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Ok. So, let us continue where we left off. If you recall in the last class, I was telling you 

about how it is possible to introduce a source; that means, you pretend that there is an 

external potential which depends on time. But that time all those times are on the 

imaginary axis you know between t equal to 0 and t equals minus i beta h bar. 

Then, what you do is that you define your Green’s function along the time ordered 

Green’s functional with times ordered along this imaginary axis in between within this 

interval. So, then, it is possible to write down the equation of motion that is basically that 

the time dependence, the how this green function changes with see one of those time. 

See after all, the Green’s function depends on two times; it depends on the time of the 

first operator which is usually the annihilation operator. 



So, remember that what this Green’s function is. It is basically the time ordered; it so its 

time ordered along the imaginary axis. So, I will put c there just to remind myself that 

the it is along the imaginary axis and this is what it is. So, I have just picked one of the 

times and I have decided to find the time evolution with respect to that particular time 

which is I have just selected; I could have selected t 2 also. But I have selected t 1. So, 

the point is that the equation obeyed by this Green’s function is going to be this ok; yeah. 

So, this typically comes with a minus i also ok. So, yeah because if it comes with a 

minus i, then this becomes you see this is shorthand for a spatial and time Dirac delta 

function multiplied together. This is I mean this is just shorthand of writing; it is not an 

the number 1 minus number 2, it is not like 1 minus 2 equals minus 1. I mean 1 means x 

1 t 1; 2 means x 2 t 2. So, it is just short hand because I have to otherwise write x 1 

comma t 1, x 2 comma t 2. It is very irritating, but here I have no choice, I have to 

explicitly write r 1 r 2 or whatever r 1, r 2. 

So, I have to explicitly write that here ok; it is not x 1 I have selected r 1, r 2. r 1 comma 

t 1 is shorthand for that is 1; r 2 comma t 2 shorthand is 2. So, the point is that the 

equation of motion obeyed by the Green’s function is basically this. So, now, you see this 

involves two creation and two annihilation operators; is not it? So, but then, I told you 

that the whole purpose of introducing this external time dependent potential which is 

anyway not there and you know trying to complicate matters by introducing something 

that is not there.  

It had better have a valid benefit that is if it does not benefit me enormously, I have no 

business complicating matters by introducing something that dint exist before. So, you 

will soon see that it is in fact very very useful. So, the reason why it is useful is that if 

you take this Green’s function and formally differentiate with respect to this source that I 

have introduced. So, what is going to happen is that you will see that you see after all the 

source is present only in the S matrix. 
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And if you recall this S matrix is defined like this. So, the source is only here. So, if I 

differentiate with respect to the source, I will bring down a density there which is 

precisely what this term which involves four fermions interaction is ok. So, basically you 

see it involves the density here.  

So, it involves this is the density here; c dagger r dash t 1 c r dash t 1 that is basically the 

density. So, by differentiating with respect to the source of the Green’s function, so this 

is the original Green’s function r 1 t 1, r 2 t 2; r 1 t 1 is annihilation, r 2 t 2 is creation. 

But now, I want to see how I can bring down a density. 

So, if it is just this, there is nothing there. So, I have to difference. So, if there is an S, 

there you see the S has the density in the exponent. If I differentiate with respect to the 

source, I will be bringing down a density. But then, you see the Green’s function is the 

ratio of the S matrix on the numerator and S matrix also in the denominator. So, now if I 

differentiate with respect to the source, I will end up getting this what is called the 

correlation function, it is this average. But then, I have to subtract out the average when I 

pair up these operators in this way. 

So, basically that is what it will amount to ok. So, now, so in other words, this term that I 

was trying to see if I can write in a way that involves only one particle Green’s function 



because after all this has two particle operator, it involves two creation and two 

annihilation. So, now, I want to be able to express this in terms of something involving 

only one particle. So, you see at the level of this equation its already clear that I have 

been successful in doing that.  

Because after all what is this that I have circled here; it involves two creation and two 

annihilation. But here it involves only one creation, one annihilation because this is my 

original Green function which involves annihilation creation. 

