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9.2 Schrieffer-Wolff Transformation

Even in the oversimplified one-band Hubbard model, there lurks a rich variety of
phenomena, most of which are poorly understood in more than one dimension. In
one dimension, a variety of methods starting from the rigorous Bethe ansatz to
bosonization (to be discussed in the last chapter) provide a satisfactory descrip-
tion of the basic physics (by this one means the phase diagram). In more than one
dimension, one of the most important phenomena is known as the Mott-Hubbard
transition. This is a metal insulator transition at absolute zero temperature that is
applicable only when there is exactly one electron per site, is driven by strong cor-
relations. This means the ratio U/ determines the nature of the phase at absolute
zero—below a critical value, the system is gapless (a gap is the difference in en-
ergy between the ground state and the ‘first” excited state. In infinite systems, in a
metallic state, this quantity is zero, as the ‘first” excited state together with the
ground state form a continuum) and above this value, it is gapped. Establishing this
is one of the most important goals of the physics of strong correlations. Of course,
as we have pointed out several times, this book simply discusses the framework or
the mathematical language in which meaningful and interesting questions such as
these, may be posed. Answering them is still largely the subject matter of ongoing
research—though many results are available, very few of them are universally ac-
cepted. We now tum to the description of the simple Hubbard model when U/t is
much larger than unity. Intuitively, it is easy to see what might happen. Imagine a
situation where there are exactly as many electrons as there are sites (this is quite
possible and common when each atom contributes one electron to the conduction
process). In such a situation, when U/t is large, the ground state is one where each
electron stays put at an atom so that hopping is suppressed, since hopping would
entail one of the sites having two electrons (allowed by Pauli’s principle if they
have opposite spins), which makes the energy of the system large. Thus, the only
degree of freedom left to the electron after hopping is suppressed is spin flipping

The spins of the electrons on neighboring sites interact with one another leading to
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been taken is in a phase characterized by the order parameter O. When a chosen
O docs not obey this property, then the above correlation function typically has the
property,

Limy_jy <01 )0(G)>~e . ©9.51)
In one spatial dimension however, there can never be long-range order (except at
absolute zero temperature) due to what is known as the Mermin-Wagner theorem.
Instead, the typical situation which replaces the assertion in Eq. (9.50) in one di-
mension is, |
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Instead of converging to a constant, the above average slowly decays to zero as a
power law. This is the closest one can get to long-range order in one dimension—
still acceptable considering that the absence of long-range order means an expo-
nential decay (Eq. (9.51)). Of course, all these assertions are in hindsight. One is
still faced with the formidable task of evaluating these averages and verifying these
expectations. In this book we do not embark upon this calculation as this is the
subject matter of many-body theory. However, it is still important to list the sort of
operators O(i) that are used to describe various phases. An incomplete list (for
clectrons in a solid, for example) is given in the box (here o =} has a numerical
value of +1 and o= has a numerical value of ~1).

Charge density wave (CDW):
Ocon(®) =Ty o ¥Y @)

Spin density wave (SDW):
00(0) =Fo o/ 3y Yh() T Vi)

Singlet superconductivity (SS):
Os)=F qobyy VAR o 0¥-o(i)




So, in this lecture, I am going to discuss a new topic which is the Schrieffer Wolff
Transformation. So, if you remember in the last class, I had stopped at this stage where I
pointed out that you can introduce certain operators called order parameters whose non
zero, non vanishing, expectation value signifies the existence of various interesting

phases.

So, in the next topic which will conclude this chapter will be the topic which explains to
us how to transform this Hubbard model that we had encountered into a model that
describes magnetism. So, you see magnetism is a kind of mystery especially
ferromagnetism, if you think about it the fundamental basis for why there is

ferromagnetism. After all if you imagine what ferromagnetism is.

