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Ok, so, today let us see if we can make more sense out of these Matsubara Green’s 

functions. 
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So, remember I told you that I still have to fulfil my promise of making sense of this 

original definition namely this that. So, I have not made sense out of claims such as this 

and I have to explain what; that means, physically, but in some sense well you can 

roughly convince yourself that this makes sense in the following way. 

See, after all first of all it is obvious that this corresponds to a hole propagator; that 

means, you are first creating a hole because you are removing an electron at position or 

whatever that particle is provisionally I am going to assume the electrons because, that is 

typically the type of particles that we commonly encounters in solid state physics. That is 

electrons those are the ones that participate in electronic properties basically that is why 

it is called electronic properties because it is determined by how the electrons behave in 

the solid. 

So, in any event so, the basically it is the electron that is being annihilated here at 

position r and t. So, in other words you are creating a hole first and then you are seeing 

how that hole racks have hooked in the system by running around here and there. And 

then eventually you remove the hole by or you fill the hole by inserting an electron at 

some other position r dash and at some other time t dash.  



So, the point is that remember that in the old way of when I started off discussing the 

hole propagator I simply computed the overlap between the initial and final states. 

But, now because the system is not isolated it is in contact with surroundings I have to 

take into account the fact that not all states mean the system is not going to be in a well-

defined eigen state of the Hamiltonian to begin with anyway.  

So, it is basically going to be in a superposition of all the eigenstates with some each 

state comes with a Boltzmann weight and if I also allow for the possibility of particles 

being exchanged with the surroundings then I also have this chemical potential. So, this 

is the grand canonical, so instead of the Boltzmann weight I have this grand canonical 

version of the Boltzmann weight. 

So, I end up tracing the so, in other words rather than calculating the expectation value of 

c dagger c I end up first multiplying it by the Boltzmann weight or the grand canonical 

version of the Boltzmann weight which is e raise to minus beta H naught minus mu N 

and then I divide by the normalization which is basically the trace of e raise to minus 

beta H naught minus mu N. 

So, that makes some sense, does not it? So, basically we have it makes sense because it 

certainly represents a whole propagator, but it also conforms to the fact that you are 

averaging over a whole bunch of states of the eigen states of the Hamiltonian each 

associated with an appropriate weight, which signifies how strongly the system is 

coupling to its environment ok. 

So, if you are satisfied with that intuitive explanation in fact, one should not 

underestimate the value of intuitive explanations because lot of physics I mean a lot of 

formalism can be anticipated and in fact, a lot of unnecessary detailed calculations can 

be shortened or side stepped through use of physical intuition. So, one should not 

underestimate the role of physical intuition in simplifying calculations in physics. 

In any event bottom line is that this is what it is, but now you see, what I am going to do 

is that I am going to try and convince you that if I decide to ignore the mutual interaction 

between particles then clearly the momentum becomes a good quantum number.  



And I am perfectly justified in expanding the fields in plane waves so; that means, I am 

perfectly justified in doing this. So, I am perfectly justified in writing c of r comma t. So, 

in other words I am perfectly justified in writing the r dependence as a superposition of 

plane waves and this is the amplitude. 

But more interestingly because it is a free particles because it is a free particle the time 

dependence of this operator is simply given by the time evolution with respect to the 

energy of a free particle. So, and what is the energy of the free particle? It is just h bar 

squared k squared by 2 m because p squared by 2 m and h p is h bar k and k is your wave 

vector. 

So, it is as simple as that, you see so for a free particle things are incredibly simple that 

spatial dependence of course, will involve sum over plane waves, but then the time 

dependence will be determined by the space dependence because it is a plane wave and 

the dispersion relation is fixed because it is just p squared by 2 m. So, if given that I am 

currently only interested in free particles then I can very safely go ahead and insert this 

here and it is adjoint here and then see what I get. 
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And what I get these intermediate steps are for you to be convince that this grand 

canonical ensemble in fact, leads to the same formulas if you know sum over all the 

number of particle and so on you end up with the Fermi - Dirac distribution and so forth. 

