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Ok. So, today let us start a new chapter and that chapter is basically a bridge between 

what came earlier and what will come subsequently in the coming lectures. So, what 

came earlier was basically a description of classical fields. So, if you recall we started off 

our journey by a description of point particle Lagrangian mechanics followed by 

Hamiltonian mechanics then we discussed the role of symmetries and conservation laws.


Then we introduced the idea of large number of degrees of freedom coupled degrees of 

freedom through harmonic oscillators and then we introduce the electromagnetic, ok. So, 

that will come later. So, basically we studied the relativistic nature of the electromagnetic 

field. Then we discussed elasticity theory and fluid mechanics.


So, all these topics are basically all about classical field theory. So that means, there is no 

quantum mechanics involved. There was no quantum mechanics involved at all. 

However, we know that the world in which we live involves quantum mechanics. And 



how do we know that? So in fact, I think it is worthwhile for us to spend a little while to 

understand you know why quantum mechanics is that important.


So, I think there is a widespread implication and assumption amongst students of physics 

and even some more senior people that quantum mechanics is only applicable to 

subatomic particles while it is certainly applicable very strongly to subatomic particles. 

In fact, you know people like human beings would not exist if it were not for quantum 

mechanics. And not just human beings, atoms would not exist and matter as we know it 

would not exist.


So, you might be wondering why I am saying that. See the reason is the following. So, if 

you take a look at say the hydrogen atom. So, the electron orbits the nucleus if you look 

at it from a classical point of view. But then if you ask yourself what is the energy of the 

lowest possible energy because it is a bound state the energy is negative, but in classical 

mechanics there is no lowest possible energy, it can be as negative as you want it to be.


So, closer the electron is to the nucleus. So, if it is very close to the nucleus and it is 

orbiting very fast its energy is going to be large and negative and there is no end to how 

large and how negative it can be. So, bottom line is that the so, the lowest possible 

energy is when the electron actually falls into the nucleus. So, when that happens there 

will not be any matter left. So, all atoms would collapse.


So, there is no reason why atoms should be stable. For example, they should simply lose 

energy indefinitely and electrons should fall into the nucleus. So, you might be 

wondering why does quantum mechanics prevent that. So, it quantum mechanics 

prevents that because basically the hydrogen atom lowest energy is actually minus 13.6 

electron volts, it cannot be lower than that.


And this is something you would have encountered in your quantum mechanics class 

where they would have derived the energy levels of the hydrogen atom and proved it to 

you that the lowest energy is in fact, minus 13.6 electron volts.


So, it is because of quantum mechanics that matter is stable. So, the another example you 

encounter in everyday life that quantum mechanics is important is that suppose you do 



something very obvious like stand on the ground. See your weight is pressing against the 

floor and yet you do not sink into the floor. So, you might be wondering you know the 

atoms of your sole of your feet are in contact with the atoms of the floor which are in 

contact with you know the with your feet.


So, you might be wondering why it is that like the two do not merge and you simply do 

not become part of the floor. So, the reason why that does not happen is basically 

because of Pauli-Exclusion principle. So, the electrons and the atoms of both your feet 

and the floor being fermions they cannot be packed together so tightly. So, that there is 

some kind of a pressure which is exerted which prevents the electrons from becoming 

too close.


So, bottom line is that quantum mechanics manifests itself in many subtle ways even at 

the microscopic scale and prevents many observed outcomes that you would otherwise 

associate with a name application of classical mechanics. It is impossible to reconcile the 

atomic description of matter with classical mechanics.


So, an atomic description of matter described classically implies a world that is 

completely unstable and completely different from the world in which we live. So, it is 

absolutely necessary to invoke quantum mechanics if you really want to reconcile the 

observed world that we see around us and the atomic nature of matter, ok.


So, with that preamble let me start my discussion of this chapter which is basically about 

understanding how to gradually move from a theory of classical fields to a theory of 

quantum fields, where necessarily I only describe phenomena in by invoking quantum 

mechanics.


Because I as I told you for the last several minutes that classical mechanics is just an 

approximate description that works in some contexts, but it fails when you apply it to 

answer some very fundamental questions. It especially fails very badly when you try to 

reconcile the atomic nature of matter with the observations that you see around us.