It is basically a situation where you know you apply a magnetic field the material is
magnetized that is easy to understand, but then if you remove the magnetic field, the
magnetization does not go away. So, that is somewhat perplexing. So, it calls out for a
fundamental explanation in terms of the behavior of the fundamental constituents of the

substance.

So, that is something very not very obvious how to do that. So in fact, the way to do that
is to invoke this type of an approach where we point out that if you start with this tight
binding picture of electrons in a solid, there is a natural sense in which a magnetic
insulator is obtained from that description. See, after all the Hubbard model includes

very essentially two aspects one aspect is the hopping the kinetic term.

So, the electrons hop from one side to the other. So, that describes the conduction
process or the bonding or whatever. So, whereas, the other aspect is the onsite coulomb
repulsion. So, that is also there. So, there are two competing processes one process is the
hopping, the other process the onsite repulsion. So, the ground state of the system is
obtained by some kind of a compromise between these two competing processes. So,

now, let us imagine a situation where you have precisely one electron per site.

So, that is not uncommon you might think that that might be very unusual and
remarkable situation to have exactly one electron per site, but that is not in fact, it is very

common because you can have a situation where exactly one electron an atom



contributes one electron to the conduction process. So, as a result you can you know the
electrons that participate in the processes described in the Hubbard model are precisely

one electron per side. So, imagine that is the situation that we are dealing with.

So, the point is that if there is one electron at a given site, the another electron can hop
on to that site only if it suffers a coulomb repulsion; means, that there is an increase in
energy due to the coulomb repulsion. So, the thing is that. So, if some site is left vacant
that implies therefore, that some other site has two electrons in it. So, that is the

implications of having precisely one electron per site.

So, that is called half filling. So, half filling because you see remember that an electron
has up and down spin. So, a full filling would be having two electrons per site and that
would be completely inert and uninteresting, because if you have two electrons per site
what happens is that the electrons can I mean can do nothing, because they cannot hop

because the already two electrons per site you cannot have three electrons per side.

So, you cannot hop ah, but then it can just, but those two electrons have to be one up one

down, one up one down like that they have to be in pairs.

And they can do nothing but just stay there. They cannot even flip spins, because if they
flip spins then they will be violating poly principle. So, that is absolutely uninteresting.
So, the interesting situation is the half filling where you have one electron per site. So,
where hopping is allowed, but at the cost of coulomb repulsion; that means, a mandatory
cost of a coulomb repulsion because if you have less than half filling then you can hop

around and many times you would not be suffering any penalty in terms of.

So, you can hop to an empty site and leave behind an empty site that is not an option
when you have half filling. So, you have to hop around only at the expense of suffering a
coulomb repulsion. So, that is the precise model that we are going to study ok. So, in this
paragraph in this chapter, I have pointed out that even before you study the large
repulsion limit of the Hubbard model, which I am going to study in this section, but there

are very basic issues related to the Hubbard model.



One is something called the metal insulator transition. See, the idea is that if you have a
Hubbard model and if the coulomb repulsion becomes large enough in more than in
especially in three dimensions. So, you can show that the system goes from being a
gapless system to a gapped system so; that means, it goes from being a metal to an
insulator. So, the question is the one of the important goals in the study of Hubbard
model is finding this critical value of u at which the system becomes an insulator from a

metal.

So, these are all very difficult questions. And I told you that in this course, we will only
be studying the models that are supposed to describe those type of phenomena. We
would not be solving any of those models it is just meant to inform you that there are all
these models that are worth solving. And when understood properly will are likely to

exhibit these types of behavior ok.
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that differ from each other by unitary transformations describe the same physics.
By this, one means the following. Suppose one wants to compute a comelation
function of the type / \é
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Upon a unitary transformation, the same correlation fynclion may be written as,
1\ -
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Not wanting to confuse the time parameter with the hopping piramete, b of which are
denoted by 1, we rename the hopping puramcter &
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where the A-dependent quantities are unitarily transformed versions, /

