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Ok. So, today, let us continue our discussion of trying to write down the Tight Binding 

Hamiltonian in terms of Creation and Annihilation Operators. So, if you recall, in the last 

class, I started off with this example in terms of position and momentum description that 

is more familiar to us. So, the idea is that you have a crystal where the atoms are located 

at this capital letter R n. So, these are the locations of all the atoms. 

Now, an electron moving in such a crystal will have a Hamiltonian which is specific to 

that particular atom, so that means, if, so r is the position of the electron inside the 

crystal, r minus R n is the position of the electron relative to that particular atom at R n. 

So, if you are talking only about that particular atom at R n, then the Hamiltonian of the 

electron will be dependent on the distance of the electron from that particular atom 

which is r minus R n. 



But, it will also clearly depend upon the momentum of the electron which is an operator 

which is minus i h bar grad r. So, so this is for electron which is experiencing forces from 

that particular atom. So, then you have to add up over all the atoms. But then you see the 

point is that it is not true that only, so that means, that the potential energy of an electron 

is not necessarily only due to that particular atom. So, that there will be other atoms that 

will also exert forces on this particular electron. 

So, the point is that you should also take into account the possibility that there are 

additional potential energies that are not part of this, right. So, it is not always that you 

can express the potential energy as the sum of, something due to this particular atom and 

then that atom and then you it is just a linear sum of that. So, there may be something 

additional over and above that. So, that is what we call delta U of r, ok. 

So, that if you read this sentence it says delta U of r ensures that the full Hamiltonian is 

not merely a sum of disjoint contributions from isolated atoms. So, you see whatever it 

is, you can now write the second quantized Hamiltonian in terms of creation and 

annihilation operator because we have it in terms of position and momentum. So, now, 

what we did was we said that let us assume that this particular Hamiltonian as a set of 

completes eigenstates labelled by phi l. So, l is some kind of a shorthand for the orbitals. 
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So, now, the idea is that you can then having written down for one atom, you can then 

construct for all the atoms put together. Because then for all the atoms put together the 

Hamiltonian becomes specially periodic, where the period is determined by the latest 

vector R n. So; that means, it obeys Bloch’s theorem, so that means, the wave functions 

need not be periodic, but they are related to periodic functions. 
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So, so bottom line is that you can then rewrite your wave functions of the combined 

Hamiltonian of all the atoms put together in terms of these Bloch states. And we said that 

these Bloch state because the tight binding method assumes that the wave functions of an 

electron for particular atom are strongly localized near that particular atom.  

So, that is what tight binding means. So, tight binding means the electron is typically 

tightly bound to an a given atom. So, then it can occasionally there is a small probability 

that it can then hop to the neighbouring one. So, that is the mental picture that we have. 

So, now, you see the second quantized annihilation operator can always be; so, because 

now we have a complete basis here in terms of the Bloch states which are then in turn 

constructed from the orbitals of the individual atom wave functions. So, having done 

that, we can now re express the annihilation operator in terms of the Bloch states. So, 

when you do that you encounter this operator. 



So, this operator basically tells you that there is a linear combination of the annihilation 

operator written in terms of the momentum states which rather has the interpretation of 

being the coefficient of that particular corresponding atoms annihilation operator. So, 

you see this is the annihilation operator for an electron in the entire crystal, but this after 

having summed over k, so once you sum over k the free labels are n and l.  

So, what that means, is basically this particular summation is basically this. So, which 

represents the annihilation of an electron at the atom labelled by R n, so the that means, 

it represents the annihilation of an electron at the atom labelled by R n and being present 

in the orbital labelled by s. So that means, this operator what it does is it annihilates that 

specific electron which happens to belong to the atom labelled by R n.  

So, there is an atom sitting at R n and there is there are electrons associated with that. So, 

the electron that is in orbital l is being annihilated, ok. And then that to that specific l. So, 

this for kind of uniquely pins down the electron because once you, so then there is a spin 

projection also, so you have a spin projection, you have the orbital index. So, that orbital 

can be, you know some say if you are thinking of hydrogen atom, it will be n, l and m.  

That means, it will be principal orbital angle, I mean orbital quantum number, principal 

quantum number and the magnetic quantum number. So, that l can be shorthand for 3 

numbers like n, l and m. But I have just written n, l, does not mean it is that only that 

orbital quantum number. l is shorthand for any discrete set of indices that uniquely and 

completely specifies the orbital that is we are thinking of, ok. So, it is not necessarily one 

number. It can be a bunch of numbers. 