But you see, even otherwise you are going to be convinced because what is going to 

happen is that you see if I take c dagger c I will just end up getting. So, and I am taking 

the trace here in fact, that is exactly what I have done here. So, when you take trace this 

this becomes a Kronecker delta. So, basically you will have to do this and take trace. So, 

you have to first insert that here and then you have to take trace over all the particles. 
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And for taking trace you have to choose a basis in which it is the number of particles is 

basically diagonal in the number of it is a particle number basis. So, I mean these are not 

unnecessary intermediate steps they are actually very crucial intermediate steps, but that 

they are somewhat annoying and tedious.  

But the end result is quite expected and it kind of is very tempting to simply write this 

result, but you should keep in mind that it is strictly speaking it has to be derived this 

way by going all the way from here to here, but having obtained this result it is kind of 

believable it is so believable that it is tempting to ignore the derivation. 



So, basically what this says is that the hole Green’s function is simply related to your 

average of your particle number; that means, the average number of particles with 

momentum k. So, that is all it says that basically it is the Fourier transform of the 

average number of particles in momentum state k. So, that is the physical meaning of the 

hole Green’s function in momentum space. 

So, now you see it is general enough to accommodate both fermions and bosons if you 

select sigma is minus 1 you get fermions if you select sigma equals 1 you are describing 

bosons, but keep in mind that we are still working in the grand canonical and symbol. 

So, that is the chemical potential you have to keep dragging along all over the place, but 

as I told you repeatedly you see in stat mac if your system sizes are large. So, you can 

still study a canonical ensemble symbol which is more typical by just relating the 

chemical potential to the average number of particles. 

So, you just calculate the average number of total particles and then you can relate the 

chemical potential to the average density of particles in your system. So, you might think 

that you know how does that correspond to canonical ensemble, because in the canonical 

ensemble the there is no such thing as average number of particles.  

The number of particles is strictly fixed, but the claim is that you know when system 

sizes are large it is also fixed even in the grand canonical ensemble because even though 

in principle the number of particles in the grand canonical ensemble can fluctuate, but 

those the sizes of that fluctuations are extremely tiny compared to the average number of 

particles. 

So, in fact, even in the grand canonical ensemble it is safe to say that the number of 

particles is fixed in the thermodynamic limit. So, that is the reason why the grand 

canonical ensemble becomes equivalent to the canonical ensemble in the thermodynamic 

limit. So, similarly you can ask yourself what would happen if you had a an electron 

Green’s function; that means, you decided to first create an electron and then propagate it 

and then you destroy it. 

So, clearly you get a different function which corresponds to the number density of 

holes. So, this is the number this is the particle number density, well in some sense it is 



yeah, this is the number of density of the actual electrons this is the number of density of 

whatever remains. So, if sigma is minus 1 is just 1 minus n k.  

So, it is difference between this is the left over thing. So, the point is that if you add these 

two you are bound to get Dirac delta functions means you will rather you will get at t 

equal to t dash you are going to get a Dirac delta function ok. 
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So, that is to be expected because that is going to correspond to either the average of the 

commutator or the anti commutator. So, basically if you have c dagger r dash t and then 

you decide to add c dagger r dash t c r t basically this will correspond to you know the 

particle Green’s function and this is the hole Green’s function. So, in some sense so, if 

you add these two it is just the anti commutator of c and c dagger which is clearly Dirac 

delta because it is the times are equal at equal times ok. 

So, now, let us get to something little bit more interesting and that is I am going to point 

out that I am going to show you that there is a nice connection between G greater and G 

less and that connection is in fact, more general than what I have displayed here.  

So, I have actually verified this for you know the Green’s function of free fermions and 

free bosons, but notice that it is free bosons because you see the dispersion is h bar 



squared k squared by 2 m, but it does not have to. So, this so, called KMS boundary 

condition that I am now going to derive is more general it is applicable always ok. 

So, the point is that if you take one of the times and decide to formally set it to minus i 

beta h bar. So, you might be wondering what right do I have to do that, but just you know 

just imagine that you forcibly set t to minus i beta h bar and just see what sort of 

algebraic expressions you get.  

