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Using the path integral representation in Eq. (7.20) we get,
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In the above idefitificatigiwe-have ignored the distinction between sy and s. From
classical mechanics, we know that § = [ ds L(r(s),i(s)) is the classical action of
the particle. The above path integral is commonly written as
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Thus, the quantum mechanical problem of computing the matrix elements of an
operator with respect to non-stationary states may be done in two ways-cither by
solving the time-dependent Schrodinger equation that invokes the Hamiltonian, or
using the path integral, which involv gian but the price to be paid is
one has to evaluate functional integrals. We h uired some familiarity with
this technique in the earlier chapter. Now we go ahead and apply this technigue to
study two standard problems—the free particle and the harmonic oscillator.

7.2 Free Particles

So, in today’s class let us discuss the application of this Path Integral Formalism. So, if
you recall the in the last class I had stopped here. Where I showed that you can find the
quantum mechanical overlap between of any operator. So, suppose you want to find the
matrix element of some operator called Q between some two states initial and final. And
the final state is obtained by just time evolving the initial state from the initial time to the

final time.

So, usually that type of answer to that type of a question in traditional quantum
mechanics is obtained by first solving Schrodinger’s equation that is the time dependent
Schrodinger equation to obtain first the final state from the initial state. And then, just
finding the this overlap between the initial state and the operator Q acting on the final

state.



So, that is typically how it is done in traditional approaches. But, in the path integral
approach which uses the Lagrangian instead of the Hamiltonian it just means that you
find an answer to this type of question that is you integrate over all paths ok; starting
from r 0 up to r N. So, your initial point so that means, you find all paths connecting a

point called r 0, ok.

So, you find so there are two points r O r N which of course will also be integrated over
finally, but to begin with you find the so, that means you find the integral of this quantity
which is e raise to 1 by h bar into action. So, you add up all the so this is depends on the
path, ok. So that means, you add up over all paths. So, this is called the path integral and
the path starts from so that means, at the initial time the particle at is at r O final time it is

at r N and all the paths start and end at the same point.

So, what you do is you first is find this quantity e raise to i by h bar into action for a
given path, then you repeat it for a second path and so on and so forth and basically you
add up all the paths. But, then there are uncountable infinity of paths so, you have to do a
path integral. So, that is what this is that what I have circled here yeah I could have used

a different color but it is.

So, but you know what I am talking about. So, this is that path integral. So, I have to
integrate over all paths. So, now the answer after integrating over all paths the final
answer to that will be a function of r 0 and r N. So, now, you multiply by the overlap
between r N and the initial state which is given in the problem and then you also find the
overlap between ah the initial state and this operator whose matrix elements you want to

find acting on r 0, ok.

So, r 0 and r N are your initial and end point of the path integral. So that means, you
even though you have summed over all paths, the final answer still depends on the
starting point and ending point. So, r 0 is starting point, r N is ending point. So, now after
integrating all r path you get a quantity which depends on r 0 and multiply that with this
matrix element r N i, then multiply with the overlap between the initial state and Q

actingonr 0.



And then, after that you integrate over all r Oand all r N. Because, the final answer
clearly does not depend I mean r 0 and r N you introduce we introduced in between for
our convenience. The left hand side just depends on the initial state final state. So, final
state depends on the initial time final time and the Hamiltonian of the problem and Q is a

given operator.

So, basically so if you integrate over r Oand r N after doing the multiplying the first one,
second one, third one you integrate over r 0 r N. You finally get the answer to this
question so, in other words you do not have to necessarily. So that means, there is no
place where you are required to solve the time dependent Schrodinger equation and so on

so forth.

But that is what you would have done if you had wanted to evaluate this matrix element
using traditional quantum mechanics the left hand side, ok. So, that is how you would go
about doing. So, I mean the answer to this question is a very general one is not it. So that
means, most of the interesting questions in quantum mechanics can be posed as finding
the you know matrix element of some operator between some initial and final state. So,

most of the interesting questions are of that nature anyway.

So, what we have successfully done is that, we have recast the answer to that rather
generic and general question that occurs repeatedly in traditional quantum mechanics;
we have recast that in terms of a path integral. So, we have explained how to evaluate the
I mean or compute the answer to that question using Lagrangian instead of Hamiltonians,
ok. So now, let me go ahead and try to apply this to some particular problem. So, this
was very general it was formalism. So, specifically what I am going to do is I am going

to find what is called the propagator.

So that means, what I am interested in finding is basically imagine that the initial state is
a state with well defined position of the particle. That means, in the initial state the
particle has a well defined position called r 0 and in the final state the particle has a well
defined position r N, ok. So, now I want to know the what is the overlap between these
two states, because the initial state will be at time t 1 and final state will be at time. So in

other words, basically I want to know this it is self whatever I am circling now.
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7.2.1 Free Particle

For free particles, the propagator is
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To facilitate the solution of this we make the substitution
r(s) =r(s)+q(s (7.26)

where r,(s) is the classical trajectory of the particle, which is a straight line con-
necting the points (ro, ;) and (ry, 7). Since the end points are fixed r(t7) = ry and
r(t;) = ro, we must also have q(t;) = q(t7) = 0.