Hih) = "OHe™G; A1(0) = A (0)e~C; B, (0) = B0} ™ (9.55)

and, ” "( /
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(keeping in mind that M = Gyt g-1G) Now we wish to take advantage of
this observation to recast the Hubbard model in the situation when U2 1. This
transformation s known us the Schrieffer-Wollf transformation. To achieve this,
we first introduce various projection operators. The single occupation projection

operalor is,

W= 1=ngny. 9.57)
‘This operator, when acting on a state, prevents the resulting state from having two
electrons at site labeled i, since if it did, ny = nyy = 1 and P/ = 0 and the state

So, coming back to this large U limit. So, so the idea is that you see if you have half
filling, if you have a model with exactly one electron per site. And you have a large U
limit what; that means, is basically that the electrons will see on the one hand they would
like to hop, but if they hop they will be suffering a coulomb repulsion. And if they suffer
a coulomb repulsion and if that coulomb repression is progressively made larger and

larger that becomes less and less attractive for the electrons to hop around.



So; that means, that given that there is a mandatory penalty of for hopping around
namely the coulomb repulsion capital U. And if you make that larger and larger there is a
it becomes less and less attractive for the electrons to hop. So, in the limit that U

becomes very large. So, the electrons would prefer to stay put.

So; that means, you have precisely one electron per site and they are refusing to hop
around, but you might think that is resembling the two electrons per site where they are
anywhere going to stay put and there is no choice even if U is small they simply cannot

hop, but here U is large and this also simply cannot hop.

So, you might think these two are the same situations, but they are not, because there is
one thing the half filling electrons can do which the fully filled electrons cannot do.
Namely, they can flip the spin so; that means, you see if you have one electron per site
there is a spin degeneracy the up spin is pretty much the same you know if you think
about it that there is a because there is no coulomb repulsion there is freedom for it to be

up or down.

So, there is no other electron sitting on top of it. So, therefore, what happens is that there
is this system of electrons they are all staying put at their lattice locations. And they are
refusing to hop. So, therefore, they form an insulator so; that means, there is no
conduction process completely suppressed. So, it is an insulator, but; however, the

dynamics is through spin flips, because there is the only dynamics that survives.

The electrons flip spin. So, therefore, it constitutes a magnetic insulator. So, it exhibits
some sort of magnetism where to see what sort of magnetism, but it certainly exhibits

some intrinsic form of magnetism and it is an insulator.

So, let us see what sort of magnetism this sort of model exhibits? So, for that I have to
perform as somewhat technical transformation to uncover the precise effective
Hamiltonian that describes such a model. So, the Hubbard model itself it is not very
convenient to study the large U limit, because you see when U is very large all it says is

that ni up times ni down should be 0.



So; that means, double occupancy is suppressed that is all it says, but then it does not say
how the electron behaves in the presence or in the when a double occupancy is strictly
forbidden, how does the electron behave that is not clear. So in fact, if you think about it
both the hopping is suppressed because it is half filling and double occupancy is
suppressed because U is large. So, it seems like both the kinetic and potential energies
are 0, I mean hopping its after all what is Hubbard model its hopping plus potential

energy that capital U n 1 up ni down.

So, if hopping is suppressed the first one is 0, if ni up times ni down is strictly O then the
second one is 0. So, that does not make any sense so; obviously, we have to perform a
kind of a series expansion in inverse powers of U. So, that only that will make sense. So,
in order to do that we have to make certain observations to start with. First is that if you
have a Hamiltonian the physics of that system is equally well captured by another

Hamiltonian which is related to the original one through a unitary transformation.

So, if you do not believe me here is an explicit demonstration of that fact. So, suppose
you want to calculate say the average of some suppose you have an operator which. So,
we are working in the Heisenberg picture so; that means, the operators change with time
so; that means, imagine you have an operator A which is a function of time, and another
operator B which is also a function of time. So, now, imagine that you want to find the

average of A as a function of time as a function of t times B as a function of t dash.