But this also still involves annihilation creation; there is also one particle Green’s 

function times and some other version of the one particle Green’s function. So, there are 

all these are one particle versions of some products or whatever it is of some versions of 

one particle Green’s function. So, that the two particle Green’s function has now been 

expressed purely in terms of some combination of one particle Green’s functions. 
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And that is an enormous advantage because you see now you can go ahead and I am not 

sure who crossed this out; it is I mean this is not meant to be crossed out. I certainly dint 

cross it out ok; yeah. So, the point is that this differential equation. So, you see once you 

take this to this side, I can lump all this it becomes U plus this one times this Green’s 



function ok. So, it will just involve. So, this is the original Green’s function this is 

basically G full and this will involve this sort of thing. So, this is same as this. 

And this is the original G full; this is G full. So, I bring this to this side and I express 

only this term in terms of this plus this and this plus this is basically the effective 

potential. So, it is like the average. So, physically what this means is this is the average 

potential seen by a particle at r 1, t 1 not only due to the externally imposed source; but 

also due to all the other particles around it. 

So, this is the effective potential seen by the particle at r 1 t 1, but you do not have to call 

it that. I mean formally it is just this expression. So, the point is that formally you see, 

now I have succeeded in writing down the equation of motion for the one particle 

Green’s function which is which involves quantum particles that are not only have 

kinetic energy; but also a potential energy by way of mutual interaction between each 

other pairwise potential energy. 

So, I have been successful in writing the Green’s equation for the Green’s function in the 

form of a functional differential equation, which only involves other versions of the one 

particle Green’s function. So, in other words, it does not involve equations; it does not 

involve Green’s functions where the more than two particles are involved.  

So, bottom line is that the price I have to pay to do that, that is the price I have to pay to 

avoid introducing four particle rather two particle, three particle, four particles etcetera 

Green’s function. So, the price I have to pay to ensure that the equation for the Green’s 

function only involves one particle Green’s functions or some version of the one particle 

Green’s function. 

So, the price I have to pay is that I have to introduce artificially an external time 

dependent source that is defined along the imaginary axis. But then, you might say that 

given that in the end, it is not there, how do I get rid of it? So, obviously, the answer is 

that once you somehow are successful in solving this equation, by the way nobody 

knows even know, how to solve such equations. So, these are functional differential 

equations which not only involve partial derivatives in the usual sense, but they also 

involve functional derivatives. 



So, there is no there is no well-developed mathematical theory to solve this. It is just you 

know writing this is useful because it allows you to develop perturbation scheme in a 

very systematic way because that is the only scheme we have at our disposal to solve this 

because we just end up expanding in powers of this. So, we pretend there is a lambda 

here and you just expand and you expand your G’s in powers of lambda and substitute 

and compare both sides and that sort of thing. Pretty much see that is all you can do. So, 

this allows you to do that in a systematic way; that is it. 

So, now, the question is how do I get rid of that external source? So, the answer is that if 

somehow you develop a perturbation scheme or whatever and truncate it in the mains 

and so on and so forth, then you go ahead and set that external source to 0 and then, you 

have gotten rid of it that way.  

Yeah, so that that is the whole point. So, this is called the Schwinger Dyson equation; 

Schwinger Dyson equation ok. So, the rest of this chapter just tells you how to 

implement that perturbation scheme that I was talking about. So, basically you define 

something called the self-energy. 
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So, I think I will going to skip that because basically that is only if you are interested in 

actually carrying out that perturbation series in some systematic way. So, that you will 



end up with something called the GW approximation to the leading order. So, your; self-

energy can be expanded in powers of this coupling and the lowest order contribution is 

called the GW approximation which itself is pretty formidable and it cannot be done. 
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So, the whole thing is still non-linear even after. So, the functional derivative aspect goes 

away at the first order. The moment you truncate, you can get rid of the functional aspect 

of the problem. But then, you will still be forced to reckon with the non-linear partial 



integro differential aspect of the problem. So, it will remain an integro partial differential 

equation.  

Yeah, I mean it is kind of one runs out of adjectives to describe these sort of equations. 

So, bottom line is the incredibly hard to solve and nobody even with present day 

computers even the GW approximation cannot be solved in any convincing way alright. 