(s=1;)en = (s=tg)rg
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So, I really want that itself. So in other words, I want to know the path integral. So, that
path integral clearly has the interpretation of an overlap between an eigen state of
position at time t i and eigen state of position at time t f, ok. So, it is like this. So, if at
time t i you make a measurement of the position and the answer for that measurement
comes out as r 0. Then, you wait for a time t f minus t i and then again you make a

measurement of the position. The answer comes out as r N t f.

So, the question is what is the probability or what is the overlap between these two
states. That means, what is the probability that if the particle is at r 0 at t 1 the particle
will end up at r N at t f. So, the answer to that question is this path integral. So now, if it
is a free particle so, this is always true that is always the answer to the question. But now,
if the particle is a free particle, then the Lagrangian is just the kinetic energy. So, now the
kinetic energy is clearly half m r dot square. So now, what [ am going to do is as usual |

am going to split up this problem into two pieces.

So, I have to do a path integral. So that means, I have to do a path integral initial position
is r 0 and r N. So, instead what I want to do as I have been doing earlier also I want to
split this up in this path integral. That means, sum over all paths into a path which is

basically the extremum or the most probable path the one which extremizes the action



and then, I want to say that the actual path is obtained by this extremum path plus a

deviation.

So, this is extremum path is clearly the classical path. So, the path which extremizes the
action is basically obeys the Euler-Lagrange equations. So, that is the classical path. So
now, I am going to write a general path ok which is required in quantum mechanics, so
that means, the quantum particle does not necessarily always take the classical path. So,
it takes all possible paths and so, I can always write the general path as the classical path

plus some deviation with respect to the classical path.

So, q s is my deviation. So, if I want to do a path integral I have to integrate over the
deviation. So, the classical path is given but the deviation is the one which is getting
summed over, because the original path has to be summed over. The classical path is a
fixed unique path. So, there is nothing to sum over there. So, the path that is getting
summed over is r therefore, it is also I means you are also required to sum over the

deviation.

So, now clearly for a free particle the classical path is a straight line. And the straight line
such that at t equals t i the position is r 0 and at t equals t f the position is so that means, s
is my I have parameterized in terms of s instead of t, t for some reason. So, basically at s
equals tiitisr O and as at s equals t f it is r N. So, that is obeyed and this is a straight

line. So, it is linear in s, ok.

So, now because r N r N r ¢ that is the classical trajectory and the actual path taken in by
the quantum particle both have the same end points. Clearly, q has to have this property

its end points has to be 0, because r and r ¢ are the same end points.
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The integral over q(s) may be evaluated using the following prescription
(s 1)
5)= q, sin(mn ) (1.30)
g ?: (ty 1)
This choice automatically respects the boundary conditions: q(1;) — q(t7) = 0.
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However, the meaning of the term D]q] is not clear other than that it is proportional
3 300\ o

o the product of various d*q(1)d*q(fy).....d*q(ty). Since we do not know what

that proportionality is, it is not useful to proceed to evaluate the integrals over q(s).

Instead, we make the following observation that, at equal times, the propagator has

So, now the point is I mean so, when you actually recast all the original path integral in
terms of q instead of this what you end up getting is basically the cross term cancels out
and you get this term. So, you will get a classical term times this. So now, you know I
told you the reason why we do this is because you see once you make the deviations the
end point of the deviation both are 0 that immediately means I have periodicity. So that

means, at qattiis 0 and q att fis also 0.

So that means, I can exploit periodicity and write decompose q in terms of a discrete
Fourier series rather than some general transform which would not be useful. So, this is
what I have done. So, you see here q bracket s has the property that when s is t1itis 0
when s is t f it is also 0 that is why it is sin pi n, ok. So, it is a discrete Fourier series. So,
once I do this I can go ahead and rewrite the action in terms of the deviation in terms of

the discrete components g n, ok.

So now, what I am going to do is that what we have to do is we have to integrate over all
the q ns, but we also know that if see, but we would not be able to fully understand how

to fix those proportionality.
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to be a delta function since the eigenstates of position with different positions are
orthogonal
<xo,ifen,ty =1 >=8(ry —ro) (1.32)

This also means

Limy, /d;’\ <o filentp >=1 (7.33)

Now we observe that the integral over q is, at worst, some function of 7 ;. This
allows us to write

i
<rotifey tp >=e gty —1)
To determine g(t7 —1;), we substitute the above ansatz into Eq. (7:33).
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Thus, the full expression for the propagator is

i
<oty tp>=e

Thus, the idea behind the path integral approach s to firs find the classical tra-
jectory connecting the two end points, then express the remaining in terms of an
integral over fluctuations. This is typically indirectly evaluated by using conditions
such as normalization. Now we study the situation typical in condensed matter
physics where one has free fermions in a Fermi sea

So, basically this is once you integrate over all the q ns it has the nature of a
proportionality constant, but rather than fixing it that way I mean rather than struggling
with that type of a calculation what we do is we make use of this clever observation and
that is that if t f is equal to t i, right. So, if you have a free particle and you do not wait at
all. That means, you start at t i, you are supposed to wait until you the time becomes t f
before finding the overlap suppose you do not wait; that means, your starting time is t 1

ending time is also t i.

