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Consider now a general function F(p,q.). We wish to determine its rate of change
with respect to time. This function changes with time due to two possible rea-
sons. First, it may be explicitly time dependent. Second, because it depends on the
dynamical variables which themselves change with time according to Hamilton's
equations. Thus we may write,
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Now it is easy to see the condition for a dynamical variable to be a constant of the
motion. If a variable does not depend on time explicitly or implicitly, then it follows
that its Poisson bracket with the Hamiltonian should vanish

(FHY=0 (132)
Since {H,H} = 0 it follows that if the Hamiltonian is explicitly time independent
then it is also implicitly time independent, or it is a constant of the motion. Two

variables A and B are said to be conjugates of each other if {A, B} = 1. The sim-
loct ovg o they are tecaf eanather f L \ Lif 3

So let us continue with where we left off if you recall that in the last class I had stopped
here where I derived the Hamilton’s Equation of Motion, Hamilton’s equation of motion
is another way of studying constrained systems as an alternative to the Lagrangian
approach. So, there are two approaches to study systems where there are constraints in a
convenient way and one approach is the Lagrangian formalism and an equivalent

approach is the Hamiltonian formalism.

So, the reason why I am studying the Hamiltonian approach is because it is conducive to
introduce a notion called flow and using flows we can study certain symmetries which
are not obvious and they are called for example, dynamical symmetries. So, we will be
encountering them shortly. So, the bottom line is that the Hamiltonian approach is ideally
suited for studying a class of symmetries called dynamical symmetries and more

generally symmetries themselves ok.



So, before I do that I have to remind you of a notion which is very familiar in classical
mechanics and that is the notion of the Poisson bracket, bottom line is that it is possible
to define what is called a Poisson bracket. So, the Poisson bracket is defined in this way.
So, if A is a function of position and momentum q and p the Poisson bracket is defined as
in some sense it is it i1s analogous to a cross product if you remember [ mean see if you if

you remember A cross B the z component would be A, B, — A, B,.

So, this is something like that. So, you have a derivative with respect to q so, A with
respect to q, B with respect to p minus A with respect to p B with respect to q. So, that is
reminiscent of the z component of the cross product. So in fact, there are some
connections like that which you can make more rigorous, but bottom line is that this is
how you define the Poisson bracket of two quantities which are functions of position and

momentum.

Now, the utility of this concept is that you can describe the rate of change of any function
of the position and momenta in terms of the Poisson bracket of that function with the
Hamiltonian function. So, in order to see that consider some general function F which is
a function of p and g. So, the time dependence of the function could be because p and q
depend on time through the trajectory or it could also of course, be an independent

function of time unrelated to the trajectory.

So, regardless this function is going to depend on time either because it depends on the
trajectory which depends on time or independent of the trajectory there is already time
dependence. So, in which case suppose I decide to find out how what is the rate of
change of this function with time. So, I have to first of course, account for the intrinsic

time dependence of the function by differentiating with respect to time.

So, then I should not forget the implicit time dependence. So, in order to account for the
implicit time dependence I differentiate the function with respect to one of the
coordinates or momenta which depend on time. So, in this particular case I decide to
investigate how the time dependence comes about because of dependence on the
momentum. So, I use my chain rule and I first differentiate with respect to momentum

and then I differentiate momentum with respect to time.



So, similarly I do it for the position because that could also of course, be dependent on
time. So, I differentiate with respect to position and then I differentiate position with

respect to time. So, when I do that I then take into account (Refer Time: 05:03). So, I

dH
take into account the Poisson bracket and I will be able to write H in this way d—q = I
t p
. ..dp dH
whereas, this is — = — —.
dt dg

So, I insert these things. So, that is it comes from my Hamilton’s equations which are the
analogs of the Lagrange equations. So, when I insert this I will find that this in fact, is
the Poisson bracket of F and H. So, you can see that the rate of change of any general
function with time and of course, depends upon its rate of change due to reasons other

than the trajectory.

But if you want the rate of change due to the trajectory of the particle then all you have
to do is find the Poisson bracket of that function with the Hamiltonian. That is going to
tell you the rate of change of the function solely due to the trajectory of the particle

which of course, changes with time.

So, if you want to find constants of the motion it stands to reason that you have to first
select functions which are intrinsically independent of time, but depend on time possibly
only through the trajectory, but then you further find functions whose Poisson bracket
with the Hamiltonian vanishes in which case you will succeed in finding a function
which depends on the trajectory which happens to be a constant even though the

trajectory itself is not.

So, in other words the trajectory changes with time. So, p and q change with time, but F
(p,q) does not. So, that is because you have cleverly selected an F which obeys the
Poisson bracket relation that F Poisson bracket H is 0 ok. So, as a corollary it also
follows that since H Poisson bracket H is 0, it follows this H itself is a constant of the

motion it is a conserved quantity if it is explicitly independent of time.



So, if the Hamiltonian of the system does not contain some extraneous time dependence
unrelated to the trajectory then it is automatically guaranteed to be a constant of the

motion. So, in other words it is guaranteed to be a conserved quantity.
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variables A and B are said to be conjugates of cach other if {A,B} = 1. The sim-

plest example is g, p—they are conjugates of one another for, {g, p} = 1, if ¢ is an
angular displacement, then p would be the corresponding angular momentum / so
that {6,/} = 1

The Countable and the Uncountable

Figure 1.5: A French mathematician and physicist. Simon Denis Poisson (21 June

So, there is a definition that I want to introduce and that is the notion of a conjugate. So,
A and B are said to be conjugates of one another if A Poisson bracket B is 1. So,
specifically for you can see that is obeyed for the very well-known pair which is the

generalized coordinate and its corresponding momentum p.