You want to find the average with respect to some state ok. So, how does that look like?
So; obviously, it looks like this so; that means, you first construct the appropriate time
involved operators this way, and then you find the average. So, now, the claim is that you
see these this particular average is also identical it is mathematically the same as doing
the following. So, it is the same as first that you know unitarily transforming this
Hamiltonian where some operator which depends on some continuous parameter called

lambda.

And then, similarly unitarily transforming the, these you know initial time values of
these operators A and B also through the same unitary transformation. And lastly, you

know evolve the state that you are studying also by this unitary transform. So, if e raised



to 1 lambda G. And G is the generator of the unitary transformation, and this is the
unitary operator, which implements the transformation then clearly you can it is just a
mathematical identity for you to substitute 9.55 and 9.56 into 9.54. And verify that 9.54

is exactly going to reduce to 9.53 ok.

So, that is a trivial activity I am not going to do it. So, that observation is important
because you see it enables me to now construct some unitarily transformed Hamiltonian
to study my physics rather than the original Hamiltonian. Notice, that the original
Hamiltonian was somewhat clumsy in the sense that it had the hopping and it had a
coulomb term which was plus U times ni up times ni down. And that u was a

multiplicative factor of ni up and ni down.

So, if U is large is a and it is in the numerator it is not very convenient to do any kind of
expansion with it. So, if U is large and it comes in the denominator then it is convenient
because you can expand in powers of 1 by U. So, that is the whole idea. So, I want to
write down a unitary transformation. So, that in some sense that large U comes in the
denominator rather than the numerator ok. So, how do I achieve all that? So, to do that I

am going to first introduce something called the projection operator.
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transformation is known as the Schrieffer-Wolff' transformation. To achieve this,
we first introduce various projection operators, The single occupation projection
operator s,

9.57)

This operator, when acting on a Safe, prevents the resulting state from having two
electrons at site labeled i, since if it did, njy = n; = I and B = 0 and the state
would not exist. Similarly, the operator that projects onto doubly occupied sites is,

The operator that ensures that no site is doubly occupied |f* = [T, ;. We note that
P+ = 1. We now rewrite the Hamiltonian by projecting out states that have
more than one site doubly occupied using the above resolution of the identity,
= T
H=LH.L = (B + (1= %) HR +(1- ). 9:59)
This means the full Hamiltonian is a sum of four pieces:
/
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mixing of the sectors is Hy = T~HT so that
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So, this projection operator is just defined like this. So, basically it says that the single
occupancy projection operator. So, what it says is that it takes any state and if you act it

on this projection operator it just destroys all the doubly occupied states.

So; that means, you see if you have a state you can express that in terms of you know no
occupancy plus single occupancy plus double occupancy some kind of a linear
combination like that. Now, if you take this operator and act it on that state it destroys

the part of that state which contains the double occupancy.

And why is that because you see when there is double occupancy ni up times ni down
will be 1 and 1 minus 1 is 0. So, basically it really suppresses the double occupancy part
of that state. So, similarly the exact opposite of that is the one which weeds out the no I
mean which weeds out everything except the double occupancy. So, that means, if any
state has a single occupancy it kind of this type of projection operator weeds that out it

only makes the double occupancy survive.

So, this makes the double occupancy survive, this makes only single occupancy survive
or it also makes no occupancy survive, but that is not an option in the case we are
considering because remember we are considering half filling where electrons are there
is one electron per site and they are all staying put at their locations ok. So, bottom line is
that I can always. So, this is a mathematical identity. So, I can this is just one written in

afunny way. So, what I am going to do is that I am going to.

So, if I expand this out ill get four pieces. One is this H which has been sandwiched
between two single occupancy projections. And there is one which has been sandwiched
between a single occupancy, double occupancy projection. And lastly one which has

been sandwiched between two double occupancy projections.