So, now what do you expect the overlap to be clearly it will be 0 unless the end value of
r is same as the beginning value of r so, unless r N equals r 0. The overlap is 0, because
the particle has not had time to move right initially it was at r 0 at time t i, but then t f is
equal to t i that means, you do not give it enough time to move. So, clearly its position
should still always remain r 0 only quantum mechanically as well as classically. So, there

is no time for the wave function to spread or for the particle to move or whatever it is.

So, clearly this is valid. So that means, the quantum mechanical overlap is 0 unless in
which case it is a Dirac delta function, ok. So, what you do is that basically rather than
struggling with integrating over all these q Ns which is what it would be what you do is

you multiply with this clearly we know that this integral this particular this one. This is



just a function of t f and t 1. So, specifically it will be a function of t f minus t i because

of free particle.

So, it is some function of t f minus t i and instead of struggling by actually doing that
integral which is what you would have to do, what we do is we write this overlap as what
we got earlier. So, just remember where this came from. This simply came from just
substituting this kind of this kind of a relation with this into the original action and you
end up with this one. That means, you end up with one half m v ¢ square and v ¢ square
it was basically equal to this one, ok. So, that is v ¢ square half m v ¢ square into t f

minus t 1.

So, that is basically r N minus r 0 squared divided by t f minus t i squared into t f minus t
1 1s half m v squared into t f minus t i but then, so one of the t f minus t i from the
denominator cancels out so you get this. So, that is where that came from, ok. So, the rest
of the thing is just the integral over deviations. So, the bottom line is instead of trying to
struggle and find the actual answer by integrating over all the q ns. I do a shortcut. |
realize that when t f equals t i its a Dirac delta. So, I just give it a name [ just call itt f' g

of t f minus t 1.

And so, this is clearly the most general answer to the overlap. So then, what I do is that |
make use of this is obtained by integrate I mean this is the general observation then you
simply integrate over all the r Ns and then take the limit you get one, because that is how
it is. So, what we do is that here you simply integrate over all the r Ns because, right so

and you make t f tends to t 1 it should give you 1. So, that is going to happen.

So, the after you integrating over all r N this what it is and this should be 1 when t f tends
to t i. So, that is going to happen very easily if you choose this. So now, if once you
choose this then it clearly has that property that as t f tends to t i1 this whole thing will

become a Dirac delta function, ok. So, that is what that is.

So, intuitively also you can see that this is the case. So, suppose that t f is not equal to so,
rather r N is not equal to r 0, but t f tends to t i, ok. So, if t f tends to t i what is going to

happen is that this will oscillate so, you see t f tends to t i so it will have a large phase.



So, it will basically oscillate the average out to 0. So, basically if you plot this it will

look like this.

So, it will actually look like this. So, on an average it will average out to 0, ok. So,
however if r N is equal to r 0 then this will become 1 and then, if you first make r N
equals r 0 and then take t f tends to t 1 you will get infinity because, that is what you are
supposed to do, ok. So, if you first take r N equals r 0 and then my t f tends to t i you get

infinity because, that is what.

So, if r N equals r 0 to begin with you are supposed to get infinity because of the delta
function, but in general when r N is not equal to r 0 and you make t f tends to t 1
supposed to it 0. Because, when t f tends to t i r n not equal to r 0 means the chances of
that are 0, so that means the overlap is 0. So, that is what we are finding here. So,
intuitively that is correct, but mathematically also it is correct because, if you so, it is
therefore proportional to the delta function and the proportionality is 1 because if you

integrate over r N you get 1, ok, ok.
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7.22 Free Fermions

For studying fermions, we prefer to focus only on one dimension. The higher di-
mensional case is somewhat more complicated and will not be done here. We have,
at the back of our mind, the situation typical in condensed matter physics where
all states with energy less than some energy Ef are fully occupied so that fermions

cannot scatter into those states. Thus, for studying the propagator of free fermions,
we have to integrate ov hs subject to an additional constraint—the kinetic
energy at all times has to be larger than or equal to the Fermi energy. This means
that a state corresponding to a definite position will have some spread.

o= T p><ph>
PI>PF
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In the position representation it is given by (we introduce a regularization factor
¢ % where € = 0 at the end),

; ‘ dp ;
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We may also write
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(7.40)

So, now so the next problem so this was free particles in the sense that is absolutely free
and nothing is blocking anything. So, there are no potential energies and the particle can

have any momentum it wants any energy it wants and so on so forth. So, that is what a



free particle is, but the next example is [ have concocted this example which is not found
in many books, but its also something you should not take to literally. So, the example is

the following.