So, if q is your generalized coordinate and p is your corresponding canonical momentum
you will see that the Poisson bracket of q and p is 1. So, for example, if q is an angle p
would be the corresponding angular momentum and the Poisson bracket of the angle and

the angular momentum is 1 ok.
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Figure 1.5: A French mathematician and physicist, Simon Denis Poisson (21 June
1781 t0 25 April 1840) was a master of a wide range of topics such as classical me-
chanics, analysis, probability theory, electromagnetism, and differential equations.
His study of stability of planetary systems stands next to that of Laplace and his
work on classical mechanics influenced the work of William Hamilton. He derived
the Navier-Stokes equation independent of Claude Navier and was the last great
supporter of corpuscle theory of light, which was shown to be flawed and replaced
by the wave theory

1.3 Flows and Symmetries

We may think of Hamilton's equations for the coordinates as a kind of flow with
respect 1o time. The answer to the question of how the coordinates and momenta
ge with time is determined by integrating Hamilton’s equations. We could
erested in how the coordinates and momenta change with re-
spect to some other variable. To be concrete, let us consider a system in two dimen-
sions 5o that x,y, py, py are the coordinates in phase space. These change with time
in 2 manner determined by integrating Hamilton’s equations, as we have pointed
out earlier. But now, imagine instead that we rotate the coordinate system by an
, then the coordinat d momenta ge with 0. If we denote the new
coordinates by x(at), y(t), p(ct), py(ct),

Z,(t) = cos(0) Z + sin(at) Zy

So, now, I am ready to introduce the notion of flows and symmetries.
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Ficld Theory

Z,(a) = —sin(at) Z, + cos(@) Z, (1.34)

where Z, is one of x, p, and Zy is one of y, p,. We wish to see these as the conse-
quence of integrating a pair of equations analogous to Hamilton's equations where
the flow parameter, namely time 1, is replaced with this angle a. In Eq. (1.29) we
may see that the left side contains time as the parameter of differentiation. The
right-hand side involves the Hamiltonian. Just as we may think of linear momen-
tum and linear coordinates as canonically conjugate variables and angular momen-
tum and angular coordinate in a similar manner, we may intuitively suspect that
the same must be true for time and Hamiltonian. However, this cannot be made
rigorous since time is a parameter and not a dynamical variable. We shall merely
be content at using this as a cue (o wite the analog of Hamilton’s equation in case
of general flows. If o is some parameter with respect to which we need the flow,
variable G such that,

ay suspect that there exists a canonically conjug

d G d G &
—p = == — (1.35)
do dg " da’ dp
Here {&, G} = L and p = py, py and ¢ = gy, gy. There are some important properties
thatare worth noting. First, we show that G is independent of ¢, To do this consider,

d
d

d Glrg)= dp 3G(p,q)  dq 9G(p.q) (i3
[ da. dp do. dg

If o is the angle alluded to in Eq. (1.34), it s easy to see that since g, () = x (y),

G d

G
S y(0) = ~x{a)= (1.37)
dp, " da W9

d
x(o) = y(a) =
0 Py

dc
Similarly,

d G d

Which is why I introduce the Hamilton formalism of classical mechanics, because that is
the formalism that is ideally suited to describe flows and these specific types of
symmetries that are called dynamical symmetries. So, the question is how do I describe
flows. So, see one obvious kind of flow is the trajectory itself so; that means, that the

position and momentum of the particle depends upon an obvious parameter namely time.



So, the particles position and momentum and phase space flows with time. So, that is an
obvious kind of flow, but there are other types of flows which are unrelated to the
particle moving in time. So, you can imagine for example, a simple rotation. So, you can
imagine rotating your coordinate system in such a way that all vectors their components
get mixed up so; that means, the x component of the vector in the new coordinate system
is a linear combination of the x and y components in the old coordinate system. So, that

is your familiar rotation around the z axis.

So, if you decide to do that then you will see that you can of course, easily express the x
and y component of that vector in terms of these angles cos(a), sin(a) and so on. So, this
is very familiar to all of us and Z is any vector it could be your position in 2 dimensions
which is described by x and y components or the linear momentum of the particle which

is described by px and p y.

So, now see just as Hamilton’s equations allow us to describe the way in which
momentum and position flow with time I want to be able to describe the flow of
momentum position not with time, but with this angle alpha. So, I want to know if there
is a analogous quantity to the Hamiltonian which I now call G. So, this is G is my G is

the analog of the Hamiltonian.

So, if this alpha was time if this alpha was time then G would in fact, be the Hamiltonian
itself, but then now alpha is not time it is it is an angle of rotation in the x y plane. So,
the question is that is there an analogous notion to the Hamiltonian which will enable me
to write the flow equations in the same way, but except instead of time I write angle
instead of the Hamiltonian I write this new function G. So, the immediate question that I

have in front of me is that [ want to know what that G is ok.

So, first I am going to show that the G does not flow with time just like we saw the
Hamiltonian does not flow with time here G does not flow with alpha ok. So, I am going
to show you that G is independent of alpha of course, assuming it is explicitly

independent of alpha to begin with.