So, what this does is you see H 22 is the one that contains this, the contribution due to U.
See because see the other operators will actually destroy any see these operators will all
if you act it on any state the any double occupancy will immediately be destroyed by

that.



So, this will destroy double occupancy. So, if you want to find matrix elements between
states containing double occupancy. All these will be identically 0 except this one ok. So,
this one will have the U dependent term. So, now, the idea is that the because only H 22
has the double occupancy U dependent term and U is very large. So, we are going to

assume that H 22 therefore, is much larger than all the other three.

So; that means, H 22 is very large compared to H 11 H1 H2 1 and H 2 H 12. So, now,
think of this as a kind of a matrix. So, you will see that it has a there is a deeper reason
for why you can do that. So, think of it like this. So, now, you find the eigen values of.
So, the claim is that the, you can write down a unitarily transformed Hamiltonian from

H. So, you start with H and you write down a unitary transformation.

So, the claim is that the unitarily transformed Hamiltonian is going to have eigen values
which correspond to the eigen values of this matrix. So, now, if you work this out and

this is approximately U, ok.

So, if you work this out you will see that basically if when U is very large, the eigen
values are precisely these two. So, you can just work this out. So, you will see that the

Hamiltonian works out to be this and this. So, these will be the two eigen values.
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These terms are nothing but the eigenvalues of the matrix form of H; (we set Hy ~
U when it appears in the denominator, since this sector is assumed to contain states
with exactly one doubly occupied site). One may determine the needed T matrix
by using the modified condition TH; = HT so that,
L R 1 L TR U )
Now we post-multiply and pre-multiply by one of 8" and | - 9" and conclude that
the following (non-unique) choice suffices,
Hy H
T=","l‘l"+1"FU =¥+ -‘E’JK-FW‘N =P(-1). 0.66)
A
One may see from Eq. (9.64) that the double occupancy sector is at a scale ~ U
much larger than the no-double-occupancy sector. Thus for studying low-energy
phenomena, we focus on the first term. When double occupancy is not allowed, the
U term in the Hamiltonian drops out so that,

v 3 v
Hiy==1 § Pl (9.67)
<ipoe

Hy=-1 ¥ Pl -3) (9.68)

<ipe
==t T (1-9)cheio". 9.69)

<ipo
Now we make use of the assertion that | =" contains at most one doubly occupied

state so that,
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So, now you see if I know this seems rather ad hoc. So, the more systematic way of
doing this is to say that look I am going to first postulate that there is a unitary operator

called T of this sort.

So, then. So, if I use this T, then I can basically weed out all the double occupancy terms
ok. So, I will end up with a term which is exceedingly small. So, the this one is any way
of the order of U, the next correction will be of the order of 1 by U. So, I will end up
making an expansion in powers of 1 by U ok. So, bottom line is that yeah. So, you will

have to go through this these calculations in detail.

So, bottom line is that you see the H 11 is the hopping sandwich between the two single
occupancy projections and so on and so forth. So, you have this H 12 which is a

sandwich between single and double occupancy and so on and so forth.
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Using similar ideas we may pass the remaining projection operators in the middle
1o the extreme right to obtain,
Hplhy =

M) ‘D‘(‘:’rﬁ‘r}rr; Cog e I

h id i d
PO fsd
e Wt et o
2y ¥ WelgeeBie) g ny - 0.7)
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In the second term of the above equation, there is the product ¢+ ny &P The
projection operator together with the occupation number ensures that o= 0;in
other words, the /@' state is empty. When annihilated, this gives zero (see exer-
cises also). Thus only the first term remains, Using the definition of the projection
operator in the middle we obtain,
Holy = Y ¥ “}J'r:‘,rmr;' 41 Mg 0.14)
<0 |5
‘There are many terms in this, One may single out the ‘coherent contributions"
wherein (1, /) = (/) or (i.f) = (7). One then includes o' = o followed by
6 =0.
Hioy == ¥ B(cotloCioco = mion o) P* 9.75)
e

