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So, in today’s lecture I am going to discuss an alternative to the Lagrangian approach 

which we discussed in the earlier lecture. So, if you recall the Lagrangian approach to 

classical mechanics involves rewriting the vectors form of the Newton’s second law in 

terms of quantities which are purely scalars and these are called Lagrangian’s and the 

Lagrange the Lagrangian obeys a certain set of equations which are called the Euler 

Lagrange equations.


Now, the main advantage of the Lagrange equations over Newton’s laws is that the 

constraint forces in Lagrange formalism do not have to be explicitly specified because 

that is typically how most interesting problems in classical mechanics are formulated by 

just specifying that the system obeys certain constraints or it is a constraint to move in a 

certain way rather than specifying the forces that compel those particles to move in that 

fashion.




So, whereas, Newton’s second law forces you to know what those forces are that compel 

those particles to move in that fashion. So, that is the main advantage of using the 

Lagrange formalism. And it so happens that there is an equivalent formalism which is 

typically more useful for especially for generalizing to quantum mechanics, but also 

within classical mechanics itself it has many advantages in the sense that it allows you to 

study symmetries in a more convincing and transparent manner.


So, that is the formulation of the Hamiltonian mechanics the Hamilton’s formulation of 

classical mechanics which I am going to discuss. So, superficially the distinction 

between the two can be captured by the following assertion namely that the Lagrange 

equations the Euler-Lagrange equations of classical mechanics are second order in other 

words that if you write them down the it will involve 2 time derivatives of the 

generalized coordinates just like Newton’s second law does.


So, if you recall Newton’s second law is mass times acceleration is force. So, what is 

acceleration? Acceleration is nothing but the second time derivative of the position 

coordinate, but basically Euler–Lagrange equation pretty much says the same thing 

except it says that something analogous to mass times the second derivative of the 

generalized coordinate equals generalized force.


So, it is basically a curvilinear analog of Newton’s second law, except that those 

generalized coordinates already obey constraints so that the generalized forces do not 

involve forces of constraint. So, that is the main advantage. Otherwise the analogy 

between Newton’s second law and the Euler–Lagrange equations is pretty much one to 

one, ok.


However, in contrast the Hamilton’s formulation of classical mechanics recasts these 

equations in terms of two first order equations. So, in other words instead of having one 

second order equation you write them as two first order equations which of course, 

effectively is especially if the coupled which they in fact, r in this case these two first 

order equations is basically equivalent to one second order equation.


So, I am going to describe to you the relation between Hamilton’s formulation of 

classical mechanics and the Lagrangian mechanics and they are related by this beautiful 



mathematical notion called the Legendre transformation. So, I am going to describe what 

it is and I will tell you that it has a very beautiful and intuitively appealing geometrical 

meaning. So, the Legendre transformation can be visualized in a very geometrical way 

and that is quite appealing and interesting to know ok.


So, in order to develop the Hamilton’s approach to classical mechanics I am going to 

introduce to you the concept of Legendre transformation. So, I hope you can see my 

slides. So, if you can make out that I have written down that imagine that there is a 

function L(v) is a function of some variable called . So, the idea is that I am going to 

introduce a notion called convex function.


So, a convex function is basically something that looks like this. I mean basically 

anything that looks like this ah. So, this would be convex ok. So, rather than this would 

be concave. So, specifically the mathematically what it means is that you are saying the 

second derivative of the function is positive at all points. So, the slope continuously 

increases as v increases the slope increases rather than decreases ok. So, then you say it 

is convex.


So, if you have such a convex function one can define formally another function which is 

basically the maximum value of, so, the right now this definition is not very intuitive, but 

I am going to tell you that it has a very well defined geometrical meaning, but 

analytically you can define H(p) as the maximum value of p times p. So, p is a fixed 

quantity and v is your variable ok. So, v is your variable and I maximize with respect to 

v.