So, what you get is basically this expression becomes this expression. So, this one 

becomes this. Now, you exploit this identity because after all what is n sigma, n sigma is 

this because of this is the n sigma you can easily verify that this is valid. So, because of 

this you can go ahead and insert this instead of this ok.  

So, when you do that low and behold this becomes the basically the hole Green’s 

function because you started off with the particle Green’s function and then you set one 

of the times to some very funny imaginary value of the time. And by selecting the proper 

imaginary value of the time you have succeeded in converting what is basically an 

electron Green’s function into a hole Green’s function but then that is back at time t 

equal to 0. 

But, then there will be some pre factors there. So, that pre factors will have different 

signs depending whether you are dealing with fermions or bosons. So, if you are dealing 

with sigma equals minus 1 you are dealing with fermions and if it is plus 1 you are 

bosons. So, the bottom line is that this is called Kubo – Martin- Schwinger boundary 

condition. 
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This is very important and in fact, we will be using this repeatedly in our discussions of 

Matsubara Green’s function. 

So, now that I have convinced you ok, I have not really convinced you that I have just 

derived you I have just derived this KMS boundary condition for the case of free 

particles, but I have not strictly convinced you that it is valid always. So, I told you that 

there are many things like this which I would not be able to explain you know I cannot 

explain everything in a lecture. So, some of these interesting questions I will have to 

either work it out in a special tutorial or I have to allow you to work it out in an actual 

exercise or an assignment ok. 

So, that we will decide later on, but now let us provisionally accept that this is valid not 

only for free particles, but it is also valid in general. So, if it is valid in general then you 

see for a system that is in equilibrium clearly the most general form of the ok. Now, I 

have switched gears and I am speaking of time ordered Green’s function I think 

somewhere down the road or even earlier I introduce the time ordering yeah. 
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So, this time ordering remember I actually started off this way, I started off with time 

ordering and the time ordering is in this imaginary so, when the times are actually 

imaginary. So, I am going to continue that way. So, if the system is in equilibrium it is 

perfectly legitimate to think of the times as being on the imaginary axis.  

And then once you decide once you commit to a certain type of Green’s function 

whether it is particle or hole Green’s function by selecting the order in which the t’s and t 

dash occur, having done that after committing to a particle or a hole Green’s function 

then of course, you can go ahead and analytically continue the times to a real times if 

you wish. But when you are dealing with this formal time ordering you are forced to 

imagine the times to be on the complex plane; that means, you are forced to imagine that 

the times are purely imaginary. 

So, now you see given that. So, the reason why I have written it like this is because you 

see when t is minus i beta h bar it is clearly minus i beta h bar is the largest possible time 

because all the times lie in this interval and this is increasing this is the direction of 

increasing times. So, if t is minus i beta h G greater is basically same as G because after 

all what is G greater, G greater is basically the particle Green’s function; that means, the 

annihilation to should be to the left of creation. So, you have to first create and then 

annihilate. 



So, that means, that see the time ordering is automatically the same as particle Green 

function for this particular time. So, conversely if you are dealing with t equals 0 that is 

the smallest possible time. So, then the time order Green’s function is automatically the 

hole Green’s function, because see the time ordering now forces the greater time to come 

to the left and the greater time is the one that creates rather than annihilates. 

So, then the creation comes to the left of the annihilation. So, you are first annihilating 

and then creating; that means, it is a hole Green’s function. So, that is why this makes 

perfect sense ok. So, this this relation was relating the particle or electron particle 

Green’s function to the hole Green’s function, but this relates the time ordered Green’s 

function to itself ok. So, that is the difference. 

So, you see if this is the case then we know that basically in equilibrium the system is 

translationally invariant in both space and time. So, what; that means, is if you look at 

say if you look at the Green’s function at point r and r dash; that means, you have either 

created or annihilated at r and you have annihilated or created at r dash, in that case if I 

shift my coordinate system to some other location. So, I just shift the origin of my 

coordinates without rotating or anything you just shift it parallel to itself to some other 

location. 