Itis possible to relate this to a term that comesponds to interaction between spins
atsites i and . Define (we have set & = 1)

1 ol
§= ¥ c ia'““‘ 9.76)

So, now you can go ahead and evaluate these types of products that appear in the in these
expressions ok. So; that means, say here for example. So, when you do that. So, it is a lot
of tedious algebra. So, I will have to request you to go through it. Because firstly, this
proof is there in some review article and you would not be able to you will probably able
to follow it with as much ease or difficulty as this particular lecture because the rest of

the details are just a lot of tedious algebra.
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cises also). Thus only the first term remains, Using the definition of the projection
operator in the middle we obtain,
Hoty=r ¥ ¥ P o1 P 9.74)
<Apacff>d
There are many terms in this, One may single out the ‘coherent contributions®
v.yh:mn ()= (i, j)or(ij)= (/’,f]. One then includes 0" = 6 followed by
6 =0.
HiHy = ~1* ¥ Blciylaciocio ~nionjo)¥* ©.15)
<o

It is possible to relate this to a term that corresponds to interaction between spins
atsites i and . Define (we have set h = 1)

, )l
§= T ¢ za'“‘"' 9.76)
ab=",

and @ are the three Pauli matrices, Also, nq = r'_,r,, and ny = Lonig. Itis left to
the exercises to show that,

(58~ :mn;) = : Ychelaciocio=niano)- ©om
-]

Therefore, the low-energy sector of the diagonal form of the Hamiltonian is
—~———
Hys P+ ¥ (§-5)- gnn) i .. ©.78)
= I U 4
VAL S
where By = ~1L; ,‘,v"‘,r,\, s the original hopping term. Several points are appar-
entin this calculation, The first is that the above is only the leading contribution; we
have ignored many terms that couple distant sites, When there is exactly one elec-
tron per site (half-filling), the hopping is suppressed and the dominant physics is

So, you just have to go through these algebra, and then you will see that finally, you will

be able to write down a Hamiltonian which basically weeds out the.

So, what is the beta s again. So, beta s basically makes sure that if you have double
occupancy it fully kills it; that means, if ni up plus ni down ni up times ni down is 1; that
means, if there are two electrons in a site that beta s is 0. So, it makes sure that all the
states are I mean basically it makes you that all states are singly occupied. So, therefore,

the effective Hamiltonian of a system when you have a single electron per site.

And you have the coulomb repulsion between electrons is large the effective
Hamiltonian involves hopping with the single occupancy means the hopping with the
double occupancy fully suppressed because that is what beta s is. So, if there is a double
occupancy beta s becomes 0. So, it does not allow double occupancy. So, what is H t? H
t is your original hopping. So, basically your effective Hamiltonian is as if there is
hopping, but then hopping subject to this constraint that you cannot have double

occupancy on any site.

But, then there is an additional correction so; that means, that is that would be strictly
true for infinite U. If U is actually infinite that will happen so; that means, you have a

situation where infinite U Hubbard model. So, infinity U Hubbard model is same as just



hopping with the double occupancy is suppressed. So; that means, say you are not
allowing double occupancy, but then remember that if you are strictly looking at half
filled; that means, one electron per site then anyway hopping is suppressed because of

that that reason.

So, therefore, this will identically be 0 in case of half filling. Half filling when you have
large u and half filling hopping is anyway forbidden. So, if hopping is forbidden you
cannot say the Hamiltonian is 0. So, there will be a leading term which corresponds to a
magnetic insulator. So, I told you right. So, if you have a hopping is suppressed all that
electrons can do is flip the spin sitting at their original locations. So, that is exactly what
this term is telling you. So, this term tells you that there is a there is a mechanism there is

a physical effect which is of the order of 1 by U, where the electrons flip spin.