So, therefore, we need to invoke quantum mechanics even while describing not only 

point particles, but also fields. So, now, the question is how do you do that?
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So, let us start gradually and firstly, I am going remind you that suppose you had this 

wave equation. So, I am going to start with this wave equation ok. So, the wave equation 

tells you that this phi is the amplitude of the wave and obeys a wave equation which 

corresponds to a wave that is travelling with the speed of light c, c is could be speed of 

light for example.


So, now if you recall I told you that this wave equation may be thought of as the Euler-

Lagrange equation of a suitable Lagrangian. And what is that suitable Lagrangian? We 

actually derived that already. We; see it will certainly involve because it has a nature of 

the second derivative of some generalized coordinate called phi. So, that is like the 

acceleration in point particle mechanics the right hand side would correspond to 

acceleration because second time derivative of a generalized coordinate.


So, therefore, the Lagrangian should involve kinetic energy which is the first time 

derivative of the generalized coordinate squared. So, that is what I have written here, but 

then there is also a potential energy which should recover this part of it. So, you need a 

potential energy to recover del squared phi.
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And the part which does that is in fact this. So, you can convince yourself that if you 

postulate this to be the Lagrangian and you work out the Euler-Lagrange equations of 

this Lagrangian, you will get precisely the wave equation ok. So, why am I mentioning 

this?


Because you see I just want to impress upon you that pretty much every theory which in 

classical mechanics which involves some kind of evolution equation. So, which involves 

the rate of change of some dependent quantities with respect to time that can be recast 

and be thought of as an appropriate Euler-Lagrange equation of a suitable Lagrangian.


So, this is how you do it for the wave equation but, now you can see that it is also 

possible; see curiously you can also do it for any equation, which involves time 

derivatives. So, in fact, you might be wondering that can I also do it for the Schrodinger 

equation that you encounter in point particle mechanics. So, the answer is yes. So, 

however, the interpretation is a little bizarre. So, I am going to describe that is a little 

later.


So, the point is that if you have the time dependent Schrodinger equation if you recall 

what that is it is I h bar d by dt of d by dt of wave function equals you know minus del 



square by 2 m. I mean I am doing one dimension plus v of x times psi. So, this is your 

time dependent Schrodinger equation; .


So, claim is that this can be thought of this time dependent Schrodinger equation may be 

thought of as the Euler-Lagrange equation of this Lagrangian. So, this is your Euler-

Lagrange equation of this Lagrangian is in fact, your Schrodinger equation. So, I will 

allow you to work this out or I will explain it to you in some tutorial that we might that 

you will see at a later date ok.


So, if you work out the Euler-Lagrange; so, how do you work that out? Let me point out 

how do you work that out. So, you write first you find d L by d psi dot then you find d L 

by d psi. Then you take time derivative of d L by d psi dot and you equate it to d L by d 

psi. So, it is like the functional derivative.


So, if you recall I mentioned or maybe I did not. Well, I will explain it to you later. So, so 

it involves invoking something called the functional derivative ok. So, I will probably 

invoke that very soon. I will explain that shortly, but bottom line it is very reminiscent of 

what you do in point particle mechanics. You find the generalized momentum, which is d 

L by d psi dot by psi your generalized coordinate and then you take the time derivative 

and you equate it to the generalized force which is d L by d psi.


So, rate of change of generalized momentum is equal to generalized force that is what 

Lagrange equation says. So, this is generalized momentum, this is generalized force. So, 

rate of change of generalized momentum equals generalized force. So, that is pretty 

much Newton’s second law in disguise ok.


So, in fact, when you invoke this idea to this and you know apply it to this Lagrangian 

low and behold you will end up getting a equation which is actually the quantum 

mechanical point I mean the Schrodinger equation of point particle quantum mechanics. 

So, you will probably you ought to be a little concerned by the statement. So, I will just 

move ahead and then address that concern.


iℏ
d ψ
dt

= Hψ



So, you can also do it for example, this is the non relativistic Schrodinger equation 

because after all I have used del squared by 2 m which is basically p squared by 2 m. So, 

that corresponds to non-relativistic. You can also do it for relativistic quantum mechanics 

where you know in Dirac’s theory if you remember it is c p. So, it beta m c squared beta 

m c beta m c squared plus c p alpha ok.


