0)
and so on, This means,

n 02+l >, (11.61)

where /0 =0 and |1 3= [0, One can see that this obeys the defining equation
for a coherent state. Similarly,

>+l (11.62)

Ditferentiation of Grassmann variables is defined as z‘/lq\’/ (0). We will define
integration later, As usual we wish to evaluate the overlap. For tis we observe that
on the one hand.

Elefn =1 <& (11.63)

We may choose to write ¢ = < in the same representation in which ¢ = & From



But the more interesting thing will be when I generalize all these two fermions which is

really the reason why people do this because you can study matter fields.
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L e L
We may choose to write ¢ = 5 in the same representation in which ¢" = &, From

this we may see that cc’ +c'e = SE+85% = 1, since now {§,%} = 1 where
) 3 3

{4,B) = 1. This means,
c <En>=n <gn> (11.64)

‘This means,

<En>=eN=1+8n (11.65)
In order to understand how to resolve the identity, we have to introduce the mean-
ing of integration over Grassmann numbers. One way to do this is to introduce the
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notion of a *Fourier transform’, The Fourier transform of a constant is a delta func-
tion. Hence we first focus on trying to represent a delta function using Grassmann
variables. We would like to know what 8(n 1) ) means. One property isnd(n) = 0.
Keeping in mind that 8(1)) = ¢+ d for some constants, we conclude that ¢ = 0
and d # 0, which we set to unity d = 1 in anticipation. Therefore,

dm)=n (11.66)
Note that this obeys the expectation that for any function f(n), 8(n)f(n

N(f(0)+nf (0)) = nf(0), since the delta function forces the argument of any
function multiplying it to be zero. Now we invoke the notion of @

know that the delta function integrated over all values of an argument yields unity

/dn&n‘ 1 (11.67)

And the fermionic coherent states are very peculiar. So, they involve the eigenvalues of
the annihilation operator are not complex numbers they are what are called Grassmann
numbers. Grassmann numbers are you know some anti-commuting versions of complex
numbers. So, they are complex numbers of a very peculiar kinds. So, there is a 0
complex number whose square is 0. So, that seems like impossible, but actually that is

what a Grassmann number is.
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So, you will be forced to introduce all these bizarre kinds of objects which are

Grassmann numbers.
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notion of a *Fourier transform’. The Fourier transform of a constant is a delta func-

tion. Hence we first focus on trying to represent a delta function using Grassmann

variables. We would like to know what §(n —1) ) means. One property is n(1)) = 0.
Keeping in mind that 8(1)) = ¢+ d for some constants, we conclude that ¢ = 0
and d # 0, which we set to unity d = 1 in anticipation. Therefore,

dn)=n. (11.66)

Note that this obeys the expectation that for any function f(n), 8(n)f(n

N(f(0)+nf (0)) = nf(0), since the delta function forces the argument of any
function multiplying it to be zero. Now we invoke the notion of integration. We
know that the delta function integrated over all values of an argument yields unity

/1/1]&”‘ 1 (11.67)
This means,
/.hm 1 (11.68)
We also know that the delta function admits a Fourier representation. In particular,
\mhu[!_‘h“ ) = §(x-x ) we expect (v, £ = 1, g =1),
/dir:” M =§m-n) (11.69)
In other words,
[d&(1+8m-n)=(n-n) (11.70)
Therefore, we must also have,
d&1=0 (11.71)

Now we prove a rather amusing result that this integration is the same as differenti-
ation with Grassmann variables. Notice that the in

aration of Grassmann variables

we have used so far implies that the range of integration is over all values of that

variable, i.¢., itis a definite integral rather than an indefinite integral. Now consider,

And so, all your path integrals for fermions will involve that.