So, I am going to stop here as far as this particular topic is concerned. So, basically this 

particular topic was the Schwinger Dyson equation. So, the Schwinger Dyson equation is 

a functional differential equation for the time the ordered Green’s function of a system of 

particles interacting mutually and also, with an external source that is defined on the 

imaginary time axis. So, it only involves the, that Green’s function the one particle time 

ordered Green’s function and nothing else. So, that is as far as that topic is concerned. 
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So, the this the other topic that I have introduced in the next chapter is some other 

simpler versions of the non-equilibrium situation, where see earlier I was talking about a 

continuum problem, where the degrees of freedom are truly infinite. But here, I have 

reverted to a system with a finite in fact just two level systems. 
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Just to tell you that if you get rid of the field aspect of the question; that means, after all 

the title of this course is dynamics of classical and quantum fields. So, strictly speaking 

this part of the topic should not even have been there in the textbook. 
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But it is there only because it tries to tell you that if already you know with, in systems 

are not in equilibrium, there is lot of interesting physics even at the level of finite number 

of degrees of freedom. So, there is something called Rabi oscillation and so on and so 

forth. 
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So, you can have spontaneous stimulated emission etcetera. I am just introducing that 

just to highlight the fact that non-equilibrium systems are already reasonably 



complicated, even when you choose to study a system with finite number of degrees of 

freedom or oscillators with just few labels. 
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But then, that would not be consistent with the title of the textbook which is dynamics of 

classical and quantum fields. So, let us get back to fields. 
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So, if I decide to get back to fields, the other topic I have to next discuss is basically the 

idea of coherent state path integrals. But as usual you know before I get to fields, I have 

to introduce the version of this for system with finite number of degrees of freedom. So, 

usually that is how in fact not usually, that is the only way to do it. You introduce it for a 

finite discrete number of degrees of freedom and then, pretend that that index is now 

continuously large ok. 

So, what is this coherent state path integrals? So, if you remember, we studied the 

quantum harmonic oscillator using the creation annihilation language; but that involves 

that still involves dealing with the Hamiltonian. So, you see the Hamiltonian involves 

creation and annihilation operators, but remember the spirit of the path integral approach. 

So, the spirit of the path integral approach is that you should be able to do quantum 

mechanics not merely with always with Hamiltonians, but you should also be able to do 

quantum mechanics using Lagrangians. 

So, now, the question is you see now I have in front of me the harmonic quantum 

harmonic oscillator in terms of creation and annihilation operators. So, the question is 

can I now write down the Lagrangian of the quantum harmonic oscillators not in terms 

of position and momentum, but again still in terms of creation and I mean some. So, you 

see I want to de quantize the creation and annihilation operators because after all you see 



in quantum mechanics, the annihilation operators basically an operator which is in some 

sense complex. Because it is the complex linear combination of two self-ad joint 

operators. So, the question is you see the de quantized version of the annihilation 

operator would simply be a complex number. 

So, now the question is I want to be able to see if I can introduce a path integral approach 

to this problem in terms of the eigen values of the annihilation operator. So, that is the 

peculiar point of view; but it is a it is a valid question to ask. You see there is the 

Hamiltonian is now expressed in terms of creation and annihilation operators.  

Now, remember how it is in the original path integral. So, if the original Hamiltonian 

was position and momentum and they were operators the quantum mechanics of such a 

system using Lagrangians will involve actually the classical Lagrangian. 

That means, it will involve e raise to i h bar integral d t of l, where l is the classical 

Lagrangian, where you have to sum over all the classical paths. That means, the all the 

classical paths connecting some initial and final end points. So, those classical paths will 

have some classical positions and classical velocities. So, similarly, here you see I have a 

quantum Hamiltonian involving creation and annihilation operators. 

So, now, if I want to study this using not the Hamiltonian picture, but using Lagrangians, 

I will now be writing this you know in terms of the path integral of the form e raise to i 

by h bar integral d t of l, where now l is the Lagrangian in terms of the de quantized 

versions of a and a dagger. Just like in the case of path integrals, I had to write down the 

Lagrangian in terms of x and x dot, which are x is basically the de quantized version of 

the position operator because now it is now a classical object. 