So, basically it I am trying to mimic the properties of an electron in a metal which has
energy close to the Fermi energy. So that means, I am trying to mimic the behaviour of
an electron in a metal whose energy is close to the Fermi energy. So, of course, I must I
mean all these words will make sense if you have some background in solid state physics

or stat mic.

So, that is one of the stat mic is a prerequisite for this course. So, that is the reason why I
made that sentence. So, basically in a metal what happens is that you have a large
number of electrons and they are all fermions they obey poly exclusion principle. So
now, if you try to make the electron occupy one energy level so, you can at most occupy
one more electron with that energy and after that you will have exhausted all the possible
state; I mean you cannot accommodate more than two, because one has to have up spin

the other is down spin.

So, then you have to go to the next level next level next level like that. So, if you have
large number of electrons like you have conduction electrons in a metal. So, the ground
state itself will have a huge energy. So, that huge energy is the called the Fermi energy.
So, it will be fully populated up to some energy. So now, you know an electron with
energy close to the Fermi energy cannot scatter to any state whose energy is less than the

Fermi energy because, all states below Fermi energy are occupied.

So, what I am going to say is that, | am going to make this so, I am firstly I am going to
focus in 1 dimension because that is of application interest also later on when we study
routing or liquids and secondly also because it just serves to illustrate the main point

without getting bogged down in integrals I mean 1 dimensional integrals are easy to do.

So, the bottom line is that normally you know if I invoke completeness what I would do
is I would write like this. So, this would be my completeness, but then in this case what |

do is that you see. So that means, normally a particle with a well defined position will



make sense for a free particle means like, if you have it makes sense to talk of a particle

with a well defined position.

But in this example, because the particle that I am looking at. So, there is a imagine there
is a fermion and it is trying to wander around, but then it is constantly aware that it is in
the presence of a filled Fermi sea. That means, it is in the presence of a sea of fermions
which is filled up to some Fermi momentum E F and which is determined by p F p F
squared by 2 ms E F, ok. So, that is the Fermi momentum and it is related to Fermi

energy like this.

So that means, there is a sea of electrons we filled up to Fermi energy. So, another
electron comes wandering around and its completely aware of that its in the presence of
this Fermi sea, because it has to obey Pauli principle; that means, it cannot go and sit on
top of some other electron which is having energy less than Fermi energy. So, it is fully
aware that it has so, what will happen is that it will then what this means is that it is

impossible to create an eigen state of an electron with well defined position.

So, remember what that means. See, if a particle has a well defined position its
momentum can be absolutely anything, right. If the position is strictly well defined,
right. So that means, the spread in delta x is 0 so that means; Heisenberg principle is
delta p is actually infinity right, because it can be anything. So, momentum can be
absolutely anything but then, if there is a field Fermi sea its momentum cannot be
absolutely anything it certainly cannot be less than the Fermi momentum because, those

states are occupied by other electrons.

So, what happens therefore, is that this type of an interpretation forces us to conclude
that it is not possible to create an electron in the presence of a filled Fermi sea to have a
strictly well defined position. Because, a strictly well defined position implies
completely arbitrary momentum, but that violates Pauli principle with respect to the
other electrons. So, the best you can do is actually write this. So, this is the closest you

can come to creating a particle with some well defined position.

So, what you do is, you find this overlap which is basically raise to ix i p x by h bar and

you multiply by eigen state of position and you sum over all p such that its magnitude is



greater than p F. So, that you are staying away from filled states so, p greater than p F for
all empty states. So, you are staying away from filled states so, and yet you are trying to
mimic the idea that you are trying to find a particle with some position x. So, this is the

closest you will come to finding particle with some position x, ok.

So, what will happen is that finally when you try to evaluate this you get this answer. So,

if you try to find the overlap between this and a strictly eigen state of position.
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We may also write
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From the diagram it is clear that the probability density of a fermion at a position x
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Figure 7.3: The density of fermions p(X —x) = [, (X) ? is plotted versus (X — x).

in the presence of a filled Fermi sea has a finite width around x. This leads to some
anomalous results. In other words, ‘¥, (X) is the closest one can get to an eigenstate
of position in the case of this Pauli-blocked free particle. If the particle were truly
free, this function would just be the Dirac delta function: W,(X) = 8(x - X). First
we evaluate the average position and standard deviation. Consider,

So, it basically tells you that it will actually not be a delta function as it would be if it
were genuinely I mean if there was no Pauli principle involved. So, rather it will because
there is a Pauli principle involved there is a spread. So; that means, that a particle with
well defined position in the presence of filled Fermi sea is not possible, but it is possible
approximately in the sense that you will get a distribution which is peaked at that

position that you are looking for, ok.
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This means that the notion of position is ambiguous for a fermion in the presence
of a filled Fermi sea. Now we see if we can write down the path integral for such
a fermion and rederive the propagator we derived earlier (Ch. 5) in Eq. (5.32). For
this we wrile the propagator as usual. The Hamiltonian for such a fermion may be
thought of as H = £-C(p) where C(p) = 1if [p| > pr and C(p) = w0 if [p| < pr
This ensures that the momentum of the particle close to the ground state will always
be close to but larger than py. One may choose to evaluate the propagator below
by resolving the identity using the momentum cigenstates. In the case the answer
comes out immediately and naturally, but it is not a path integral