268 Field Theory

question of resolving the identity, we assert that for some weight function W(6,6)
1o be computed

/L/mmum,a: 0><0 1.m)

Imagine that we insert this resolved identity as shown < afy >=< /1y >. This

means,

<aly> /Jmm W(6,0) <al6><0y> (11.74)

We write, < @y >= 14y, < 00 >= 1 4+ and < By >= 1 +By. We assert that
the choice

W(0,0)=¢%=1-060 (11.75)

is able to reproduce Eq. (11.73). To see this, consider,

aly>=1+ay /,/lmm 00)(1+6)(1-+by) (11.76)

I+ay /lem 1-06)(1 4By + 6 + by (1.7

This means,
1+ay
/./umm By -+ 00 + by, /M/e‘()m

Jowimeni [ idinaa .
since all other terms drop out. Now we make use of the idea that every Grassmann
object commutes with every other. Thercfore, d6 8 = ~8 d0 and this makes the
second term become equal to unity. On the other hand, 80 = 66 so that the net
resull is |4y as it should be. Therefore, we resolve the identity in Grassmann
variables as,

/,m,/m % 105ch)=1 179

called
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And then finally, we will generalize to fields. So, when you generalize to fields, you will
understand why I am doing all this or perhaps you will not; but certainly, you will get

some inkling as to why I am doing this. So, once we are done with that, we will move on

113 Generalization to Fields

So far, we have studied the CSPI method for systems with one degree of freedom.
Iis possible, of course, to generalize the formalism (o include infinitely many
degrees of freedom. Using a method similar to what we saw in the carlicr section,
we could easily accept that the correct way of handling this situation would be to
first cnsure that the Hamiltonian is normal ordered. This means all the creation
operators are (o the left of the annihilation operators. This is important because in
the CSPI approach, the identity s resolved us nstates of the annihilation
\or

ure

operator rather than the creation of a result, matrix elements such as <

>, which

Sla'alzg; ) > found in Fy, (11 n proportional 10 <

cthod works. If instead we chose the Hamiltonian as H = hoaa',
ment < 2/da' 21 > WOUID IVOIVe denvalives and would nol lead

is why this
he matrix el

to anything uscful. Therefore, for a Hamiltonian such as the onc in Eq. (8.91) (we
assume it describes bosons for simplicity), the way to formulate CSPI would be to
first write the action that appears in Eq. (11.30) as,

/ i i i
S / ll/‘/l/r‘z:‘r/:‘rv GO GUIRE (1199)
where,

? 1

Hlz,2 »/drA nt :—.\r./l— ;/‘/r/dr.‘r/\.(r.u.yr D2(r)V(le=r|)
i 2)

(11.100)

Therefore, if the aim is to evaluate an overlap such as < Wj, Wy, 17 =, we would

write,
<YWyt >
/ 4], 4 g et adeae
e =ty =) 20

<Witi{zo} > €5 < )Wy (11.101)

If the initial and final states are both position cigenstates of a single particle, then
we would write

Wotp =l (rpt)|G > < Wit =< Gle(rih) (11.102)

to my favourite topic which is also my research area.
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So, you see most of the top ideas in the later chapters are pretty much subjects, | mean

ideas from my own research works. So, I want to spend some time explaining all that

Chapter 12

Nonlocal Operators

The description of many-particle quantum mechanics given tll now does not give

us much insight into how one may go about computing the Green function of quan-

tum systems with infinitely many coupled degrees of freedom. Apart from the free
particle case and perhaps the harmonic oscillator, there are precious few exact com-

putations of Green functions of many

systems. Even the approximate meth-

ods are found wanting since we have y alluded to the ‘uncontrolled” nature of
most of the approximations that have been proposed to date. There is one method
that offers some hope in this regard. This method is (wrongly) called ‘bosoniza-
tion”. This method will be the main focus of much of this and the next chapter. The
main mathematical tool used is the introduction of operators that are ‘non-local’ in
asense to be made precise later, which enables the exact computation of the asymp:
totic properties of the Green function (G(x — X .f 1) in the regime X —X | - eo
and/or |t =1 | = o) under some further restrictive assumptions. We wish to case
into this subject through the study of quantum vortices in charged bosons where
the notion of nonlocality makes its presence felt in a relatively more familiar set-
ting.

12.1 Quantum Vortices in a Charged Boson Fluid




because there are some very important questions that have to be answered which have
not yet been answered; but that is something I want people listening to these lectures to
be able to contribute and answer. Because some of it, we are already making progress in
some of those questions, but there are many questions which are still largely unanswered.

So, I need time to describe those issues and that will conclude this course ok.

I am going to stop now. In the next class, I try to wind up this path integrals using

coherent states ok.

Thank you.