So, so, those are your cp dot alpha. So, those are your that is your Hamiltonian. So, c p 

dot alpha plus b times c square. So, that is your H. So, that is linear in both the basically 

it is linear in momentum. So, that is what Dirac was looking for something that you 

know could. So, if you recall what Dirac was trying to do, so, the energy of a relativistic 

particle is c squared p squared plus m c squared whole square, but then this is a radical.


So, he wanted to write this as something into something into p plus something else which 

is does not involve p. So, that when you square it you get this. Then the cross terms are 

the ones that spoil this relations; so, interpreted the coefficients as matrices that aniti 

commute. So, because of that the cross terms cancel out and you get back this result; c 

squared p squared plus mc squared whole squared. So, that is this Dirac’s way of doing 

relativistic quantum mechanics.


But then you could also derive Dirac’s equation as a Lagrange equation of a suitable 

Lagrangian and that suitable Lagrangian is exactly this ok.
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So, now, is the important point. So, you see on the one hand, so, I am going to read this 

paragraph. So, what does it say here? Says on the one hand the Schrodinger equation and 

the Dirac equation are supposed to represent the fundamental equation of quantum 

mechanics.


On the other hand the Lagrange equations are the fundamental equations of classical 

mechanics. So, you see that is the funny part of this. See I have told you that you can 

derive or you can think of Schrodinger equation as the Lagrange equation of a suitable 

Lagrangian.


But the Lagrange equations are basically part of classical mechanics formalism, but the 

end product which is Schrodinger’s equation is actually quantum mechanics it is the 

fundamental equation of quantum mechanics, but Lagrange equation is the fundamental 

equation of classical mechanics. So, the question is how is it that you get the 

fundamental equation of quantum mechanics when the procedure you are implying or 

employing is basically fully classical.


So, the answer to that is the following that we do not; so, what we do is we do not 

interpret this psi as the wave function. So, if you interpret it as a wave function it is just a 



mathematical curiosity. It has no; I mean you could still do it because after all you know 

this procedure of it is just a variational argument.


You just minimize some functional of psi and say that nature prefers to behave that way. 

So, you can think of it that way if you wish. But however, the point of view that will be 

later advocated is that the psi really is not the wave function of the particle at all, but 

rather it is actually a field.


So, it is a it is a quantum field. So, in other words it its excitations are particles. So, the 

field itself is not a particle. Just like if you have electromagnetic field its excitations are 

later we will be able to show later on that its excitations are in fact, photons which are 

particles, but the fields themselves are not particles they are just a continuum.


So, the point is that you have to quantized the fields. So, that the excitations of the fields 

manifest themselves as particles. So, it is it may seem a little abstract and hard to follow, 

but I think you just keep this at the back of your mind and let us proceed further. So, it 

just curious to know that you can derive the fundamental equation of classical mechanics 

by thinking of it as the suitable Lagrange equations of some Lagrangian ok.
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So, you can keep doing things like this in various applications. For example, in the case 

of superconductivity there is a version of this which involves writing down the 



Lagrangian and your independent variable is not the wave function it is the order 

parameter of the super fluid or superconductor.


So, the what that is the order parameter is a very it is an advanced many body concept. I 

will not get into that, but bottom line is that it still has this flavour of you know like some 

kind of a Schrodingers equations. So, if you find the Euler-Lagrange equation, so, this is 

called the Ginzburg-Landau Lagrangian. So, if you find the Euler-Lagrange equation of 

this, you will end up getting the equations of superconductivity.


So, basically what this says is that you know this is just the momentum squared, but then 

there is the coupling to the electromagnetic field, but then the charge involved is not the 

electronic charge, but 2 e. So, the 2 e refers to basically the fact that the fundamental 

charge carriers in a superconductor not individual electrons, but pairs of electrons. So, 

they are called cooper pairs.


So, you have 2 electrons that pair together and they carry the super current. So, the super 

current is carried by pairs of electrons not signal electrons. So, the charge of a pair of 

electrons is 2 e. So, there is that part. So, this is this comes from there and this is simply 

the energy of the electromagnetic field. We will assume there is only a magnetic field in 

which case there is a vector potential and there is curl of that which is magnetic field.