So, I change v until this becomes maximum and the reason why that is guaranteed to 

exist is because if you look at the first derivative. So, when does an extremum exist? The 

extremum exists at  where the derivative of this vanishes. So, in other words that 

is what I have I have told you that. So, if you think of G of v as this difference, then the 

place at which the function becomes an extremum so, extremum recall for a single 

variable is either maximum or minimum.


vn

v = v*



So, at this stage equating the first derivative to 0 just guarantees that point is an 

extremum it does not guarantee that it is a minimum, but right now it guarantees that it is 

an extremum. So, in other words it is either a minimum or a maximum. So, now, what is 

the value of v and clearly that value is obtained by the solution of this equation. So, by 

inverting this correspondence you will be successful in finding the extremum.


But, then I want to convince you that extremum is in fact, the maximum, right. So, 

because it is supposed to be the maximum value so, why is that the maximum? Because 

if you take the second derivative. So, if you take the second derivative of G it is simply 

 is not it because p times v second derivative is 0 because p times v is linear in b.


So, the first derivative is constant the second derivative is 0. So, the only term that 

contributes to the second derivative is the one with the Lagrangian. So, in other words 

 is basically equal to this ok. So, the bottom line is that because the function is 

convex because it is convex. So, you know it is not this rather it is this. So, because it is 

convex  is positive ok.


So, because  is positive,  is negative and you know when second derivative is 

negative the function is a maximum, right. If it is an extremum and the second derivative 

is negative, the function is a maximum. So, that makes sense. So, the H(p)’s definition 

therefore, makes sense because there does indeed exist a maximum. So, we are not 

making a mistake we are not assuming more than we know.


So, we have to assume that there is a maximum only when we know beforehand that 

there in fact, is a maximum we just convinced ourselves that there is a maximum ok um. 

So, now, that is the definition therefore, of H(p) is that. So,  and  is 

the place where G(v) becomes a maximum ok. So, now, so, now, this is the analytical 

description. So, this is called the Hamiltonian ok.


So, this is called the Hamiltonian just like this is called the Lagrangian. So, they are 

named after different scientists, but the question is that you know the claim that I am 

going to make is the following.


−L′￼′￼(v*)

G′￼′￼(v*)

L′￼′￼

L′￼′￼ G′￼′￼

H(p) = pv* − L (v*) v*
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That imagine think of L(v) as this sort of curve. So, this is L versus v. So, it is some 

convex curve is not it. So, it is a convex curve. So, it means it points upward like that. 

So, and then the thing is that in order to specify this convex curve you can do the 

traditional obvious thing namely you specify the x coordinate of some point that is the 

horizontal coordinate of some point and its vertical coordinate.


So, by specifying the horizontal and the vertical coordinates that is the abscissa and the 

ordinates you will be successful in locating all the points on the curve L(v). So, that is 

the usual traditional way of drawing a curve you just locate the horizontal and the 

vertical coordinates of each point and then you draw points at those places and then you 

join them all using a smooth curve.


So, that is how you would think of L(v) in the traditional way, but then there is another 

way of thinking about a convex curve like this and the way to think about it is not by 

specifying the points themselves like we did just now, but by specifying the set of all 

straight lines that are tangent to this curve. So, I am going to convince you that 

specifying a whole bunch of straight lines each of which are tangent to the curve at 

different different points is equivalent to specifying the curve itself.




So, why is that? So, the reason why that is the case is because so, just imagine that this is 

one such straight line which is clearly tangent to the curve at this point. Now, you can 

imagine another straight line like this which is tangent to the curve at this point. So, then 

you can imagine another straight line which is tangent to the curve at this point.


So, if I specify so, if I collect all these straight lines, right I collect all these straight lines 

and then I put them in one place and then I just collect is. So, just like in order to draw 

the curve I am collecting all the bunch of points, right. So, basically in order to specify 

the curve the usual way of doing it is to collect all those bunch of points and put them 

together in some place and then deal with them.