So, let us write down the rate of change of G with respect to alpha and using chain rule it

is going to look like this. So, it is G changes with alpha because G changes with p and p



changes with alpha. So, I get this term and then G changes with as q changes G also
changes. So, the dependence of q on alpha is going to be important in determining how

G changes with alpha as well ok.
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quence of integr: air of equations analogous to Hamilton's equations where
the flow parameter, namely time , is replaced with this angle .. In Eq. (1.29) we
may see that the left side contains time as the parameter of differentiation. The
right-hand side involves the Hamiltonian. Just as we may think of linear momen-
tum and linear coordinates as canonically conjugate variables and angular momen-
tum and angular coordinate in a similar manner, we may intuitively suspect that
the same must be true for time and Hamiltonian. However, this cannot be made
rigorous since time is a parameter and not a dynamical variable. We shall merely
be content at using this as a cue to write the analog of Hamilton's equation in case
of general flows. If ot is some parameter with respect to which we need the flow,
we may suspect that there exists a canonically conjugate variable G such that,

d 96 /d G

] (1.35)
do’

{—9
dg ' da’  dp
Here {et.G} = 1 and p = py, py and g = gy.q,. There are some important properties
that are worth noting. First, we show that G is independent of a.. To do this consider,

- dp 3G(p.q) dq 9G(p,q)

) G (1.36
,q)
209 36)

do dp do dg
If ouis the angle alluded to in Eq. (1.34), it s easy to see that since g, () = x (y),

d 9 d 90
(o) =y(o) = =— 1 —y(a) x(o)
do; dp, " do apy

Similarly,

d (0 (] L (a (1
(0 = pyl0K) s =Dy = = px(0)
! : o da ;

4G
dy

d dp, 9G(p,q) dpy 9G(p,q)
Glp,q) = u
do

do. dp, do. dpy

So, having done this I insert my putative Hamilton’s flow equations into this and then if
there exists a G which obeys this sort of a relation then it is obvious that this quantity ok.
So, now, I am going to specifically make use of the fact that this alpha actually

corresponds to an angle of rotation in the x y plane.

So, if that is the case then I can explicitly write down. So, for example, this q could be
the x component. So, by this [ mean q could be x or q could be y. So, as a result if q is x
then my p is p of x, but if q is y then the corresponding p is p of y that is what I mean ok.
So, bottom line is that suppose I select my q to be x then I know that the rate of change
of x with respect to alpha is y why is that? Because it is actually a rotation you see. So,

this is my x of alpha ok.
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spect o some other variable. To be concrete, let us consider a system in two dimen-
sions so that x, y, p, py are the coordinates in phase space. These change with time
in a manner determined by integrating Hamilton's equations, as we have pointed
out earlier. But now, imagine instead that we rotate the coordinate system by an
angle @, then the coordinates and momenta change with a. If we denote the new
coordinates by x(0t), (o), pe(@), py(ct),

Z,(0t) = cos(0) Z + sin(at) Zy (1.33)

Field Theory

Zy(a) sin(a) Z, + cos(a) Zy (1.34)

where Zy is one of x, py and Z, is one of y, py. We wisl: 1o see these as the conse-
quence of integrating a pair of equations analogous to Hamilton's equations where
the flow par ely time , is replaced with this angle . In Eq. (1.29) we
may see that the left side contains time as the parameter of differentiation. The
right-hand side involves the Hamiltonian. Just as we may think of linear momen-
tum and linear coordinates as canonically conjugate variables and angular momen-
tum and angular coordinate in a similar manner, we may intuitively suspect that
the same must be true for time and Hamiltonian. However, this cannot be made
rigorous since time is a parameter and not nical variable. We shall merely
content at using this as a cue to write the analog of Hamilton's equation in case

we may suspect that there exists a canonically conjugate variable G such that,

(1.35)

So, this is my x x of alpha. So, if this is my x of alpha. So, this is my x and y. So, this is
my x and y. So, if I do d by d. So, if I do d by d alpha of x. So, what I am going to get is
minus sin alpha x plus cos alpha y which is nothing but this one. So, therefore, this is
equal to y of alpha ok. So, d by d alpha of x alpha is nothing but y of alpha because alpha

has the specific interpretation of angle of rotation in the x y plane ok.

So, as a result from here so, you can conclude that this is equal to this because of this
relation ok. So, d by d alpha of x alpha from the flow equation it is d G by d p x. So, that
is going to be y alpha because of the specific interpretation of alpha being the angle of
rotation. So, similarly d by d alpha of y alpha is minus x alpha, but then these two are

equal for the same reason that this if I replace q by y this is going to be correspondingly

pofy.

So, I get these types of relation then I can also ask the same question about what is d by
d alpha of p x instead of asking d by d alpha of x I can ask what is d by d alpha of p of x
then clearly analogously that is p of y. And, so now, the bottom line is that these two are
also related again by a flow, but then keep in mind that for the rate of change of
momentum with that flow parameter is comes with a minus sign there. So, it is minus d

G by d x in this case because we are talking about p x this is x.
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we may suspect that there exists a canonically conjugate variable G such that,

d G /d G

p (135)
do’