But then there are other terms which basically guarantee that the lowest energy state is 

basically the ground state is a superconductor. So that means, you want a situation where 

when temperature is less than some critical temperature there is an order parameter and 

so on, but you do not have to know all these details. You just have to know that the 

fundamental equation of superconductivity may be thought of as the Euler-Lagrange 

equation of this Lagrangian.
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So, similarly you can also imagine. So, if you have you know these cold atoms. So, if 

you have collection of atoms in a condensate in a Bose-Einstein, suppose you have like 

collection of boson specifically and they are in a condensate they form a; so, you can 

study that by what is called Gross-Pitaevskii equation.


So, it basically it describes the behavior of the bosons when they are trapped in some 

cloud through a harmonic trap. So, basically harmonic trap is a kind of a potential 

energy, which becomes minimum near the center of that trap. So, the bosons prefer to 

stay near the center.


But then because the bosons can interact with each other they will interact in this way. 

So, there is hard core repulsion. So, that they if they sit on top of each other they repel 

otherwise they do not interact. So, all that information is contained in this Lagrangian 

and if you go ahead and find the equation of motion for in other words the Euler-

Lagrange equation of this Lagrangian, you will be describing the motion of bosons trap 

you know in a harmonic trap in a Bose-Einstein condensate ok.


So, I just wanted to point out that pretty much any equation in physics can be thought of 

as a Euler-Lagrange equation of some suitable Lagrangian ok.
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So, now till now I discussed more or less non relativistic except the Dirac equation, 

everything else was non relativistic. But because usually quantum field theory courses 

are typically registered for by students who want to specialize in particle physics. So, if 

there are some students in the audience who are or many students in the audience who 

registered for this course thinking that it will all be about particle physics, I will have to 

disappoint them.


In the sense that this course is largely about non relativistic field theory ok, whether it is 

classical or quantum. So, it is more applicable to people who want to specialize in 

condensed metaphysics, but having said that I do not want to do complete injustice to 

particle physics.


So, I am just going to mention the sort of Lagrangian’s that you encounter in you know 

modern particle physics. So, we already encountered one such Lagrangian, actually two 

already. One is the Lagrangian of the electromagnetic field is basically the simplest kind 

of gauge theory; it is called the U1 gauge field.


So, the next the Dirac theory of the electron is another which I just described now. So, 

the Dirac’s theory of the electron can also be thought of as the Lagrange equation of a 

suitable Lagrangian. So, but then you know in nature you have more than just 



electromagnetic forces. We all know that there are four fundamental forces; 

electromagnetic, weak nuclear, strong nuclear and gravity.


Gravity would have been interesting, but that involves general activity and that is a kind 

of a rather niche specialized subject. And I did not want to go into that. However, you 

know textbooks by Landau, Lifschitz. So, if you look at Landau, Lifschitz classical field 

theory that a lot of space is devoted to general relativity.


But however, I am not going to do that. So, rather I am just going to briefly mention the 

sort of fields that you encounter in particle physics. So, other than the electromagnetic 

forces you have these other forces which are strong and weak and both the strong and 

weak are described by basically what are called non-abelian gauge theories.


So, the non-abelian part means, simply means that your vector potentials are now no 

longer just functions of the spatial coordinate. They are not like one component function 

of the spatial coordinates, but rather they should be now thought of as matrices so that 

different components of the vector potential do not commute with each other because 

they are actually matrices.


So, the idea is that you invoke a bunch of coefficients and then rather than describing the 

vector potential like this you introduce an additional index called A and then you 

multiply that by matrix and that matrix could be a 2 by 2 matrix or 3 by 3 matrix and so 

on so forth. So, you have all these examples. So, if it is 3 by 3 matrix, there are eight of 

them.
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If there are 2 by 2 matrix there are three of them and so on. But then you see the 

Lagrangian will involve Lagrangian density here will involve this field tensor that we 

encountered already in the electromagnetic fields, but then that field tensor is not simply 

the this difference anti the skew symmetric difference in the derivative difference, it is 

not only that. There is an additional term which is non-abelian.