So, basically, that l put together with the spin projection sigma which is up or down, 

together with n, which is the nth atom at which you are annihilating the electron, you see 

uniquely specifies what it means to annihilate an electron with those qualities, so with 

those properties. 
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So, having said that, now we can also ask the inverse question, suppose, I want to know 

how to annihilate an electron with momentum k, right. So, then how would you do that? 

So, I will simply invert this relation. So, you see any transform has no value unless I 

know how to invert it also. So, inversion is extremely critical. So, no transform is useful 

unless you know how to invert. So, the claim is that the way to invert this transform is to 

do this. 

So, you can easily convince yourself this is correct by you know just take; see you have 

this formula here in change this k to k dash because then it will become a dummy index 

where you are summing over. Then, insert this formula here, right. And then, you sum 

over n you will get this result, ok. So, you can see that this is an identity. So, this tells 

you how to annihilate an electron with momentum k with spin projection sigma, ok. 

So, bottom line is that, so this is I just pointed this out that you can do this, but now let us 

get back to this. So, this c sigma r which annihilates an electron at some point r in the 

entire crystal can now be written in terms of the basis functions of the individual atoms 

times localized annihilation operator. That means, an annihilation which annihilates an 

electron in a particular atom in a certain orbital with a certain spin projection, ok. 



So, now the claim is that if I impose, so now, I want to understand the commutation rules 

obeyed by; that means, I want to ensure that the anti-commutation rules for the electrons 

are properly obeyed. So, that is guaranteed because we are going to assume that the basis 

functions are orthonormal and complete. So, if the basis functions phi l are orthonormal 

and complete the that is both necessary and sufficient to ensure the fermion commutation 

rules of these annihilation operators. 

So, we can just go ahead and impose these commutation rules. And these are the s; 

remember that if s is minus 1 A commutator B with a s equal to minus 1, means it is AB 

plus BA, right. Otherwise it is AB minus BA for Bosons. So, bottom line is that this is 

we are going to impose this. Suppose, you impose this, then you can convince yourself 

that the s anti-commutation rules for the fermions are correctly given as being 

proportional to the Dirac delta function, ok. 

So, you can choose to divide by 1 by square root of n if you do not want this n sitting 

there, ok. You can redefine your sigma with a 1 by square root of n, maybe we should 

have done that. So, if I had defined it in terms of 1 by square root of n, this would not 

have come. So, then it would be clearly anti-commutation of c c dagger is exactly Dirac 

delta. 

You see the that is why it is you might think that I am being bit sloppy. But it is not 

sloppiness, if I tell you how to do the forward transform and the inverse transform both. 

So, when I do both and things are mutually consistent and if I insert one into the other, if 

it leads to an identity, then it is certainly not sloppy because it is absolutely rigorously 

correct. 

It becomes sloppy only if I show you one only the forward transform and then I do not 

tell you what the reverse is, and then I just proceed. Then, it becomes ambiguous because 

then somebody will pick up some other convention from some other book and it will 

lead to an inconsistency. But here that is the reason why I have taken the trouble to show 

you both the forward transform and the inverse transform, so that the chances of me 

going wrong are absolutely 0, alright. 
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So, the point is that now we can go ahead and calculate the Hamiltonian the second 

quantized form namely this. So, for that I have to first understand how the total 

Hamiltonian for all the atoms put together acts on the annihilation operator for the 

electrons in the crystal.  

So, if this H total acting on the Bloch states gives you the energy of energy of the 

electron in the crystal, so which depends on the momentum. And then, notice that I have 

then re-express the Bloch states in terms of the original orbitals and I have used the fact 

that it is tightly bound.  

So, I have replaced r by R n here and so on and so forth. So, then I end up with this 

result. Then, I use the completeness orthonormality, and then I do this integral, ok. So, 

once I do this integral, so I will I will leave you to verify some of these steps on your 

own because it is really pointless for me to explain all the steps. Because it is also your 

responsibility to ensure that you are following all the steps. Because you see quite a 

number of steps are displayed and it is really important for you to fill in the small 

remaining number of steps. 

So, the bottom line is that once you integrate, you end up with this new interpretation for 

the Hamiltonian of the entire crystal. So, what is this interpretation? You see it has this 



interpretation that it is given by; so, the total energy of the system. So, we will come to 

that delta U later. So, remember it is not really still the total energy because there is a 

delta U that is talks about the extra you know it is not merely a disjoint sum of the 

Hamiltonians from all the different atoms. There could be something extra. 