-—{—q

g da’ p
Here {®t,G} = 1 and p = py, p, and ¢ = gy.q,. There are some important properties
that are worth noting. First, we show that G is independent of ¢, To do this consider,

dp 3G(p,q)  dg 9G(p.q)

i
‘;a(;;,y“,\ (136)

da dp do  dg

If ot is the angle alluded to in Eq. (1.34), it is easy to see that since ¢, () = x (),

d G d G
—x(0t) = y(ot) = =—— 3 —y(0) = —x(@) = (1.37)
do, dp, " do apy

Similarly,

J9G

d 96 d
pul0) = py(at) § @) = pdo) = -5
dy

dot ox " dot
d dp, 9G(p,q) dpy dG(p.q)
= G(p,g)=—= R -
a do dp, da dp,
dx 3G(p.g) dy 9G(p.q)
do oy do dy
Py(0) y(0) + pe o) x(0t) = y(ot) py(er) = x(e) pyle) = 0. (1.39)
"Thus the conjugate does not low relative to the flow parameter. This is more casily

seen by the general statement,

d
do

0 i(» (0.6} (1.40)

So, having done all this we can now insert. So, we can insert these relations into this
equation which is just chain rule. So, there is no physics here this chain rule, but this is
what we expect if there is such a G we expect this and this alpha is due to rotations. So,
now, if you insert that you will see that this is actually 0 all the terms cancel out. So,
what that is basically telling you is that if G is explicitly independent of the flow

parameter.

And it only depends on the flow parameter through the momentum and coordinates then
that quantity is independent of the flow parameter that is guaranteed to be independent
for the flow parameter, if it indeed generates the flow the way we expect it to namely by
through this these relations. So, if G is responsible for generating the flow it is bound to

be independent of the flow parameter itself ok.
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when Q = G, G is seen to be independent of the flow parameter o if G depends
on o only through the phase space variables. We may see that Eq. (1.37) and Eq
(1.38) are consistent with the statement,

Glg,p) = poy - pt (141)

This is nothing but the component of the angular momentum along the —z axis.
Thus, angular momentum is conjugate to (also*known as a generator of) simple
rotations in coordinate space. Later when we discuss Noether's theorem we will
see that there is a different kind of rotation that mixes coordinates and momenta
that also has a generator distinct from angular momentum,

1.4 Dynamics of a Continuous System

We now turn to a discussion of continuous systems. The problem at hand is to gen-

eralize the earlier sections to accommodate situations when the number of
of freedom are an infinity of the continuous kind. Specifically, this involves
preting the list of coordinates {g;;i = 1,2,...,N} by a function of a parameter s such
that the list is now written as {gy;s € [a,b] } where s is a continuous variable belong-
ing to an interval [a, b, for fields in one dimension, {g, s ;5. € [a,b],s, € [¢,d]} for
fields in two dimensions, and so on, which now replaces the index i that was used
while describing a system with a finite number of degrees of freedom. In the pro-
cess of making this generalization, we will have occasion to reinterpret various
definitions related to the discrete index that characterize the number of degrees of
freedom. For instance, the summation L\ 1 F(gi) will have to be reinterpreted as,

N b
Y Flg) = [ dsF(g,) (142)

So, more generally you can write something like this if it explicitly involves the flow
parameter any quantity will have the Poisson bracket. So, remember that we did f alpha
was time G was Hamiltonian and there was a Poisson bracket with respect to the
Hamiltonian, but now instead of time you have a flow parameter. So, you have this new
type of relation there. So, now, the question is what is G therefore, for this rotation in the

x y plane.

So, now you can easily convince yourself that of course, you can actually derive this if
you wish, but it is easier to just by integrating these two relations you can actually write
down what G is and that G is p x into y minus p y into X. So, if you do not feel up to it
you can simply assume this and you substitute this back here you will see that it you
substitute 1.14 into 1.38 ok. So, then you will be well basically it is going to be an
identity when you do that 1.38 becomes an identity when you substitute 1.14 into 1.1 1
into 1.38 ok.

So, bottom line is that what that says is that the rotation interpreted the angle of rotation
interpreted as a flow parameter the quantity that generates that flow is basically the z
component of the angular momentum. So, just as the Hamiltonian generates flows with
respect to time the angular momentum generates flows with respect to rotation. So, that

is very nice to know that it is possible to think like this ok.



So, later we will see more substantial application of this idea namely that we will be able
to show that every continuous symmetry leads to a conserved quantity and that is called

Noether’s theorem which I am going to discuss in a couple of lectures.
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1.4 Dynamics of a Continuous System

We now turn to a discussion of continuous systems. The problem at hand is to gen-
eralize the earlier sections to accommodate situations when the number of degrees
of freedom are an infinity of the continuous Kind. Specifically, this involves reinter-
preting the list of coordinates {g;i = 1,2,...,N'} by a function of a parameter s such
that the list is now written as {q;s € [a,b] } where s is a continuous variable belong-
ing to an interval [a, b, for fields in one dimension, {g, s ;5 € [a.b],s, € [¢,d]} for
fields in two dimensions, and so on, which now replaces the index 7 that was used
while describing a system with a finite number of degrees of freedom. In the pro-
cess of making generalization, we will have occasion to reinterpret various
definitions related to the discrete index that characterize the number of degrees of
freedom. For instance, the summation £.¥ F (g;) will have to be reinterpreted as,

N b
Y Fla) / dsF(gy). (142)

This would be the case if the fields were described in one dimension. In, say, three
dimensions they would be.

N
Y Flg / PsFlgyss) (14)
= seq

A term such as a difference between successive values would be a derivative.

| )
Flgis1) - Flqi) Klw‘: (1.44)
ds

Now, just as we may differentiate and integrate with respect to the discrete number
of degrees of freedom, we may do so even when there are a continuum of them.