: U
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where,

(7.46)

So, I am I do not want to make a big fuss about it, but I just thought I will let you know.
So, now, the real question is the following. So, this is the propagator. So, this is called
the propagator. So, this is what we got by just doing normal quantum mechanics there is

no path integrals here, right. So, this is conventional quantum mechanics.

So, now my question is the following. So, why did I bring this up, because this chapter is
about path integrals? So, the thing is that | want to be able to see if I can get this answer
by a suitable path integral. So, what I am going what I have done here is that to do this I
have postulated the following. So, imagine that the Hamiltonian so that means, now I
have to reinterpret my problem in such a way that it captures the presence of this Fermi

sea of electrons, ok.

Which is providing this Pauli principle Pauli exclusion principle effect which will
prevent the an electron that is wandering around in the metal to have any momentum less
than the Fermi momentum, ok. So, the way this is done is that you say that the
Hamiltonian of that wandering electron is p squared by 2 m except when p squared by 2

m only when p is greater than p F; that means, magnitude of p is greater than p F.

But, when magnitude of p is less than p F the Hamiltonian is basically infinity in the

sense that so, we say it is infinity to ensure that an electron can never be have that



momentum because, it is basically energetically unfavourable for the electron. So, I am
forcing Pauli exclusion principle by making it energetically very unfavourable for the
electron to have that energy less than the Fermi energy. So that means, I am making it
impossible for the electron to have energy less than the Fermi energy by just introducing

this cut-off function C p.

So, what I am saying is that if energy is less than Fermi energy the Hamiltonian blows
up. So, it is energetically overwhelmingly unfavourable for the electron to have that
energy, ok. So, now if you accept that point of view then it is easy to find the overlap. So
firstly, you can find the overlap using conventional approaches so; that means, that this is

your overlap this is the definition of the overlap this is the evolution unitary evolution.
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‘The random phase approximation involves setting m — oo, but vy < o in Eq, (7.46)
and Eq. (7.47). It does not make sense to take this limit in the expression for the full
Green function, since it contains oscillating terms that don't yield a definite limit.
Alternatively, we may imagine that if either |(x; — x;)| = oo or |(t7 = #;)| = oo,

the major contribution to the integral over p comes from the small p region. This
means, we may ignore the p* in Eq. (7.46) and Eq. (7.47). The resulting expressions
are known as the asymptotic parts of the Green functions.

rdn

And then, you just go ahead and do this so you just have to evaluate this integral. So,
then you split this up into right mover. So, p equals p F plus plus p F plus p dash and p
equals minus p F plus p dash. So, you can split this up into two parts and then, you can
go ahead and evaluate this, ok. So, you can actually get these what are called right mover

and left mover by doing this, ok.
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reen function, since it contains oscillating terms that don't yield a definite Timt.
Alternatively, we may imagine that if either |(x; — x;)| = e or |(t7 —1;)| = oo,
the major contribution to the integral over p comes from the small p region. This
means, we may ignore the p* in Eq. (7.46) and Eq. (7.47). The resulting expressions
are known as the asymptotic parts of the Green functions

dp
e

A plxi=xp)+vE(ti=1y

G \\‘.I‘.\‘.lf\*/
- p>0 28h
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2l (xp—xi) +ve(tp =)

[ dp "
G (Xt xp,tp) / ("” L
* = Jpco 2nh
I

2mi{(x; = xp) = ve(ti=t7)]

(7.49)

The above analysis rests on the use of momentum eigenstates to resolve the identity.
This effort leads to a simple closed formula for the propagator consistent with the
description provided in Eq. (5.32) using the simple Schrodinger equation, but it
does not lead to a path integral description. On the other hand, one may choose
instead to resolve the identity by inserting position
evolution operator has to be split up into slices that can be managed individually
‘This naturally leads, as we have seen, to the path integral

enstates. In this case the

GlxitisXpyty) =< X lfxp oty SE< xite™ T WS |, 1>

So, you will see that finally the answer is of this type. So, this is called the left mover
this is called the right mover. So, that is because the pole of this function is when delta x
is equal to plus v of delta t, ok. So, that is called the right movers. So, the because the
velocity is positive and it is negative in this case. So, that is why it is called the left
mover. So, the answer to this overlap is basically the sum of right and left moving Green

functions.
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=— ! (7.49)
2i{(x; = xp) = ve(ti=tg)]

The above analysis rests on the use of momentum eigenstates to resolve the identity.
This effort leads to a simple closed formula for the propagator consistent with the
description provided in Eq. (5.32) using the simple Schrodinger equation, but it
does not lead to a path integral description. On the other hand, one may choose
instead to resolve the identity by inserting position eigenstates. In this case the
evolution operator has to be split up into slices that can be managed individually
This naturally leads, as we have seen, to the path integral.