But the analysis of that extra term is also very analogous to what I have already done 

here because even the extra term is also going to be specially periodic, because after all it 

has to represent an electron moving in a periodic crystal. So, because anything that is 

periodic will have a very similar mathematical consequence. So, bottom line is that as far 

as the term that corresponds to the total energy of the atoms put together is concerned it 

can certainly be written in this way. And what is this way? So, what does it say?  

So, it basically says that the energy of the electrons, the total energy of all the electrons 

of all the atoms when you add them all up, it is going to consist of, so it amounts to 

annihilating an electron at some other location R n dash, ok. And then creating it at some 

other location R n, and then you multiply that, so that means, that when you do that you 

see, so what this is doing is that the Hamiltonian of the system now in this language 

corresponds to annihilating an electron which belongs to some atom sitting at R n dash, 

ok. 

And so that means, you remove an electron from an atom that sitting at R n dash, and 

then you insert that electron into an atom that is sitting at R n. So, that is pretty much 

what this says. So, it says that it amounts to doing that. And there is an energy cost or 

gain or whatever it is depending on the sign, associated with doing that. And that energy 

is determined by or we have taken that to be W of R n minus R n dash because clearly it 

depends on the distance between the two atoms. 

So, you can see already here that it has this interpretation of hopping. So, what was 

originally a Hamiltonian consisting of you know position and momentum operator. So, 

remember there was this H a t which was the starting point. So, this had position and 

momentum. So, the position and momentum description has given way to this hopping 

description. So, now, we have re-expressed the entire Hamiltonian in terms of processes 



that correspond to hopping. So, the kinetic energy of the system in some sense now 

represents the hopping of an electron from one atom to another, ok. 

So, the idea is that, so we are going to assume that this w n is sharply peaked at 0. So, 

that means, W 0 is the maximum. So, it is sharply peaked W R will be sharply peaked at 

R equal to 0, ok. So, if that is the case then clearly n dash equals n is the dominant 

contribution, but that is uninteresting because that corresponds to the total number of 

particles, ok. 

So, the interesting term comes from the next term. So, the next most important 

contribution to this summation comes when R n is, R n dash is not close not equal to R n, 

but is as close to R n as possible. So, that is called the nearest neighbor. So, we are going 

to assume therefore, that the most dominant contribution which is not proportional to an 

identity comes from the nearest neighbors. So, that means, the n dash is a nearest 

neighbor to n. So, that means, n is equal to n dash plus delta where delta is the distance 

between nearest neighbors. 

So, remember, I told you that already in one dimension there are two nearest neighbors 

one to the left, one to the right. So, if this is your atom of interest, its nearest neighbor 

there is one to the left, one to the right. So, in two-dimension it can be even more 

interesting. So, that means, you can have many nearest neighbors. So, the whole idea is 

that whatever it is that you have to sum over all the nearest neighbors. So, you have to 

sum over them.  

So, we are going to assume that n is n dash plus delta and then you sum over all the 

nearest neighbour, then you sum over all n dash and then you of course, sum over the 

orbitals and the spin projections. 
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So, you see it so happens that even the extra term that we had omitted till now; that 

means, that what is that extra term basically it corresponds to the possible including the 

possibility that the energy of the electron may not be merely a disjoint sum of the energy 

of all the individual atoms. It can be due to something else. So, I mean it can be due to 

all the atoms put together can you know contribute to the energy or the potential energy 

of the electron in a different way. So, even if that is the case you will see that it similarly 

leads to the same type of hopping, ok. 
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So, if you redo the analysis for that delta U it also leads to hopping. So, bottom line is 

this hopping interpretation is extremely generic and natural when you re-express your 

Hamiltonian which was originally in terms of position and momentum, you re-express it 

in terms of the tight binding picture.  

So, here the assumption is that each electron is tightly bound to a given atom. So that 

means, the all the wave functions sharply peaked around the atoms. And so the natural 

description is in terms of the, so the kinetic motion through the crystal is possible only 

through this mechanism of hopping.  

So, that to hopping into the to the nearest neighbors. So, there is a small chance that an 

atom I mean electron tied to a certain atom will kind of quantum mechanically tunnel 

through and cross the barrier and reach the neighboring atom. And the chance is that it 

will go further are very slim. So, that is the whole idea about when you are talking about 

hopping of nearest neighbors. So, now we had restricted ourselves only to studying atom, 

I mean electrons that do not interact with each other.  