So, now, let me shift gears and try to explain how to go from a system of finite number
of particles to a system like a fluid where there is no sense of individual particles, but a
continuum. So, the bottom line is that you see the title of this course is dynamics of
classical and quantum fields. So, the implication there is that I should be discussing
systems where there is no graininess involved in other words the system has not only

infinitely many subsystems, but they are all so close to each other.

So, it does not make sense to talk of them as being countable that is being separated in
some sense. So, they are all part of one continuum and being able to study the dynamics
of such a system is very useful ok. So, mathematically how would you make that
transition from a system with finitely many parts to a system with infinitely many parts

which are part of a continuum.

So, imagine you have say a set of generalized coordinates to begin with labeled by i
which goes from 1 to N. So, you have q 1 q 2 q 3 all the way up to ¢ N. Now see if you

wish to generalize this to a situation where there is a continuum what you do is, you



replace this 1 with a continuous parameter called s which is in some interval between a

and b where a and b are some real numbers.

So, that would be for example, if you want to describe fields in one dimension you
would do this, but else you would be describing you know you can have that parameter
need not be just one you know one real number it could be a collection of real numbers.
So, that would be necessary for example, if I want to describe the electromagnetic field

for example.

So, the electric field at a given point is itself a dynamical variable, but that point is now
no longer described by a discrete index where it is this collection of x, y and z, where x
is a continuous variable a real number from minus to plus infinity, y is a continuous real
number from minus plus infinity, z is continuous from minus to plus infinity. So, at every

such point there exists a dynamical electric field.

So, there is a separate dynamical degree of freedom at each point x comma y comma z
and that x and y and z are continuous variables they are not discrete. So, you have not
only do you have infinitely many the electric field candidates, but also those that infinity

1s of the continuous kind.

So; obviously, if we encounter situations where we would normally sum those quantities
suppose you have a function of these discrete variables and you want to sum all of them,;
obviously, when you are talking about fields you would not be summing them you would

be integrating them from some starting to some ending point ok.

So, if you have more number of indices then you would be integrating over all of them
like this. So, that is what summation would look like; obviously, look like integration
because we are now going to be studying the transition to a continuum. So, similarly if I
am talking about differences between successive you know functions of functions where
the discrete index indices are successive. So, that; obviously, corresponds to the notion of
a derivative when you go to the continuum case. So, that is what it is going to look like

ok.
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14 Field Theory

Consider a function of all the N degrees of freedom : R(g),¢»......qy). We may
contemplate differentiating with respect to one of these coordinates - ;,L; R(g) (here
q refers to the list of all possible coordinates). Then,

0

J
» —R(q) (1.45)
s

d o)
0 7

Using this we may derive some basic identities in functional differential calculus.
The first of these is,

) i,
qr=0(s-s) (1.46)
dg
where s could mean a single continuous variable or two or three continuous vari-
ables depending upon the dimension of the field. Similarly, 8(s - 5 ) could refer to
the Dirac delta function in one, two, or three dimensions.

Readers unfamiliar with the concept of the Dirac delta function may
find this description useful. First consider the distinction between ra-
tional and irrational numbers. Specifically, consider the sequence {x;

100 = 15,88 = Ly o0y = 1+ i ). s easy 1o see that
the limit xo, = Limysty = V2. Thus, while each element of the se-
quence is rational, the limit of the sequence is an irrational quantity.

Similarly, we define the Dirac delta function as the limit of a sequence of
v

R (ONST

(x) = Limy-yuefy(x). Each fy(x) is an ‘entire function” (differentiable

perfectly well-behaved functions namely fy(x) We identify
infinitely many times) of its dependent variable x. Further, for each N
[%,dx fy(x) = 1 and yet §(x) = Limy_,.fy(x) is anything but reg
This *function’ is zero everywhere except at x = 0 where it becomes

gular

infinite. However, [, 8(x) dx = 1. With this concept, one may differen:

tiate discontinuous functions such as Heaviside's unit step function 6(x)

So, now, I am going to prove to you that it is possible normally what happens is that we
if there is f of x this makes sense we know we all know how to define this you know
through a limit of a sequence of quantities basically you think of this as the limit as h

tends to O f x plus h minus f of x by h.

So, then you have this perfectly well waved function which and then you list them all for
different values of h and then you see how the sequence converges as h goes to 0. So,
that is how you would define a norm I mean usual type of derivative that you encounter
in your calculus classes in high school, but now we have a peculiar type of derivative we
want to calculate so that is called the functional derivative, but for that I have to define

what a functional is.
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ables depending upon the dimension of the field. Similarly, 8(s - 5 ) could refer to
the Dirac delta function in one, two, or three dimensions.

Readers unfamiliar with the concept of the Dirac delta function may
find this description useful. First consider the distinction between ra-
tional and irrational numbers. Specifically, consider the sequence {x;
Ly=15x=14, >

Limy sty

perfectly w

8(x) = Limy-ye fiy (x). Each fy(x) is an ‘entire function’ (differentiable

infinitely many times) of its dependent variable x. Further, for each N
[ dx fi(x) = | and yet 8(x) = Limy....fy(x) is anything but regular

This on’ s zero everywhere except at x = ( where it becomes

infinite. Howeves one may differen:

tiate discontinu

tep function 6(x)
where we write £6(x) = 8(x). Both the left- and right-hand sides are
zero when x # 0, Both are infinite when x = 0. When integrated over a

region containing the origin, the result in both cases is unity

Toderive thiS we write, R(g) = I, g in the first instance, to get,

)
 Rlg)=1, (1.47)
3

whereas the same result in the continuum language would be, R(g) = [,'ds s (for

fields in one dimension) and (setting j — 5 ),

9 /"/ )
0 b ds g

So, normally f of x it would is just basically a function of a real number so; that means,
you give me a real number the output is a real number, but a functional is something
where you give me a function itself. So, it could be sin it could be cos it could be
anything log exponential. So, this is now going to be a real number. So, it takes a

function gives a real number ok.