C(p

G(xitisxp,tp) =< xiytilxs,tp >=< xitile™ B lxp >

(7.50)

where £ = 5=,
identity 1 = [ dxgjxy >< xil.

We now insert eigenstates of position using a resolution of the

Glxitixp ) = /z/\\ ./1/\\ 1 <xitil(e e

X <)o < 2y |(7HEPT x>

N-1 o
/z/\\ /1/\\ \Ha\;(' RIS | >
/ ¥ k=0
where we set xo = x; and xy = x;. Now,

< xyemCP) 5

[ in <nke AP < >



So, now the question is how would I reinterpret this in terms of path integrals. So, as
usual what I do is I invoke this trotter product formula by dividing by N and making N
copies. So, if I divide by N I get t f by minus t i by N is epsilon. So, I have introduced an
epsilon then I make N copies of that. So, as usual when I make N copies I can insert a

complete set of states with position x 1 in between.
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This naturally leads, as we have seen, to the path integral.
i ”‘F\\‘.l >

G(xi,tisXxp,tp) =< Xiytilxs,tp >=< i tile

(7.50)

where € = ==, We now insert eigenstates of position using a resolution of the
identity 1 = [dxi|xy ><xyf.

Gxitaxpty) = /11\\ ,/d\\ | <xib] (DT )y >

X < Xy < xy-1(e ui‘"m\‘,‘,’ >

N-1 2
*/z/\\v/z/\\\H«'\.(’"”W Xyl >
! ' k0

where we set xo = x; and xy = x;. Now,

<xle TS|y, >=

/ dpe <l OB g >< e >
7/ dpe <xglpi>< pilagsy > e 0P

" APk e wp,mrf

And then, I end up calculating this, ok. So, and here I do not have to use any trotter
product because, actually there is no potential energy. So, it is I can just directly evaluate

this, ok. So, I just directly evaluate this and I get this sort of thing, ok.



(Refer Slide Time: 31:05)

180 Field Theory

We now make the following substitutions, hkp = mvg and py = mvgK and Ep =
Lmv}. This renders the limits of integration constant of order unity. The presence

p) means we have (0 avoid the region —1 < K < 1 since they are all fully
occupied.

i§C(p)
< xyleHEW)E

Y1 >

/’ ! gk ehmel-n -5 / 4K ebmeliuona k-2
® 1

h

)G g,y >

/‘ ‘{/K‘,wm n-ng K-255] | MF /”{/K(,wu ten K-
h i

© h

<xile

m

w1
Ve ™ ' (‘| b5 (Erfluor) - Erfla \,m) (153

where,
1_i
(3= 5) Vm(xg = X1 +vEE)
uy(vp) = ~=—= — (1.54)
Vhye

Erflis . i .
and Erfi(z) = “' is the imaginary error function. One may see that in the ab-

sence of a Fermi surface, vy = 0 and the present formula Eq. (7.53) reduces to
the one derived earlier viz. Eq. (5.28). This means the Green function of a single
electron in the presence of a Fermi surface is

So, I basically end up getting this type of. So, the overlap between successive points so;
that means, so remember [ am just going quickly, because I have done this earlier. So,
you so the thing is the idea that you split up some path between initial and final points
into pieces and these are called x k plus 1 like that and then you find this overlap and

then, you rewrite this in terms of this integral like this.
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where,
5) /mlxg = xps) +vpE) .
_— (7.54)
Vhye
Erfli .
and Erfi(z 7= i the imaginary crror function. One may sce that in the ab-
sence of a Fermi surface, vy = 0 and the present formula Eq. (7.53) reduces to
the one derived earlier viz. Eq. (5.28). This means the Green function of a single
electron in the presence of a Fermi surface is

G(xi tixp,ty) = Lty (/41\\ /II\\ ,(\, )
hie

N-1

I
-ﬂ(] b o (Erfilu(ve)) - Erfi( v m). 155)
H{Hy

If we take the straightforward approach, we are forced to conclude (with vy =

)

(Erfillatb)yime)~Erfil(a-b)yme)))

b ey s Ul )

(1.56)

n (=i !
where =~ and b= L One may see thatase — O and N — e such

that eN = (1 < e the nonconstant vy (or @) dependent terms cancel out, Thus,
this approach does not lead to the correct propagator for a particle obeying Pauli’s
exclusion principle. Strictly speaking, this leads to a vanishing contribution since




So then, you will end up with getting this Lagrangian. So, this is; so this is what you
would have got if there was no Pauli principle. So, this is if there was no Pauli principle
the path integral would have simply this. Because, it is just action right it is half m v
squared, because Hamiltonian time Lagrangian are the same for free particle. So, it is

just e raise to 1 by h bar into integral 1 d t because, d t is that epsilon.