So, similarly m x dot is the de quantized version of the momentum operator p. So, 

similarly, here I want to be able to write down a de quantized version of a and a dagger. 

So, that I can express my Lagrangian in terms of those objects, which would then 

correspond to the classical paths that the system is taking. 



(Refer Slide Time: 21:02) 

 

So, clearly, those are necessarily just like the de quantized version of the position 

operator is just the position eigen value. So, similarly, the de quantized version of the 

creation operator is just the eigenvalue of the creation operator which in this case 

happens to be complex. So, if I decide to introduce this, then I postulate that there has to 

be some state labelled by its eigenvalue z with a bar on top ok. So, that is supposedly the 

complex eigenvalue of the creation operator. 

So, the claim is that if I decide to define the state in this way that is this is in directly the 

definition of the state basically tells you how the state comes about. It is the eigenstate of 

the creation operator. So, now, you can easily convince yourself that the eigenstate of 

annihilation operator is similarly given I mean it is given by in this case it is given by 

multiplying that state by some z; I mean its eigen value. So, basically it is the now an 

eigen state. So, if this is the eigenstate of creation operator, there is absolutely no reason 

why it should be the eigenstate of the annihilation operator also. So, in fact it is not. 

So, if you take the annihilation operator and act it on the state, you will get a different 

state. But it so happens that that different state is obtained by simply differentiating that 

state with respect to the eigen value. So, of course, you might think that this seems kind 

of completely out of the blue; how do I know this? So, I know this because if I go ahead 

and apply this claim to this state rather than some other state, if I apply to this state. So, 



remember I have claimed that a time this is basically this. Now, what is this? This is after 

all the eigen states. So, I can write it like this. So, first I do this. 

So, I first take a act it on a dagger z; but then what is a dagger z? It is z with a bar times z 

state z with a bar. But if I do the reverse, so if I do the reverse, clearly this particular state 

is yeah. So, I will have to justify this ok. So, yeah. So, this is not a very nice way of 

writing this. So, the bottom line is that you see what is the claim? The claim is that if I 

act look just take this here, you act this is the claim; claim.  

So, if I act this on a, what is this supposed to be? It is supposed to be this ok; but then, 

what is a dagger a? It is basically 1 plus a dagger, rather it is minus see a dagger minus a 

dagger a is 1 that is the commutator of a and a dagger is 1. So, it is basically. So, 

basically a dagger a is a dagger minus 1. 

So, this is basically a dagger minus 1 acting on z state z ok. So, the point is that if I take 

this. So, what is this? This is basically a acting a dagger acting on state z minus state z, 

but what is this one equal to? This is basically a acting on z minus state z ok. So, now, if 

I say that the action of this on this state is same as d by d z, then you see clearly yeah. 

So, this will clearly give me what I am looking for. So, a the action of a on this state is 

same as acting this on that state. 

So, what is d by d z bar acting on this state? First, it will act on this it will give me z, but 

that is getting cancelled by this. So, then, this a will go and sit in the middle here. So, 

that is basically it will tell me it is z a times z ok. So, basically what it is saying is that 

this particular state. 
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So, in other words, this is it is consistent with this identity ok. So, the idea is that these 

two are consistent; but you can also do it the other way. So, you can introduce a coherent 

state with respect to the eigen values of the annihilation operator rather than the creation 

operator ok.  

So, in that case, you can go ahead and write this operator in terms of this state which is 

annihilated by a and you can show that this is these two are consistent. So, I am going to 

allow some of these statements to be proved in the exercises perhaps because it is kind of 

confusing for me to explain everything verbally. 

So, I think you just have to work it out. So, for example, here I have worked it out. So, if 

you see the claim is that the. So, these are called coherent states; for reasons, I will again 

explain later on what is. So, coherent about it. So, the point is that right now for our 

purposes, it is just a state, which is an eigenstate of the annihilation operator for example 

this one. See the earlier one was eigenstate of the creation operator. So, these two are you 

know in some sense dual to each other. So, the point is that this is the eigenstate of the 

annihilation operator. 

So, the claim is that this is this state can also be explicitly constructed this way. So, see 

we all know how to what this means. This is the ground state of the harmonic oscillator. 