So, to give you a simple example so, this could be one of them like for example. So, the
input to this is this function f the output is some number which is this ok. So, it maps a
function to a real number whereas, this maps a real number to a real number. The input is
x which is a real number the output is f x which is a real number, but here the input is
this function f ok so; that means, f at all values of x between a and b or in general

basically.

So, now the question is that if you give me a function that is the input f is your input
which is the function itself not its value at some particular point, but the function itself at
all points. So, if that is your input the output is going to be this and what is this it is just

some number so, these are called functionals.

So, now, the question is that if I give a functional. So, the question is it makes perfect

sense to ask, what is the derivative of a functional with respect to some other function?



So; that means, I want to know answers to questions like. So, if this is my f what does
this mean? Yeah so, this has to mean something. So, these are the sort of questions I want

to answer because ok.

So, the bottom line is why am I trying to answer these types of questions. So, what is this
good for? So, the reason why these questions and these formulations and these somewhat
unusual concepts are important is because when you make the transition from a system
with finite number of degrees of freedom to a system with continuous infinity number of

degrees of freedom.

Then what was usually your differences your finite differences or your summations not
only become derivatives and integrations they actually become functional derivatives
and functional integrations. So, they do not remain the usual type of integrations that you
are familiar with they actually become functional derivatives and functional integrations.
So, that is the reason why it is important to get a grasp on these notions as early as

possible.

So, in order to motivate say so, this is an assertion that I am trying to make and convince
you that makes sense is imagine there is a function, then imagine there is a quantity q
which is a function of some continuous variable s then I am trying to make sense out of a
differentiate just like this was I am trying to make sense out of differentiating this with
respect to f of x, but then now this is nothing, but f of y itself it could very well be right

because this thing.

So, what is this? This is nothing but it takes a function f as an input it spits out some
number, but so, does this I mean it takes f as the input and spits out this number called
of y plus a perfectly valid instance of this type of more general object, but if that is the

case then [ have every right to ask what is the derivative of f of y with respect to f of x.

So, you can clearly suspect it is 0 most of the time; that means, unless y is x it is 0, but
the question is what is it when y is x? So, the implication is that it is a Dirac delta
function that it is 0 when y is not x and it is infinity when y is X in such a way that the

integral about or with respect to one of those variables is 1 ok.



So, I am going to allow you to read this boxed description of the Dirac delta function I
am assuming a lot of you already know what that is because again this is a rather
advanced course and the notions of Dirac delta and all that are considered prerequisites.
So, now, well if you do not this is worthwhile looking at I have made an analogy

between irrational numbers and Dirac delta function. So, that is interesting to look at ok.

So, the bottom line is that I really want to know what this is. So, I want to know what
that is. So, to know what this is let me start with a simpler thing. So, imagine that there is
an R of q which is the sum of a discrete number of quantities called q 1 q 2 q 3 all the
way up to q n. So, if in if that is the case then the derivative of R q with respect to any

one of the queues is 1 by construction. So, it is fairly obvious why that is.

So, but then you see I told you that in the continuum description if 1 is no longer a
discrete index, but a continuum replacement namely s then what the analog of this would
correspond to something like this it would be an integral from some value to some other
value just like 1 was in summation of some value to some other value starting from 1 to

N. So, this would be some from somewhere to somewhere.

So, it clearly follows that because this is 1, this should also be 1, because we are
basically differentiating with respect to something inside here with where s prime is
somewhere between a and b and this is 1. So, similarly here q j is somewhere between 1

and N. So, you will always hit that q j sometime and then you get 1.
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Toderive this we write, R(g) = L., g in the first instance, to get,

(147)

whereas the same result in the continuum language would be, R(q) = [, ds s (for

fields in one dimension) and (setting j = 5 ),

The Countable and the Uncountable

This means (since obviously, 37~ ¢ = 01if s #5),
9 & N
qs=0(s—s)
g,
Furthermore, we may later have occasion to use quantities such as,

) dgs d o
O s Ca5-§)=8(s-5) (1.50)
3, ds s

More generally, we define functional differentiation as

: e 8(x— v\ = FIU(y
FUO = Liness” (0 +€8(x-)}) - FIU0))]

3 (1.51)
Wikl L

So, this is what we expect. So, if this is what we expect then it is clear that making this
sort of a statement immediately recovers this sort of result. So, in other words if you
postulate that d s by d q s dash of q s Dirac delta function then simply this is an identity
already ok. So, this is what this is how you would make sense out of a function like a

derivative like this.
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8100 = i o P01 € 8 =)= FIUG)]

< (L.51)
3J(x) €

Imagine a functional F|g| defined as,

1
5

Flg)

Then we see that,
) b dels) B
——Fg] /zlum, (1.53)
oglx) Ja dglx)
Bl

We may derive an expression for the quantity s

31y Using the formal definition for

functional differentiation.
dg(s) (8(s) +8(s —x)) - g(s)

= Limg

= =0(s-x) (154)
Sg(x) €

Now we wish to evaluate the functional derivative of a slightly diffzrent functional
Set,
H ] "dsg? 1.55
o 02(s) 5
g 7], dae’ls (1.55)

where g (s ”“,‘\\ . Consider a variable x such that @ < x < b. It is clear that,

§ b dg(s) & dg(s) b dg(s)d §
Hig / !
Sl ¢ |

d = ——q(s)
@ ds 8g(x) ds ds L/\Q\’\\\‘L‘

rb dols) d " b b .
/m‘“ (s -x /dwm{m V=-¢) (156
a5 @ b

where the last few steps follow from integration by parts.