So, 1 is half m v squared. So, it is x k minus because x k plus 1 minus x k divided by
epsilon whole square is your x dot square. So, that gets multiplied by d t which is
epsilon. So, you get this epsilon here, ok. So, that is what that was. So, bottom line is that
you would have got this, but then the new ingredient is this one, ok. So, this is the new

ingredient so, this is there because of Pauli principle.
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the divergent contribution from the first term leads to a rapidly oscillating contribu-
tion o the propagator due to the presence of the imaginary unit and this eventually
cancels out. Thus this expansion is mathematically ill defined. It is indicative of
an essential singularity. 1t is somewhat like Taylor expanding f(x) = ¢~"/* around
x = (—every term vanishes but the function clearly does not. We want the expan-
sion of the Log to be proportional to € and contain a so that a meaningful action
miay be written. The way to do this in the context of fermions is to invoke the ran-
dom phase approximation at the outset viz. we set m — eo keeping vy < oo, This

means,
NI
1

n (l + - (Erfilug(ve)) = Erfilug(=ve) \)
2

k=0)

N-1
i i
_ n ( | 4 ¢la-bime latb)me asmn
k=0

(a=b)Vanem (a+b)v 4m'm)

This means we may write,
[m\" p-tend
Grealxitinxgty) = Liy ./Ju /rl\\ | ) ek
\ hig )

<[] (7.58)

k=0

T et me T e igtime
=i\ ———— iy ———
\mlmn-m \rmln\. V)

Thus the RPA form of the path integral of a free particle obeying Pauli’s exclusion

principle in the presence of a filled Fermi sea may be written as (where ¢ = /7,
(1) = 2x(1))

- N y
pally )= m\" i, m
Grealxitixp.ty [Jv‘.,/ Dix(r) (\r] ehid

i his:
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i1
[N

N-1 § i , i
-1 (]  gla-bime clatbne ) 157
k=0

(a—b)V4nem (a+b)v4nem

‘This means we may write,

—\N 2

] m N-1 g im7

Grea(xistisxpty) = Liy vy/(ln _,/(l\\ | (\ E) Liot
&

N-1 el o et
ihe = ihe ™~ a
[T | 1-if o5 +iy = L8
0 \EVII:](\\L'\/J \Emlrt Vg —VF)
“Thus the RPA form of the path integral of a free particle obeying Pauli’s exclusion

principle in the presence of a flled Fermi sea may be written as (where ¢ = "),

”“’:TI:“"]‘

x(ty)=x Y /gy 2
Grealxi,tisxpty) = Liy .»/ Dix(t)] (/=] e~
i x)=x \/ hie

(159

This continuum description is not particularly illuminating, however. It merely
serves to highlight the complexities that one encounters while dealing with
fermions in the context of path integrals. Specifically, the path integral is an ap-
proach closest in spirit to classical phys fermions using a formalism
that is nearly classical in nature requires paying f introducing nonlocal
actions (as in the present case) but with conventional commuting variables or, local
actions but with anti-commuting (Grassmann) complex numbers (see later).

So, bottom line is that so if you follow this logic what you will do is you will end up
getting this type of a path integral. So, this is the path integral. So, this is x dot squared |
should have written x dot squared. So, if there was no Pauli exclusion principle; that
means, if there was a free particle running around in 1 dimension and there was nothing
else the answer for the propagator; that means, what is the probability if the particle was

at you know x 1 at t 1 what is the probability.

Or what is the probability amplitude that the particle will be at x f at t f is simply given
by this path integral; that is if that particle was minding it is own business there was no
metal no Pauli exclusion principle thing this is would be the answer this path integral.

So, just start at xi at t i and end at x f at t f, which we have already evaluated.

But now, if there is some something which is preventing it from moving freely like, there
is a filled Fermi sea of electrons and this electron as wandering around has to be very
conscious of the presence of this filled Fermi sea it has to make sure that its energy will
never fall below the Fermi energy. So then, the path integral will have to be modified in

this way.

So, you will have to introduce some additional terms like this, ok. So, this additional

terms will be very complicated. So, it is basically the non local type of. So, bottom line is



that you might be wondering why did I give such a horrendous example. So, the reason
is basically I just wanted to point out that in general if you introduce fermions in the
problem there will always be some difficulties like this. So, this is a simple example
where I showed you that introducing fermions will actually create problems in the sense

that the path integrals will become very unusual.

So in fact, later on we will see in the context of what are called coherent state path
integrals the you will be integrating over some very funny kind of versions of complex
numbers called Grassmann numbers Grassmann variables. So, those are anti commuting
complex numbers. So, those type of concepts will occur when you are dealing with

fermions.

So, this is the first example I have introduced where introduction of fermions obeying
Pauli exclusion principle even though the situation appears to be rather simple namely 1
dimension 1fermion trying to wander around from x i at t i to x f at t f, but then it is
constantly being reminded that it is in the presence of this field Fermi sea of electrons up
to Fermi energy. So, it has to constantly obey the Pauli Exclusion Principle as it moves
from x i tito x fattf So,the path integral will become extremely complicated because

of that.