They only interact with their atoms. So, that means, they interact with the positive 

charges, they do not interact with each other. But we can also include the idea that they 

interact with each other. 
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So, how do you do that? You simply introduce this type of two body interaction term. So, 

usually if the charged particles you expect this to be the coulomb term that is e squared 

by r types. 
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So, but whatever it is you can re-express, so just like we did with the hopping, the kinetic 

term, we can re-express this in terms of the Bloch states, the Bloch wave functions and 

rewrite this whole thing in terms of the Bloch states. 
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So, the idea is that you see, again it is a lot of tedious algebra and I will allow you to go 

over the details. So, the idea is that you rewrite this in terms of the dense. So, it is a 

density interaction, ok. So, the density now can be written in terms of the orbitals. So, in 

terms of creating and annihilating electrons that are sitting in different orbitals. So, here 

clearly you are going to be, because it you see you are creating and annihilating. So, at 

the same point in space, so that is c dagger r c r, ok. So, those things are same; so, that 

the dominant terms will already be. 

So, you see remember that we ignored the m dash equal to n dash term in the case of 

hopping because that led to a trivial additive term proportional to the total number of 

particles, but here it is not going to do that. So, it is not going to trivially lead to, so that 

that itself will contribute. So, we can actually first try out the most obvious dominant 

contribution where m dash is equal to n dash, ok. So, in the case of hopping that led to a 

trivial additive constant which was uninteresting. But here it will not lead to something, 

it will not be very trivial. 

So, the idea is that you re-express your rho q which is your Fourier transform density in 

terms of these integrals which involve the overlap between the orbitals l and l dash, ok of 

this particular atom. So, the idea is that; so, when you do that you get this sort of I mean; 

so, not surprisingly you will of course, be forced to conclude these orbitals also have to 

be equal. I could have easily assumed that right from the start, but then I have made it 

slightly more general by not assuming that.  

So, bottom line is that you see when you rewrite this in terms of these operators, you will 

end up getting this sort of an idea. So, that means, you will get this result. So, what this 

implies is that you are actually, so this Q factor peaks at R n minus R n dash equals R n 

double dash. So, I know that there is a whole lot of unnecessary, seemingly unnecessary 

notation here. It is just that I want to get to this result as quickly as possible and perhaps I 

am not doing a very good job. 

But you see it this is this procedure is necessary because, remember that originally the 

description is in terms of position and momentum operators. So, I have to gradually 

transform those that description. So, that I end up with a description in terms of electrons 



hopping from a lattice point to another and not; so, the idea that an electron can reside in 

between two lattice points is meaningless in this tight binding picture. 

So, the electron is either at one lattice point or at some other lattice point. So, it simply 

hops from one to the other. So, it there is no concept of an electron being somewhere in 

between. So, the idea is that we have to arrive at that sort of a picture systematically 

from because that picture is a priori not obvious. So, if you look at space as a continuous 

set of points then there is no reason to believe that an electron can be somewhere in 

between two lattice points.  

But now given that it; so how do we arrive at the lattice description from a continuum 

description is the fundamental question we are trying to address. So, it is achieved 

through a series of approximations. So, the most important of them being that the tight 

binding approximation; that means, an electron is tightly bound to a given atom. It 

occasionally hops, so there is a small probability for it to tunnel through and increase the 

other atom. 

So, if you accept that sort of a progression of ideas, then you can easily convince 

yourself that the interaction between electrons, so the potential energy between, so the 

coulomb potential energy for example, can be rewritten in terms of a certain integral. So, 

that means, it can be re-expressed in terms of an integral over the, so, you can re-express 

it. So, this is your w q. So, that is an that is an overlap between the orbitals if you like. 

So, it tells you how the what is the energy cost to putting one electron on top of the other. 

So, that is pretty much what this is. 

So, basically this U is therefore, that energy cost to putting one electron on top of the 

other. So, the idea is that here this is the number of electrons sitting at position i, so that 

means, is the number of electrons sitting at atom which is located at some location i, ok. 

So, this is the number of electrons. So, n i sigma is the number of electrons at atom 

located at i. So, and that electron has a spin projection sigma, so that means, so it can be 

either up or down.  

So, the what this is saying is that this potential energy, the coulomb potential energy of 

all the electrons put together, now has this new interpretation in the tight binding picture. 