So; that means, there is a spin spin interaction between nearest neighbors. So, the is
nearest neighbor because remember the hopping. So, this somehow indirectly comes
from hopping. So, it comes by diagonal I mean diagonalizing that unitary transformed
matrix. So, basically there is a spin spin interaction that is induced by the fact by a kind
of a conspiracy between the fact that you have single electron per site and a large
repulsion. So, this is an example of a kind of magnetism. And this is in particular it is

basically anti ferromagnetism.

Because U is positive and large T squared is positive. So, this is saying that energy is
lowered if the neighboring spins are anti parallel. So; that means, one up one down one
up one down. So, that sort of thing. So, this corresponds to a model of anti
ferromagnetism ok. So, the point is that you see these lattice models are likely to give
you various models of magnetism, if you know try to. So, the simplest Hubbard model

gives you antiferromagnetism as a consequence of half filling and large U.

So, similarly there will be other models will which will give you other types of

magnetism which we would not go into.
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the anti-ferromagnetic coupling between the spins of the electrons on neighboring

sites. Thus we obtain a magnetic insulator

One may introduce variants of the above. Of particular importance is the Anderson
impurity model. In this model, otherwise free electrons on a lattice hybridize with
alocalized orbital. Including these two terms makes the model solvable. However,
important physics is contain

1 in addition, two electrons of opposite spins
on the orbital repel with an 3

H=—t ¥ clocjot&(codotdscoo) +Udidrd]d 9.79)
o c

The term with & is known as hybridization. For large U, the model above may be
transformed by a Schrieffer-Wolff transformation to the Kondo model.

H=-t ¥ cociots ¥ e Surtou S 9.80)
>0 [
e e
where § = ., G, is the local spin. Implicit i the no double occupancy con-

straint viz. (d{d;)(dd, ) = 0. Some more examples are found in the exercses.

9.3 Exercises

Q.1 Verify the identity in Eq. (9.77).

Q.2 Verify Eq. (9.73) and Eq. (9.74).

Q.3 What kind of continuum picture would lead to the /
(Hint: Think in terms of eacl
wavefunctions overlap with

buting two kinds
g atoms and the

sion i only for the localized

So, I will just stop this section with just pointing out that there is an interesting important
model called the Kondo model. So, the Kondo models talks about a conduction electrons
interacting with a localized quantum spin. So, the way that is thought of it may be

thought of as the limiting case of a model with hybridization.

So; that means, so, imagine you have as usual a hopping situation. So, you have
electrons which are itener and they are hopping. And there is a localized electron at some
origin which is localized. And you can have two such electrons sitting on that localized
site and corresponding to this coulomb repulsion, but then these electrons can hybridize
with the localized electron so; that means, you can have a electron from this itinerant
family of electrons to get transformed to this localized or the localized electrons can

dislodge from the localized site and become itinerant.

So, bottom line is that you have this hybridization term. So, just like in the earlier
example where the Hubbard model could have been transformed to a model involving
magnetic moments. So, here to I can transform this you know hybridized model. So, it is
called the Anderson single line impurity Anderson model. So, this can be transformed
when U is very large to something called the Kondo model. So, the Kondo model
describes the interaction of the itinerant spin of the electron with the localized spin that is

sitting there ok.



So, this is a very important model in condensed matter, it has a important historical value
also. So, similarly you can have a situation where you have a, Anderson lattice model so;
that means, you have localized electrons sitting at various points in the lattice and then
you have you know it itinerant electrons hybridizing with them. And the large U limit of
that will give you something called the Kondo lattice model ok. So, that describes the

behavior of conduction electrons interacting with a lattice of spins ok.

So, all these are important models in condensed matter physics. And I have just
succeeded in maybe with some great effort. It might require persuasion, but I have
somewhat succeeded in pointing out to you that it is possible to transform one into the
other. You can transform a model which describes you know it inerrant electrons
hybridizing with localized electrons into a model describing the interaction between the
spins of the localized and the retainer and electrons, but the downside to this is that both

are equally intractable.