So, bottom line I am trying to say that once you try to study fermions basically things are
very complicated and this is the first example where I have explicitly displayed that
complication. So, later on we will find other examples where fermions will present it is
own unique set of complications, but we have this is almost intractable, but in other
examples especially in coherent state path integrals you will see that it is still tractable

we can handle it, ok.
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Reverting to the discrete RPA version in Eq. (7.58) we see that the most singular
contribution comes from the term that has the largest number of potentially vanish-
ing denominators. This means we may write,

Grea (X iy ty) 2

foue fo )

7 oppveh el GRS
T A e it

‘H l\ em 2m(vy

V)
k=0

=
(v +
=0 Ven 20 +vr)

(7.61)

- . Therefore, the propagator naturally splits up
into two parts—right movers and left movers. For example, the left-moving picce

may be written as,

G lx

r N-1
U [ fiw IT

k=0

NET:

i (X1 = Xk) + VFE)

For example, when N = 3 we are called upon to evaluate

1 dxydx
I // : _—— (163
J (20)? ((x7 = x2) + vre)((x2 = x1) + vre)((x) = x;) + vre)
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20 ( (Xt = X) + VFE)

k=0

For example, when N = 3 we are called upon to evaluate,

1 dxydx .
I= 3 (7.63)
J (20) ((x7 = x2) +vre)((x2 = x1) +vre)((x) = x;) + vre)

Interpreted as principal valuc these integrals vanish. However, one must imagine
that there is a small imaginary part to € in which case the integrals exist. Tn this

case this integral / evaluates to,

|

= (7.64)
i (xy

I

-+
Bute= """ in this case, hence,

1 1

2mi (xp=xi+ve(ty —1)
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In general also, we get the same result. Thus, the left-moving Green function ob-

tained using the path integral method is

2mi (xp =5+ ve(ty=17)

Gl tinxp,ty) > € (7.66)

This result is identical to the Green function obtained earlier viz. Eq. (7.48). Now
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we go on to discuss the harmonic oscillator.

7.3 Harmonic Oscillator

The path integral for the harmonic oscillator is similar to the free particle except
that now we have a potential energy function added in the Hamiltonian.

wy)= 1 im0 - imet
<xlilxpts .»7/ Dx] ef i drame*(t)-3me (167)

The usual procedure for evaluating this is to write the path as the classical path
connecting the events (x;, ;) and (x,ts).

xy sin(o(t - 1)) - x; sin((t - 17))
Xel(1) (7.68)
sin(o(ty =1;))

This path obeys the equation of motion viz. &(f) = o X¢(t) and the initial and
final conditions x,/(f;) = x; and x(t) = x7. The overall path is taken to be this path

plus a quantum correction £(f) so that x(t) = x,(t) +%(t). This correction is now

constrained to vanish at the end points: £(1;) = (1) = 0. This means we may write,

s na(t-1)
(1) =Y % sin( ) (7.69)
= tr=ti

At this state we introduce a dimensionless time s defined through r = t7s+1,(1 - 5)

N ”
50 that t(s = 0) = f; and (s = 1) = t;. Therefore, the action § = [, df L may be

rewritten as,

L Y 1 5,
§ /’AIY :lH\lszH(L)\ 1)

U 1 2 1 5, 15,
= / dt(zmisy(t) 4 zmx(t) = m°x5, (1) = me™% (1)

So, here for example, I have tried to evaluate that path integral by doing a bunch of
things and I am getting back the answer that I got my traditional method. So, I do not
want to bore you with this, but it is possible to struggle and evaluate this path integral by
kind of doing something clever saddle point or whatever it is, then you can actually get

back the original answer you got from more traditional methods.

So, I do not want to bore you with the details, but bottom line is that its possible to do
this if you wish, but the main message is that if you are dealing with fermions be
prepared to suffer some complications especially non local types of ideas will be quite

common, ok. So, now the second more familiar example is that of a harmonic oscillator.

So, harmonic oscillator as usual so, same question what is the overlap between if the
particle is at x 1 at t 1 what is the amplitude that you will end up at x f at t f. So, the
answer 1is clearly same thing this path integral e raise to 1 by h bar into action, but then
keep in mind the action will have two things one is the kinetic energy the other is

potential energy.

So, as usual you will we will we will be doing the saddle I mean we will be finding the
extremum the classical action and then we will expand around that and all that. So, I

think I do not want to rush it. So, I am going to stop here and in the next class I will



continue with the harmonic oscillator ok, because I want to spend some time properly
explaining it. It is pretty much very analogous to the free particle, it is just that I want to

do it a little bit systematically, ok.

So, once we are done with that we will move to some other topic because this will give
you enough practice in handling path integrals, ok. So, thanks for listening hope to see

you in the next class.

Thank you.