So, it is annihilated by the annihilation operator. So, what this says is that you know 

formally expand this out in powers of z and act it on the ground state of the harmonic 

oscillator and whatever state you get is the coherent state. So, whatever state you get will 

be an eigenstate of the annihilation operator with this complex eigen values z. So, the 

question is how do we show that? 

So, you simply write this in terms of a times this and then, you do your normal means 

you multiply and divide by this operator and then, you just expand in powers of z, you 

will see that all terms drop out except the linear term. There was 0th power z to the 

power 0 survives z to the power one survives all others drop out because you know the 

commutator of.  

So, if you have a commutator of a and a dagger, it is just proportional to identity. So, all 

further commutators become 0. So, it is z to the power 0, z to the power 1. So, now, if 

you work this out, it is simply this. So, that proves; it is very easy to prove this. 
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So, basically this is the eigenstate of the annihilation operator. So, it is the coherent state. 
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So, you can also work out this overlap. You see I told you that this state is the eigenstate 

of the creation operator. So, how are they related? So, they are related in a similar way to 

how x and p states; remember how this is its e raise to i x p by h bar. So, if you have 

eigenstate of momentum and eigenstate of position, these are somehow conjugates to 

each other and their overlap is basically exponential of the two Eigen, product of the two 

eigen values. 

So, here also you get something similar. So, if you work this out, you will see that the 

overlap of the eigenstate of the annihilation operator and the overlap of the eigenstate of 

the position, I mean creation operator are very similar to overlap of position and 

momentum operators that is basically the exponential of the product of the eigen values. 
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But you can also go ahead and prove complete. So, yeah. So, there is something 

remember that there is something called completeness. So, if you have a set of if you 

have Hermitian operators you can show that the eigenstates of self-adjoint operator are 

complete. In the sense that you can write down basis in terms of those eigenstates of 

such a self-adjoint operator; but here, a and a dagger are not self adjoint. So, they are 

actually complex. 
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So, in some sense that contain more information than a self-adjoint because self-adjoint 

operators are in some sense real operators. So, here the it is a complex operator which 

has real and imaginary parts. So, the eigenstates of this are probably there is probably lot 

of you can suspect that there will be a lot of duplicacy; that means, that there will be 

unnecessary duplication of the states that they will not all be linearly independent and in 

fact that is in fact true. So, in fact, the eigenstates of these operators are basically called 

over complete. 

So, if you want to introduce a resolution of identity, the way you write like this. So, 

remember you write this sort of thing. So, if x is the position operator and this is the 

eigenstate of position you can go ahead and write like this resolution of identity. So, you 

can do similar things with this.  

But then that means, that you have to introduce a weight which compensates for the fact 

that these states are over complete. So, you can show that this is how you have to resolve 

the identity. So, I will allow you to work this out and perhaps the exercises or if I do not 

get around to that you have to simply follow these steps. So, just follow all these steps. 

So, now, you see the original question I wanted to ask was answer was how do I study 

the Lagrangian version of the quantum particle using not x and t, but using creation and 

annihilation operators. See I know how to study the quantum harmonic oscillator using 

the quantum versions of x and p. I know how to study the quantum harmonic oscillator 

using the classical versions of x and p, but in a path integral form. That means, you see I 

want to study only the quantum harmonic oscillator, I do not want to study classical 

harmonic oscillator. 

But if I want to study quantum harmonic oscillator using x and p operators, then of 

course, I have to use the Hamiltonian approach. But if I want to study the quantum 

harmonic oscillator using Lagrangians, then I should use the classical Lagrangian, but I 

have to remember to do a path integral. That means, that it is not no longer the Euler 

Lagrange equation, it is the sum over all paths, with each path being weighted by an 

appropriate factor, which is proportional to the exponential of the action multiplied by 

imaginary unit divided by h bar. 



So, similarly, here now suppose I want to study the quantum harmonic oscillator using 

creation and annihilation operators, I would certainly be using the Hamiltonian approach. 

So, that has the advantage of immediately giving me the eigen values for free because it 

is just Hamiltonian is h bar omega into a dagger a plus half and a dagger a is integer 

eigenvalues.  