But the question is well more generally you can define the functional derivative of some
function F of J with respect to J of x in this way. So, you first take the function F of J and
add an epsilon of delta of x minus y to J of y and then. So, it is a it is very similar to what
we do normally when we are talking about derivative describing derivative as limits of
certain ratios ok. So, this is what that is. So, that is the really general definition of the
functional derivative. So, this is what this is what we are trying to make sense out of and

this is what it is ok.

So, now, imagine | have a functional of this sort then I am just giving you examples to
make this whole things more comfortable. So, imagine F of g is defined like this. So, in
other words it takes in a function g as the input and spits out a number ok which is called
well which is basically the which is one half integral of g squared from a to b. So, now, |

am [ want to know the answer to the question what is d by d g of x F of g.

So, I just take that inside and then this is what I get, but then keep in mind that this is
nothing, but the Dirac delta function. So, that this can also be derived from this more
general construction here then clearly you can see that this is nothing but ok I did not
finish this calculation for some reason. So, this is going to be g of. So, this is delta of s
minus X. So, if x is between a and b it is g of x if x is less than b and 0 otherwise ok. So,
if x is not between a and b this is 0 ok. So, if it is between a and b it is g of x. So, that is

what that derivative is.

So, similarly you can do something even more interesting and less obvious namely. So, if
this 1s my functional, keep in mind that again I have to remind you what a functional is,
it takes in a function and spits out a number. So, this g of s is a function which is the
input, but then if I if you give me g of s nothing prevents me from finding g dash of s

because that is the first derivative.

So, now that is what I am going to do, you give me a g of s ill find g dash of s then [ am
going to square it and then integrate from a to b and divide by 2 that is my H of g. So,
this is clearly a functional; that means, it takes in a function and spits out a number. So,

now, I am going to ask myself how would I differentiate this functional with respect to



some g of x, where x is something else some something else between a and b. So, some

real number between a and b.

So, to do that you simply pass this across until you reach this point because that is where
the g s are sitting. So, now, the derivative of that with respect to g of x is clearly given by
my chain rule first I differentiate g dash, then I differentiate g dash with respect to if I

differentiate with respect to g dash, then I differentiate g dash with respect to g of x.

So, now you see s is unrelated to x. So, I can pull that out and then this becomes the
Dirac delta function ok. So, then I can bring over the derivative here then it becomes
something like this. So, you see g d by d g of x of H of g is nothing but minus g dash
dash x. So, this just to give you some practice in handling functional derivatives and
functional integrations and trying to understand what functionals are so, that you will be

able to use them more convincingly and accurately later on ok.
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16 Field Theory
We provide a quick ttorial for integration by parts. Consider the integral

b b q
/m/ 06 (x / dr S (FG()
A o x

+
/ dxGUF (x (157)

The first term on the right-hand side is called the boundary term. Since

grating over all space, the boundary is at infinity. If F (x) and

) vanish at the boundaries a and b (as we shall assume always), then
this term is zero. Thus the above equation may be rewritten as,

/ﬁﬂ/w-m;m ‘/hm(n/\

Repeated application of this ule yields,

' )
/ml‘ 96 (W)=~ [ deF (06 )

5
/ e F'(9G(x (159)

Now we provide specific examples of dynamical systems with a finite number of
degrees of freedom and a prescription on how to generate a system with infinitely
many degrees of freedom by taking the continuum limit

W Imagine a collection of N identical masses m confined to the circumference of
a circle of radius . Imagine also that each mass is tied to its adjacent mass on

I just pointed out some integration by parts if which happens to be important every now

and then while handling these problems so ok.
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W Imagine a collection of N identical masses m confined to the circumference of
acircle of radius ’_ Imagine also that each mass is tied to its adjacent mass on
cither side by two identi springs with stiffness k and the motion is along the
circumference, We wish to write down the gian of this system. In order to
do this, we choose the generalized coordinate of the n-th mass to be thy J
(n=1,2,...,N and Sy, = §) along the circumference from a point d

the origin (say the north pole at n = 1). The kinetic energy of the system

thenT =Y. $mS?. The potential energy is given by V = 3k TN~ (8,41 =8, ~ )%
Atequilibrium, both the potential energy and kinetic energy vanish identically. This
means that at equilibrium 0 = (n 1)1 since we choose n = I to be the pole that
remains fixed at equilibrium. We choose to measure the displacement relative to this

equilibrium position. Thus we write S, = (1= 1)/ +s,. The Lagrangian becomes,

N N-1
1%, 1 .
L=Y smi3 =3k Y (sne1 =) (1.60)
n=1“ “ =l

In order to make the transition to the continuum limit, we write x = (n— 1)/, dx=1,

The Countable and the Uncountable

m=pdx, kP = kdvand £, = [, ser =80 = (+1) =s(x) = 1244

So, that is I hope that clarifies what I meant by functional derivatives, functional
integrations are similar, but I will do that later. So, that is what a functional derivative is.
So, integration I will do a little later. So, now, let me come to a very important, but very
concrete problem which we have not we have not had much occasion to discuss specific

problems we just talked about terminology and formalism and that sort of thing.