So, then that r will go to r plus r 0 and r dash will also go to r dash plus r 0 because I 

have shifted by a fixed amount. So, then you see, clearly we do not expect the Green’s 

function to depend on r 0 because the system is translationally invariant. So, it should 

only depend upon where r dash is relative to r; that means, if I sit at r it only matters 

where r dash is seen while sitting at r. So, it does not matter where the origin is that is 

pretty arbitrary. 

So, therefore, the Green’s function should clearly depend on the difference between r and 

r dash so, similarly with times as well. So, it should only matter what the duration that 

has elapsed between t and t dash. See, that those that is the duration between which you 

do the creation and the annihilation. So, it does not matter when you start or end 

basically the system is in equilibrium so, it should not matter. 



So, if that is the case then clearly when I Fourier transform I will of course, as usual go 

with the plane waves because the system is translationally invariant, but then I can 

introduce certain frequency. So, you see normally when you do Fourier transform 

because the times are all continuous quantities. So, I should be doing a Fourier transform 

rather than a Fourier series because normally if you do not know the nature of the time 

dependence the most general thing to do is would be a Fourier transform. 

But now we know that there is a sense in which the Green’s function is has a flavour of 

being periodic because of this KMS boundary condition. So, the KMS boundary 

condition allows me to kind of relate these Green’s function to something that is 

genuinely periodic.  

So, if you have a Green’s function that is in fact, genuinely periodic then we all know 

that such a Green’s function can be written as a Fourier series instead of a Fourier 

transform. So, that is pretty much what this is. So, it is a series it is a series in discrete 

frequency. So, the frequency is now are no longer continuous they become discrete. 

And now the question is now, what we have to do is we have to find out what those 

discrete frequencies are? So, in order to find that we of course, insert this relation into 

this supposed series expansion. So, when you do that you are forced to conclude that the 

as frequencies have to obey this sort of relation.  

So, that means, this complex number of unit modulus should have this relation that is 

either plus or minus 1 so; that means, that basically the argument of this exponent should 

either be an odd multiple of pi if sigma is minus 1 or an even multiple of pi if sigma is 

plus 1. 

So, in other words z n itself is an odd multiple of pi divided by beta h bar for fermions 

and it is an even multiple of pi divided by beta h bar for bosons. 
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So, these are called bosonic and so, this is called the fermionic Matsubara frequency and 

this is called the bosonic Matsubara frequency. So, similarly your Dirac deltas also have 

to obey this bosonic fermionic periodic boundary conditions in imaginary time ok, 

because every function basically has to obey periodic boundary condition of the certain 

imaginary time because that is how it is ok. 
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So, now, you can go ahead and convince yourself that the this G that I defined using this 

grand canonical statistical averaging of my you know particle and hole Green’s 

functions; that means, by rather this particle hole operator c c dagger or c dagger c I 

average them out using grand canonical statistical averaging by inserting this weights. 

So, see, that kind of a physical definition will certainly give some quantity, but the big 

question is; does it deserve to be called a Green’s function?  

Or does it deserve to be called Green’s function? Because the word Green’s function is 

associated with the mathematician Green I forget the rest of the details, but I should 

probably look it up. But bottom line is Mister Green was a mathematician and he showed 

that his Green’s function he had no inkling or understanding of many body theory, but he 

knew that his Green function always obeys this equation. 
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So, the question is that unless we can demonstrate that this quantum statistical definition 

of our so called Green’s function which is obtained by quantum statistically averaging 

particle hole or hole particle creation operators, also obeys the same equation that Mister 

Green invented then only we have a right to call that Green’s function. 

So, what I have done in these lines is to demonstrate precisely that. So, I have been able 

to show that first of all this particle and hole Green’s function trivially obey this, but then 



remember that because the time ordered Green’s function are related to the particle and 

hole Green’s function in this way, because you see if you are talking about the particle 

Green’s function t is greater than t dash. Oh, sorry I made a mess it is t dash greater than 

t ok yeah one of them is t greater than t dash the other is t dash greater than t. 