But, instead of doing that what I am doing is I am going to collect a bunch of straight 

lines and then I am going to put them all together in a certain way. And, the way to do 

that is, so, first draw those straight lines on a piece of paper and then ask yourself which 

is that single curve which I can draw that is tangent to all these straight lines. So, if you 

are able to draw such a curve then basically that curve is exactly what your you are going 

to describe using those points.


So, instead of so, what you have done is you have been successful in replacing that point 

description of the curve using the tangent description. So, in other words rather than 

specifying the points on the curve what you have done is you have replaced those points 

by a bunch of tangents and what you are saying now is that the curve that I am looking 

for is that curve which is simultaneously tangent to all these straight lines at whatever 

points they want to be tangent at.


So, now, I am going to convince you that these two ways of looking at the curve are in 

fact, equivalent ok. So, how do I convince you about that? So, that is exactly what the 

that is the geometrical interpretation of the Hamiltonian ok. So, now, imagine that there 

is some . So, imagine this is my  and then there is a at this point there is a straight 

line which is tangent to this curve.


So, now, I am going to ask myself what are the slope so obviously, a straight line is 

described by two numbers – one is the slope of the straight line and the other is the y 

intercept; that means, the vertical intercept and the slope. So, that is what if you recall 

v* v*



from our high school days that is how we have defined or choose to describe straight 

lines, is not it? So, if we if I wanted to analytically describe a straight line I would 

describe it by specifying the slope and y intercept. 


So, now, I am going to ask myself what is the slope of this straight line that is tangent to 

this L(v) clearly that slope is nothing but  which happens to be exactly p. So, 

remember that  is nothing but p. So, this is so, if I specify the slope of the straight 

line and that is bound to be equal to by definition the derivative of this L(v) at v* .


So, now, I am going to ask myself what is the y intercept? So, I am going to call the y 

intercept the point at which the straight line intersects the vertical axis at (0,-H) . So, 

when I do that clearly the equation for the straight line now becomes. So, this is the w is 

the some point on the straight line that is this is my w. So, w is nothing but the slope 

 . So, this is y and this is my slope which is m which happens I have called it 

p, but.


So, if you used to   that this would be x, this would be m, this would be c 

and this would be y. So, that is what that is. So, it is a straight line whose slope is nothing 

but  and the y intercept is - H. So, that is my straight line. So, the claim is that 

rather than specifying v and L, v what I am going to do is ah.


So, if I specify a whole bunch of these things, right so, then I am of course, going to 

specify the curve. So, this is a certain point this is a certain different point and so on and 

so forth. So, by specifying all these points I can clearly draw a smooth curve through that 

and that should be my L of v, but the claim here is that alternatively instead of doing this 

instead of specifying (v,L(v)) what I can do is I can specify (p,H(p)) which is equivalent.


And, what is p? It is the slope of the straight line that is tangent to this curve that I am 

eventually going to generate. So, there is a slope. So, rather than specifying v and L(v) 

so, I am going to specify the slope of a whole bunch of straight lines and those straight 

lines are all going to be simultaneously tangent to the curve that I have in mind. So, this 

is the slope and then  -H is pretty much the y intercept of that straight line. So, I am 

specifying slope and intercept.


L′￼(v)

L′￼(v*)

y = m x + c

y = m x + c

L′￼(v) = p



So, for there are there is one straight line whose slope is  and whose y intercept is  

. So, by specifying both that straight line now becomes unique because there is 

only one straight line with slope  and y intercept . So, similarly I can generate 

different straight line whose slope is  and the y intercept is  . So, now, I have in 

this way of doing things I am generating a whole bunch of straight lines.


Now, I am going to ask myself which is that curve that is tangent to all these straight 

lines at the same time in other words, but they are going to be tangent at different points, 

but then they are simultaneously tangent to all these straight lines and the answer is 

precisely this the curve that you generate through this procedure. So, that is because the 

Hs and the ps have been generated through the Ls if you recall. So, this is the 

geometrical meaning of Legendre transformation.