But here is a very specific concrete problem which is of tremendous interest in physics
and that is the idea of a chain of masses which are subject to mutual forces; that means,
that each mass is acted upon by a force from its neighbors and that force is of the
restoring kind in the sense that if each one mass tries to run away from the other it pulls

it back.

So, the restoring force is proportional to the displacement implying that there is a kind of
a the potential energy goes through a minimum so that is a kind of springy restoring

force.
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Figure 1.6: This is an illustration of the masses connected to adjacent ones by
springs, constrained to move on a circle.

With these substitutions the Lagrangian becomes,

L a0\ 1k (s
1(s.9) /” zpm[ S } lx/” ./\( S0 ae

Here we may see that the role of the n-th degree of freedom is taken up by the
symbol x. We now derive the Lagrange equations of this Lagrangian using,

d L oL
drds(y.r)  ds(y.r)

We evaluate the generalized momentum as,

So, the question I have right now is that I want to be able to describe the continuum
analog of this problem. So, if you look at this figure so, this is the discrete version of this
problem and in fact, not only discrete, but a finite version of this problem. So, you have
this you have a mass here and you have a potential energy between two adjacent masses

and that potential energy goes through a minimum.

So, as a result if it goes to a minimum | have every reason to write it as some constant
times the displacement squared, because any function that goes through a minimum

close to the minimum always looks like that.

So, even though there is no physical spring between these masses that need not be, but
so, long as there is a potential energy that goes through a minimum it will always have
the appearance of a positive constant times the square of the displacement. So, I can

always choose to call that positive constant as one half times the spring constant.

So, bottom line is that I have this chain of masses that closes in on itself in the circular
manners. So, the reason why I have chosen a circular chain rather than a linear one is
because there is this idea of periodic boundary conditions which are very convenient so;

that means, if I go around one full circle I come back to the same point. So, the



advantage of a circle is that it has no beginning and no end. So, every point is as

important as any other. So, there are no points which are singled out.

So, if you have a line segment the left end segment and the right hand segment are
special as the all other points are equivalent because it is only those end points that do
not have that have neighbors only on one side, but all other points have neighbors on
both sides. So, if you want to avoid those sort of exceptional situations it is better to
think of a ring where place masses on a ring. So, that a ring that has no beginning no end
well always any point on the ring will have two neighbors one on this side, on one on the

other side ok.

Having said that now I am going to try and ask myself so, if there are these masses with
the springs tied we all know how to handle them and the way to handle this system is by
writing down the Lagrangian of the system. So, you have the kinetic energy of all the all
the masses and S n is the specific displacement of the n-th mass from its equilibrium
position and then you have this potential energy between adjacent neighbors and that is

the effective displacement between them and then you square that displacement.

And so, that is so that is your kinetic energy minus potential energy is basically your
Lagrangian. Now, I want to make a transition to the continuum. So, to do that I of course,
replace the summation by an integration like I have done here, but more importantly and
less; obviously, I have to also assume that each of those masses are really tiny, they are
infinite symbol and they occupy a certain you know certain size along the circumference

and that is called d x. So, d x is along the circumference.

So, then I have to also assume that this k is in some sense. So, k | squared is also in an
infinitesimal. So, I will tell you why that is needed at some stage ok. So, bottom line is
that if you make these kinds of an idea these kinds of assertions then you are ready to see
where that takes you. So, namely you first substitute those correspondences into your

equation into your Lagrangian rather.

So, your 1.60 is your Lagrangian and then you insert those continuum versions of
summation and mass and so on into the earlier Lagrange equations and you will see that

it immediately transforms into something which involves the time derivatives of that



function s which is now a displacement of a continuous variable displacement labeled by
continuous variable called s and of course, it always depends on time. So, now, the
summation over the discrete index i has been replaced by an integral over the continuous

index x ok.

So, x 1s in some sense the asset | mean x is the x-th mass which is undergoing
displacement s s bracket x, x is your x-th mass means the sort of the x-th mass just like i-
th mass your x-th mass. So, you have the mass labeled by number x and then the
corresponding displacement is s bracket x ok. So, bottom line is that the Lagrangian is
now expressible in terms of these continuous descriptions involving x and displacement

and so on.

So, now I am going to show you that the continuum version of the mass tied to spring on
a chain actually allows us to describe the Lagrange equations of the system, after all now
that you have a Lagrange equation it immediately means that we can write down the
Lagrange equations. So, now, the Lagrange equations we will see are nothing but the
wave equations of sound or basically the vibrations that propagate as sound in this

system.

So, this I am going to relegate to the next lecture. So, I am going to stop here I hope you
will join me for the next lecture. So, very soon I am going to pick up pace and describe a
very important topic called Noether’s theorem it tells you how to identify symmetries
when there are rather how to identify conserved quantities when there are symmetries in
the system. That is going to be hugely interesting and I feel you should have some

patience and listen to the rest of these lectures as well until we get there.

When we discuss Noether’s theorem you will of course, really enjoy it and appreciate it
and I hope this also is equally enjoyable. So, let me stop here and invite you to join me

next time.

Thank you.