So; that means, if t is greater than t dash right. So, that means, your this is same as this; 

that means, if t is greater than t dash we are supposed to put whatever is greater on the 

left of whatever is smaller. So, so; that means, in effect what you are doing is you are 

first creating a particle and then annihilating it. So, G greater is basically the particle 

Green’s function, conversely if you decide to make t less than t dash then you are 

supposed to put the thing which is smaller which is this one to the right. So, the greater 

should always to be to the left. 

So, it will become like this and it will pick up a sign depending upon whether it is boson 

or fermion, because we know when you interchange you are supposed to pick up a sign 

if it is a fermion minus sign, if it is boson you pick up a plus sign which is same as not 

picking up a sign. So, bottom line is that if t is less than t dash you are supposed to first 

annihilate and then create.  

So, it is a hole Green’s function. So, basically this is particle and this is hole. So, your 

time ordering is basically some linear combination meaning it is either one or the other 

depending upon which one is greater ok. 

So, but then see if you go ahead and formally try to see what equation what evolution 

equation this G 0 obeys then you immediately you will see that it obeys this equation 

because there will be a delta function in time, because you will be differentiating the step 

function which gives you delta function, but then the delta functions after differentiation 

that you get will force this to become t dash and it will force to add these two, but then 

adding these two with an appropriate sign, well actually they will subtract rather than 

add, but it will end up becoming this Dirac delta here ok. 

So, bottom line is that this quantum statistical definition of the Green’s function while 

not initially obvious that it deserves to be called Green’s function with some effort you 



can show that in fact, it does deserve to be called a Green’s function, because it obeys 

this equation ok. 
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So, then you can go ahead and convince yourself that this this coefficient you see this 

this is the Fourier coefficient of this G 0 the time ordered Green’s function therefore, has 

this very simple interpretation ok. 

So, it basically gives you is the reciprocal of a function or basically it is a it is an 

algebraic function which has poles so; that means, basically it. So, this function has poles 

whenever i h bar becomes E k minus mu. So, you see there are these simple poles. So, in 

that sense this Green’s function is extremely simple and algebraic in its nature, but you 

see this is only for free particles because after all I have assumed that E k epsilon k is h 

bar squared k squared by 2 m. 

So, you see k is anyway always good idea to introduce even when the system is not 

consisting of free particles. So, long as the system is translationally invariant k is anyway 

good quantum number, but then you see even though k is a good quantum number even 

when there are interactions in the system so, long as the system is translationally 

invariant epsilon k is not a good idea because epsilon k by definition is h bar squared k 

squared by 2 m, but that is only kinetic energy.  



But then when particles interact with each other you also have potential energy so, you 

cannot really do this. So, the way to introduce that and then you see that the potential is 

anyway very dynamical because it is mutual interaction between particles. 
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So, the way you introduce that is through what is called as self-energy rather than as 

writing epsilon k you postulate that there ought to be something else and after all what is 

that something else it cannot I mean it cannot be anything, but a function of k and z there 

is nothing else there. So, the most general situation is when you are able to write down 

some function of k and z n. So, it is customary to write it as this ok. 

So, later on we will discuss some implications of these ideas you know what this means 

and how to go about calculating sigma, you see that is one of the central questions in 

many body theory how to calculate the self-energy of a system of interacting particles. 

So, it is by no means an easy task it is very difficult and there are many methods that 

people use there is something called the loop expansion. So, you have this single loop 

double loop and so on. 

So, we will try to touch upon those issues we will not be doing full justice to those ideas 

because as I said this course is mostly about informing you about the topics that are 



worth learning it is not to fully teach you those topics, just tells you that these are the 

things that you should go ahead and learn ok. 

So, I am going to stop here in the next class I will start from here, I will tell you what are 

the consequences of choosing either this or this you know there are some physical you 

know ramifications and implications of choosing this as your Green’s function. We have 

not really chosen it we have derived it, but then this itself has some it is own intrinsic 

physical meaning which we can extract through it is real and imaginary parts ok. 

So, and especially this the imaginary part of this quantity has an immensely important 

physical meaning, which I am going to discuss in the next class. So, I am going to stop 

here let us meet in the next class. 

Thank you.