So, the transformation that we are talking about now is the transformation from the (v, L 

(v)) language to the (p,H(p))  language. So, from the language of specifying points on the 

curve in the usual way to the language of specifying the curve indirectly by specifying 

the slope and the y intercept of the vertical intercept of the tangents to the curve that 

those straight lines eventually imply.


So, in other words, there is going to be a curve which is finally, going to be tangent to all 

those straight lines at the same time. So, you either specify the curve directly by 

specifying v and L(v) or you specify this whole bunch of straight lines and then there is 

always going to be a unique curve that is going to be tangent to all these straight lines at 

various points, ok. So, this is the Hamiltonian formulation of.


So, of course, you might think that where is physics here? So, the physics comes if I 

interpret L (v), L as my Lagrangian and v as my generalized velocity or the so, if v is L 

(v) then clearly  is basically the usual way of defining canonical momentum and so,  

H(p) will then become the Hamiltonian. So, that is called the Hamiltonian.


So, this is how Hamiltonians are formally introduced into classical mechanics and this is 

the geometrical interpretation ok.


p1

−H(p1)

p1 −H(p1)

p2 −H(p2)

L′￼(v)
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So, in my textbook I have made some other technical statements about invertibility that 

you have to convince yourself that this correspondence is invertible. So, that so, in other 

words, if you go from the  (v,L(v)) language to (p,H(p)) language and then you should be 

able to do the reverse. So, if I start from the (p, H(p)) language I should be able to get 

back the (v, L(v)) description as well.


So, I have intuitively convinced you that is in fact, possible, but there is also a 

mathematical rigorous way of doing that which is described in my book here which I 

will encourage you to read, because the textbook that I am using right now which is 

being displayed in front of you is the prescribed textbook.


So, you please consult the relevant page number 9 of my textbook has this mathematical 

proof which tells you why it is that it is this correspondence is invertible ok. So, 

remember that L(v) implies that the Lagrangian is a function of generalized velocity. I 

have purposely suppressed another independent variable namely the generalized rather 

the position itself.


So, you see the so, you know that the Lagrangian is actually not just a function of  

which is your generalized velocity it is also a function of q. So, but because q does not 

·q



play any role in this geometrical description of the Legendre transformation I purposely 

suppress that.


But, now I can go ahead and bring it back. So, if I bring it back my Lagrangian is going 

to be not only a function of the generalized velocity which is v which is of course, , but 

it is also a function of yeah. So, it is also a function of the generalized coordinate itself 

which is q.


So, as a result of course, that same dependence carries over into the Hamiltonian as well 

because after all that q was anyway suppressed earlier. So, it should once you explicitly 

display it should also be displayed also inside the Hamiltonian bracket. So, the 

Hamiltonian is not only a function of p which is the slope of L versus v, but it is also of 

course a function of the generalized coordinates. So, I write H(p,q)  to emphasize this 

point.
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So, now, recall that the Lagrange equations were basically this. So, this is like I told you 

know this has a very close resemblance to Newton’s second law because what this is 

generalized momentum and this is generalized force. So, rate of change of generalized 

. So,  of generalized momentum is generalized force.


·q

d
dt

(p) = F
d
dt



So, its pretty much Newton second law in disguise and, but of course, the disguise is a 

very efficient disguise in the sense that it gets rid of aspects that you are anyway not 

privy to namely the forces of constraints, alright. So, now, what I am going to do is that I 

know how H is expressed in terms of L. So, I am going to invert that and express L in 

terms of H. 


So, that is easy to do because all I have to do is invert this and if I do that. So, I am going 

to use this inversion to see what it is if I can rewrite the Lagrange equations in terms of 

my newly generated Hamiltonian. So, how would I do that? I define L(v)  like this and 

then the derivative of L(v) with respect to v which is the v is if you remember is the 

generalized velocity which is  and that is going to be nothing but . So, remember that 

this  ok. 


So, what is ?  is basically ok I think I should not have skipped this, but bottom line 

is that just like you can define the Hamiltonian as the maximum value of p (v - L). 