So, it is n plus half. So, that is easy. So, but the question is suppose I want to study the 

quantum harmonic oscillator using the Lagrangian obtained from the Hamiltonian which 

is written down in terms of creation annihilation operator, not in terms of x and p. So, 

now. So, in other words, the de quantized version of a and a dagger. So, how do I do 

that? So, that is what we are trying to answer. 

So, the answer to that is we have to develop a path integral approach which now involves 

the de quantized versions of the creation annihilation operator which are simply complex 

numbers. So, I have to introduce. So, just like there I have to introduce the eigenstates of 

position and momentum to resolve the identity and insert a sequence of states in 

between.  

So, I divide up the time interval into small pieces and then, insert identities by resolving 

identities and so on. I have to do the same here, but now I have to insert the resolution of 

identities in terms of the coherent states which is why I require this over complete 

resolution of the identity; I mean resolution of the identity using coherent states. 

So, as usual, I start off with this question, if I want to calculate this Green’s function of 

the system this is what it is. So, now as usual I split this up into smaller pieces and I end 

up getting yeah. So, what is this h? So, remember h is basically h bar omega into a 

dagger a plus half. So, this h is this small letter h is h bar omega into a dagger a.  

So, this plus half omega I have put it outside. So, that is anyway constant factor. So, now 

you see I write t f minus t i as t f minus t i by n and etcetera. So, I split this up into many 

pieces; sigma n pieces. So, that is what that is. So, and this will appear in the exponent. 

So, sigma exponential sigma is the product. So, I will get product here. 



So, bottom line is that you see now I go ahead and insert my resolution of the identity; 

that means, this one and what is this one? This one. So, I keep inserting the resolution of 

the identity here and then, I will give this get this over complete weighting factor from 

here. 
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 And then this is what this is ok. So, we are not done yet because I have to show that this 

is in some sense still it is related to the Lagrangian of the system. So, this gets multiplied 

by the rest of it ok. So, it is a it gets multiplied by this successive terms. So, this is the 

over complete terms times the remaining; the remaining is this. So, this is similar to what 

we did earlier. So, here you see the idea is the following because epsilon is small because 

what is epsilon t f minus t i by n and n is very large. So, epsilon is small. So, this is 

approximately this. 

So, now if I go ahead and write it this way, then you can clearly show that since h is h 

bar omega into a dagger a this is clearly given by this. So, this is the eigenstate of a. So, 

therefore, it is just z z k plus 1 right. So, and this is the eigen eigenstate of the other one.  

So, it is basically it gives you this ok; yeah. So, it just gives you back this times this. So, 

this is the eigen value. So, this is just z this is nothing but z k plus 1 into z k. It just gives 



you the eigen value; similarly, this also just gives you the eigen value. So, clearly that it 

is equal to and what is this? This is equal to this. These two are the same things. 

So, this overlap is basically remember I told you this is the overlap. So, the overlap of z 

and z bar is basically this one and that appears here also is after all the eigen values come 

outside these two are the same things. So, that comes out. So, this is again, you can re 

exponentiate because epsilon is small; this is equal to this.  

So, now, you can go ahead and write it this way ok. So, it is going to be like this ok. So, 

then you identify this, this discrete sum with basically a kind of a discretized version of 

an integral. So, to cut a long story short if you discretize this integral, it gives you back 

this expression. 

So, I have done the reverse; you can start from here and get there that is easier. So, 

discretize this integral, you will end up with this because the product is exponential of 

this sum. So, the thing is that now we may think of this as a Lagrangian of the system ok. 

Because this has this is something like you know p x dot minus L types; I mean instead 

of p, you have z dash; instead of x dot, you have z dot.  

This is L z z dash. So, it is like that. So, its z z bar minus L and this is L right. So, its 

omega into a dagger a and a is a eigenvalue is z a dagger eigenvalue is z with a bar there. 

So, basically this is the Lagrangian generalized coordinate is now z z bar which is capital 

Z. So, that is your generalized coordinate. So, now, you have to simply. 

So, the Green’s function can also be written as a coherent state path integral. So, this is 

the coherent state path integral. So, it is a path integral in terms of coherent states ok 

yeah. So, you might be thinking that why am I doing this. Because I can solve harmonic 

oscillator quite nicely using just Hamiltonian approach; why do I want a Lagrangian 

approach in that too in terms of creation and annihilation de quantized versions of the 

creation and annihilation operators. See the reason for that is because in see all the 

modern relativistic quantum field theories are actually thought of as the coherent state 

path integral.  