And what is that new interpretation? The new interpretation is that that potential energy 

is simply the energy cost is the sum of all the energy cost to putting one electron on top 

of another in a given atom summed over all atoms. So, I forgot to sum over i. So, that 

summation over i is implied, ok. So, you have to sum over i also. So, summed over all 

i’s, ok. So, that is the whole idea. 
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So, that you see you might think that why did I; so, finally, the interpretation is that you 

see because you cannot put one or two electrons with the same spin on top of another, 

that is you know that that violates Pauli principle. So, strictly speaking you should only 

include this term. So, mathematically, you might think that why is that, because here 

sigma dash equals sigma is also possible. Because here finally, I am saying that sigma 

dash equals minus sigma is the only one you have to include. 

So, it is possible I mean mathematically also you can see that; so, if I put sigma dash 

equals sigma this will become n i sigma squared, but then remember n i is either 0 or 1, n 

i sigma is either 0 or 1. So, because what is n i sigma? It is the number of electrons at 

position i with spin projection sigma. So, that is clearly either 0 or 1. So, in that case this 

is n i sigma itself; n i.  



So, if 0 square, if some number is either 0 or 1 its square is also either 0 or 1, so that 

means, n i sigma squared is n i sigma. So, if that is the case then if sigma dash equals 

sigma it will become n i sigma squared which is n i sigma, but then when you sum over 

all i and sigma you will get you will basically get total number of particles which is an 

uninteresting constant. 

So, therefore, the only interesting situation is when you have one spin which is up and 

one which is down sitting on top of each other. So, that is the dominant contribution to 

the electron electron interaction in a tight binding picture. So, the bottom line is that the 

end description is that you see, if you have a crystal, so you have a bunch of positive 

charges sitting at some regular lattice locations and then you have bunch of electrons 

which are trying to roam around that crystal. So, now two things happen one is that there 

will be an Hamiltonian.  

So, the Hamiltonian description of those electrons can be attributed or described in the 

following way. One contribution will come from the atoms. So, each atom will 

contribute a certain Hamiltonian to that electron. So, that means, that there will be an 

Hamiltonian associated with the interaction of the of an electron with the positive charge 

sitting at some particular location in the lattice. So, and then summed over all such lattice 

points. So, that is one contribution. 

So, the other contribution will come due to some extra potential energy that may be over 

and above that. So, it may not be a; so, there could be some residual contributions that is 

not attributable to a disjoint some of the contribution from all the atoms sitting 

separately. So, there will be a delta U contribution there, but then both these 

contributions put together in the tight binding picture can simply be thought of as a 

hopping term. 

So; that means, so the contribution to the Hamiltonian due to the individual atoms the, so 

that means, the electrons interacting with all the different positive charges is simply 

lumped and described in the tight binding picture as a hopping term. So, that means, that 

an electron can hop from one lattice point to its neighbor, ok. So, then there is an energy 

cost associated with that hopping which we call as t. So, that is the tight binding 



description of an electron in a lattice. So, but then electron will also interact because it is 

a charge particle it can they can mutually repel. 

So, how do you describe that? So, remember that in the tight binding picture an electron 

is either at one lattice point or at some other lattice point and it is meaningless to talk 

about some electron being somewhere in between. So, the idea is that when you want to 

describe a the repulsion between electrons, so naturally, it will be sensible only if one 

electron is sitting on top of another. So, that will be the dominant contribution.  

So, one electron is at some atom, the other electron is on the same atom. So, then there 

will be an energy cost associated with that because that is when the repulsion will be the 

strongest, right. So, you will have to include that. So, that is what this is. So, but then one 

electron cannot sit on top of another unless one of them is up spin, the other is down 

spin, ok. So, that is the tight binding approach in the nearest neighbor hopping and the 

dominant contribution to the coulomb interaction. 

(Refer Slide Time: 34:05) 

 

So, but then there are other possibilities. So, that, so this is the although this is the 

dominant contribution, it is also important to include a subdominant contribution and see 

if they change the results qualitatively. Because it is possible that there are some effects 

that vanish identically because of these stringent assumptions. And inclusion of 



subdominant contributions may actually make a quantity which is 0 suddenly nonzero. 

See, if the if inclusion of subdominant contributions change a nonzero quantities slightly, 

that is uninteresting.  