Similarly, you can define the Lagrangian as the maximum value by varying p as p (v - 

H(p). So, its completely invertible. These relations are completely invertible and the 

maximum takes place exactly at some  which is basically given by the solution to 

the equation  ok.


So, yeah so, this is this page number 9 is not fully cosmetic I mean its not some pedantic 

discussion of invertibility because I am going to use this idea in the very next page. So, I 

feel its worthwhile for you to go through this carefully. So, bottom line is that just like 

there was a  which was basically the value of v at which that function G became an 

extremum here too there is a  which makes the analogous function an extremum that is 

p(v - H(p)) now becomes an extremum as you vary p.


So, if you keep that in mind then obviously, this  is now going to be a function of the v 

that because so, clearly what is how do you define ,  is determined indirectly through 

this. So, if you invert this whatever I have circled here. So, you will get  in terms of v 

so, which is why I have written  as a function of v there.


·q

p*

p* p*

p = p*
d

dp
(H(p))

v*

p*

p*

p* p*

p*

p*



So, now, I take the derivative of L with respect to v and I end up getting  and then I 

should not forget to differentiate  because now that also is a function of v and I end up 

getting this relation. But then keep in mind that . So, because this is nothing 

but v these two will cancel out and then it will give me this ok.


So,  ok and furthermore it is obvious that  and why is that is fairly 

obvious because you see it is L is defined L is defined as . So, H is a function of q, 

right. So, the q dependence now is here ok. Sorry, I am messing up. So, I am just going 

to this one.


So, L of the  which happens to depend on q. So, now, if I take the 

derivative with respect to q, so,  ok yeah. So, just take dL by dq here you 

will see that q is only sitting here nowhere else. So, then that is what you get here ok.


So, as a result what will be successful in doing is that so, this equation is nothing but 

, but then what is . So, this is the first equation first of the 

Hamiltonian equations. Then of course, dH by dp itself is nothing but v right. So, but 

then what is v it is nothing but q dot.


So, what is happening now is that you have instead of one second order equation, you 

have two first order equations involving p and q. So, in the Lagrangian formalism there 

was one second order equation involving only q which is the generalized coordinate. 

Now, you have two first order equations involving generalized momentum as well as 

generalized coordinate ok.


p*

p*

d
dH

(p) = v

dL
dv

= p*
dL
dq

= −
dH
dq

p*v

L (v) = p*v − H(p*)
dL
dq

= −
dH
dq

d
dt

(p) =
dL
dq

dL
dq

= −
dH
dq
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So, this is the so called Hamilton’s approach to classical mechanics, but notice that in 

both the Lagrangian approach to classical mechanics as well as the Hamilton’s approach 

to classical mechanics the forces of constraints are explicitly omitted. So, they are 

superior to Newton’s second law of for studying classical systems for this reason. So, 

namely that you do not have to know beforehand what are the forces of constraints 

acting on the system.


So, even without knowing that you will be able to find the trajectory of all the particles 

in the system which is basically the fundamental question that is of interest in classical 

mechanics is to just explicitly work out the trajectory of each of the particles knowing 

the initial state of the system.


So, the answer to that question is facilitated by both the Lagrangian as well as the 

Hamiltonian approach because both these approaches do not explicitly require you to 

know the forces of constraints whereas, Newton’s second law requires you to know what 

the forces of constraint are ok. So, I am going to stop here and in the next class I am 

going to discuss what are called flows and symmetries.


So, the Hamilton’s description of classical systems enables a very elegant description of 

symmetries and in fact, the Hamilton’s equations themselves describe a kind of flow, but 



the flow is with respect to time. So, the so, these ps and qs are flowing with respect to 

time, but then the independent variable can be something other than time which enables 

us to study certain kinds of symmetries called dynamical symmetries in a very elegant 

way.
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So, I am going to describe that in the next class and I hope you will join me for that.


Thank you.