So, they are always phrased in terms of a coherent state path integral. So, they are 

written in terms of; so, all your quantum electrodynamics in. So, you write them in terms 

of so, but then, for that I have to introduce the coherent state path integral for fermions. 

So, till now I have only see this a a dagger as this commutator is 1; I have to do coherent 

state path integral when the anti commutator is 1. So, that I will do next.  

But bottom line is that if once you are successful in doing this, then you can put in a 

spatial dependence to make it fields and once you make it up field, then you can describe 

you see electron field that is the field of charged particles whose excitations of are 

electrons and then, you can express the dynamics of such a field; the quantum dynamics 

of such a field as a coherent state path integral over these fields now. 
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So, that is nice because it allows for a kind of a simpler description of see the matter and 

forces can be treated on an equal footing in a more elegant way, when you do that 

because. So, I would not get into the actual deeper motivations for why people do that, 

but you know once you start using it you will see its utility to some extent.  

But in the end, it is true that many of these theories are you know I mean these kinds of 

changes in perspective are somewhat beneficial; but in a very deep sense they are still 

very cosmetic. Because it is not as if you can solve for the properties of interacting 



systems simply by transforming your perspective from a Hamiltonian to a Lagrangian 

framework. 

So, the fundamental problems namely that you are dealing with a strongly coupled 

system and so on that will still remain and there is nothing much you can do about it. So, 

ok. So, in an. So, basically what I have done next is I have shown you how to evaluate 

this path integral. So, remember in the case of quantum harmonic oscillator in terms of 

these actual physical paths x as a function of time, I had shown how to evaluate the path 

integral from using some saddle point method. 
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So, here also I should be able to show you that it can be evaluated and you get what you 

expect from traditional means in terms of the Green’s function should agree with that not 

only you should agree with the x and p path integral, should agree with the Hamiltonian 

version of the Green’s function also. 
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So, I am going to spend the next lecture probably explaining to you how that comes 

about. 
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But in the meanwhile, you should go ahead and read all this quite I mean the technical 

details can be somewhat overwhelming. 
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Because I do not know how much I can explain to you. 



(Refer Slide Time: 44:43) 

 

Because all the steps are here. So, you should not complain that I have not explained 

because I have explicitly derived everything nothing is missing. So, you just have to 

follow all the steps. So, if I even if I verbally describe what is going on, it will pretty 

much be just saying the same thing that you are seeing here. So, you just have to go 

ahead and work this out. 
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But the more interesting thing will be when I generalize all these two fermions which is 

really the reason why people do this because you can study matter fields. 
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And the fermionic coherent states are very peculiar. So, they involve the eigenvalues of 

the annihilation operator are not complex numbers they are what are called Grassmann 

numbers. Grassmann numbers are you know some anti-commuting versions of complex 

numbers. So, they are complex numbers of a very peculiar kinds. So, there is a 0 

complex number whose square is 0. So, that seems like impossible, but actually that is 

what a Grassmann number is. 
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So, you will be forced to introduce all these bizarre kinds of objects which are called 

Grassmann numbers. 
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And so, all your path integrals for fermions will involve that. 
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And then finally, we will generalize to fields. So, when you generalize to fields, you will 

understand why I am doing all this or perhaps you will not; but certainly, you will get 

some inkling as to why I am doing this. So, once we are done with that, we will move on 

to my favourite topic which is also my research area. 
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So, you see most of the top ideas in the later chapters are pretty much subjects, I mean 

ideas from my own research works. So, I want to spend some time explaining all that 



because there are some very important questions that have to be answered which have 

not yet been answered; but that is something I want people listening to these lectures to 

be able to contribute and answer. Because some of it, we are already making progress in 

some of those questions, but there are many questions which are still largely unanswered. 

So, I need time to describe those issues and that will conclude this course ok. 

I am going to stop now. In the next class, I try to wind up this path integrals using 

coherent states ok. 

Thank you.