So, you might as well not consider the subdominant contributions. So, the interesting 

situations in physics are when the dominant contribution produces a trivial result. So, 

that means, there is some physical quantity which is identically 0, if you consider a point 

of view a certain set of approximations. So, now, then it becomes extremely critical for 

you to include the things that you have thrown away, especially the leading things that 

you have thrown away, so you put it back into your analysis. 

Then, the quantity that was actually identically 0 because of that over simplifying 

assumptions are now going to be nonzero. So, that is the reason why it is also important 

to consider the possibility that you those consider those possibilities. So, that means, in 

addition to this. So, remember what I told you about this angular brackets. Angular 

bracket i j is a standard notation in tight binding picture. What it means is i and j are 

nearest neighbors. So, it is also important to consider the next nearest neighbor and make 

sure that that does not change anything qualitatively.  

So, that is also frequently done. So, and similarly, here also you have to make sure that 

not only you consider coulomb repulsion for electron sitting on the same atom, one is up, 

one is down, but you should also consider the possibility that an electron sitting on 

neighboring atoms will also have a coulomb repulsion, but of significantly less in 

magnitude. But maybe inclusion of that might change some results qualitatively. 

So, we should be wary of those possibilities as well, so which is why I have done that. 

So, I strictly speaking I should have done for the hopping also. I should have done minus 

t dash. So, the next nearest neighbor, so the nearest neighbor is angular bracket ij, next 

nearest neighbor standard notation is two angular brackets, so that means, its one 

removed from the other, ok. So, I should have done included that also. So, there will be 4 

terms t ij. Well, t ij can be thought of as just t typically. 

So, then there is a t and at t dash for the next nearest. So, the nearest neighbor hopping is 

t that is the amplitude, t dash is the next nearest neighbor amplitude. So, the repulsion 



between electrons sitting on the same lattice point is U and the repulsion on neighboring 

lattice points is V. So, this is basically, so this is by the way this is the famous Hubbard 

model, ok. So, this is the famous Hubbard model of solid state physics, ok.  

So, this is the famous Hubbard model and this is called the extended Hubbard model. So, 

the point is that if your lattice is in one-dimension, you can actually solve for the many 

properties of this Hubbard model in one-dimension exactly, using a technique called 

Bethe Ansatz, which I will not be discussing in this course.  

So, this course is more about exposing you to the interesting models of solid state 

physics. It is not about teaching you how to solve those models, which are somewhat 

technical and they require a lot of effort. So, it is not suitable to teach in a course. It is 

best for self- learning. 

But I am offering this course just to alert you to the basics. So, that means, I am making 

you aware of the existence of all these models that are worth solving. So, it is for you to 

find out how they are solved in practice. So, in one-dimension they are typically solved 

using something called Bethe Ansatz and there are other techniques called Bosonization 

which are also important, which I am going to discuss by the way in this course towards 

the end, ok. But Bethe Ansatz is also typically used in one-dimension. 

So, just to summarize I have successfully hopefully convinced you that it is possible to 

simplify the description of the motion of an electron in a crystal through this tight 

binding picture. So, that means, through the tight binding picture, you replace this 

continuum description, replace it with a lattice description. So, that means, in a lattice 

description an electron does not have an option of being somewhere wherever it wants to 

be. It has to be either sitting on one atom or the next atom or the other atom.  

It does not have a choice of being somewhere in between. So, the thing is the kinetic 

motion comes about by when an electron tunnels through and reaches the neighboring 

atom, right. So, and the coulomb interaction between electron comes if one electron is 

sitting with up spin on one atom and electron another can come only if it has down spin. 

And if it sits on that atom, they will repel with some fixed energy called U. 



So, this description is called the tight binding description and it enormously simplifies 

the you know the description of the motion of electrons in a solid, in a crystalline solid. 

And a lot of effort has been made to understand these simplified models of electrons in a 

crystalline solid. And a lot is known, a lot is also not known, especially in more than one-

dimension. So, I will stop here. And in the next class, I will describe some variants of 

this Hubbard model, there are something called the Anderson lattice model and so on. 
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Then, I will explain to you what sort of quantities are worth calculating using this tight 

binding picture. 
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So, there are some quantities called order parameters that are interesting which you have 

to calculate. So, and the next section will be devoted to understanding how to certain 

limiting cases of the Hubbard model will describe magnetism. So, I will be describing, I 

will show you how the models of magnetism that you might be familiar with can be 

systematically derived as certain limiting cases of the Hubbard model. So, that will be 

few classes down the road, ok. 

So, thanks for listening to me. Hope to see you in the next class. 

Thank you.