So, all I have done is I have successfully mapped one unsolvable intractable problem
into another perhaps even more intractable problem. So, in some sense it is not
satisfying, because it does not it sheds some light in the sense that it if there is some
inkling or some indication about where magnetism could come from some there is some
indication that magnetism could come through these types of mechanisms in actual
solids, but other than that there is absolutely no further information because I have not

solved anything I have just pointed out all these models are interesting.
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The term with & is known as hybridization. For large U, the model above may be
transformed by a Schrieffer-Wolff transformation to the Kondo model,

H=-1 Y cociot8 ¥ chaBugCou S 980)
ij>6 [
B < A
where § = ¥, 16y is the local spin. Implicit is the no double occupancy con-

straint viz. (d\d; )(d d,) = 0. Some more examples are found in the exercises.

9.3 Exercises

Q.1 Verify the idenity in Eq. (9.77).

Q2 Verify Eq. (9.73) and Eq. (9.74),

Q.3 What kind of continuum picture would lead to the Anderson lattice model?
(Hint: Think in terms of each atom contributing two kinds of electrons, one whose
wavefunctions overlap with neighboring atoms and the other does not. The repul-
sion is only for the localized electrons).

Q.4 Derive the Kondo model Eq. (9.80) from the Anderson model Eq. (9.79).

Q.5 What kind of Kondo model emerg
mation to the ‘extended hybridization® model?

ses by applying the Schrieffer-Wolff transfor-

H==t Y cicjot ¥ &lc odo+diero) +Udidd]d, 981)
i 10710

where § =& #&.

But unfortunately in this course that is the extent to which I can go. So, I will not be
solving any model of any significance. I will simply be pointing out that such models are
interesting and they are worth solving and that is for you to explore the research

literature and find out more about them ok. So, I am going to stop here.

(Refer Slide Time: 31:03)

Chapter 10

Green Functions: Matsubara and
Nonequilibrium

In this chapter, we discuss the central concept in many-body physics, namely the
single-particle Green function. It is shown that many physical observables, such as
current and number density, are related to this object. However, this quantity is more
important than that since it provides information of the nature of ‘quasiparticles’. If
we choose to characterize the atomic constituents of the model being studied minus
the mutual interactions among the constituents—'particles’, then ‘quasiparticles”
would be the effective description of such particles in the presence of such mutual
interaction between the constituents. The single-particle Green function contains
information about the en momentum relation of these quasiparticles and also
their lifetime. We cons s concept both for systems in thermodynamic equi-
librium and for systems out of equilibrium.

10.1 Matsubara Green Functions

In this section, we define the finite temperature, or Matsubara Green function, of a
system of particles for systems that statistical mechanics would classify as grand
canonical. This means that we imagine the system exchanging energy and particles
gy and average number of particles are

with a reservoir where only the average energy
fixed. We imagine the system to be described by a Hamiltonian that may be written
in the form H = Hy+ ¥/, where Hois that part of the Hamiltonian which may be
handled exactly. The remaining is denoted by . Consider the following operator,

And in the next class, I will be discussing something slightly easier which is basically the

idea of a finite temperature Green’s function. So, if the system is in contact with some




thermal reservoir how do you describe the Green’s functions that you remember I
described the particle and whole Green’s function. So, how does that how do those
definitions change when the system is in contact with a thermal reservoir exchanging
energy in coming to an equilibrium with some temperature t? So, the canonical and

symbol idea; so, that I will relegate to the next class.

So, thank you for listening to me, but this particular lecture would have been hard for
anyone. And it is not easy to explain this in class. So, you really have to read that chapter
very carefully line by line and perhaps even consult some relevant research review
articles and only then you will understand the Schrieffer Wolff Transformation. So, but

the rest in the next lecture will be slightly easier. So, I hope you will join me for that.

Thank you.