So, that involves so, basically you see the point is that in the case of electromagnetic 

field, the Lagrangian was purely quadratic in the vector potential. So, that implies that 

there is the photons of the electromagnetic field they do not interact with each other ok. 

So, in other words they ignore each other, but interact with maybe something else some 

matter like if there is a charged particle you know that the photon can scatter off the 

charged particles on.


But the photons do not scatter off each other. However, the corresponding bosons that 

exist in the nuclear forces. So, they are called W, Z bosons and gluons in the case of 

strong interaction strong nuclear force. These bosons actually not only interact with their 

fermionic counterparts which are basically the quarks and leptons, but they also interact 

with each other the which meaning that each one gluon can interact with other gluons 

directly.




That is described by this non-linear term which involves the commutator of the vector 

potential. So, this would have been 0, if A and A, A mu and A nu were just numbers, but 

now A mu and A nu are matrices. They are either 3 by 3 or 2 by 2 matrices. So, the 

commutators are not 0 necessary; in general they are not 0. So, there is a non-linear term 

which implies that the bosons involved actually interact directly with each other ok.


So, so I spent all this effort basically trying to describe the just the fact that I just wanted 

to mention that various equations that are encountered in physics which involve 

evolution time evolution may be thought of as the Euler-Lagrange equations of a suitable 

Lagrangian ok.
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So, so now, what I will do in the remaining time that is left? I am going to revert to some 

simpler examples, where I will again revert to classical I mean rather non relativistic 

quantum mechanics. So, specifically let us talk about see the usual Schrodinger equation, 

the simple Schrodinger equation you encounter in non relativistic quantum mechanics in 

undergraduate education.


So, the idea is that the Lagrangian of the Schrodinger equation process as symmetry. So 

that means, you can; so, if you take psi if you replace it. So, if you take  and you 

replace it with , where,  is an absolute constant. So, there is a symmetry. So, and 

ψ (X )

eiθψ (x) θ



I told you that every; so, there is a continuous symmetry because theta is continuous. So, 

I also told you that every continuous symmetry implies a conservation law.


So, then you see this continuous symmetry corresponds to a conservation law because 

this symmetry we have shown that it actually means that the integral of the square of the 

wave function ok, so, is constant. So, in other words is a conserved quantity. And it has 

the interpretation of total probability that constant is 1. The symmetry and global phase 

transformation tell you that total probability is independent of time.


So, I told you that whenever there is a continuous symmetry it implies a conserved 

quantity, means a quantity is independent of time and that independent of time quantity 

is the total probability ok. So, now, what we do is we want to study Schrodinger equation 

in some specific context.


So, I am going to just introduce this subject and then I will stop because I want to 

continue this properly at a in the next lecture.
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So, the bottom line is that suppose you start with the Schrodinger equation, so, we can 

ask ourselves, so, there is a concept called Green’s function. So, we have encountered 

this many times already in our classical field theory. So, even in quantum situation you 

can have a Green’s function.




So, in the context of Schrodinger equation what it means is this that imagine you have 

this time dependent Schrodinger equation and what you want to do is you want to switch 

on a potential that is abrupt. That means, it only exists for a short duration and it only 

exists at some specific location. So, in other words it exists at x naught and it is only 

there at t equal to t naught.


So, then you want to ask yourself what is the nature of the wave function after this 

potential is switched on and off instantly. So, you switch it on and instantly switch it off 

and you and you are going to do that exactly at x equal to x naught. So, you switch it on 

and off exactly at some point at some time and then you ask yourself how does the wave 

function behave subsequent to that procedure. So, that is wave function that comes 

subsequent to this procedure is called the Green’s function of the system ok.


So, what we are going to do in the next class is that we are going to study the Green’s 

function of the simple Schrodinger equation that you encounter in your elementary 

undergraduate quantum mechanics. So, usually in undergraduate quantum mechanics 

Green’s functions are not introduced in quantum mechanics, rather you are explain you 

are told how to calculate the stationary states and in some rare occasions even non 

stationary states.


But that is the extent to which people you know teachers go and they stop right there, but 

what I am going to do in this course is that I am going to go a little further and I am 

going to explain to you the concept of Green’s function. So, the Green’s function is the 

solution of the Schrodinger equation subsequent to the switching on of a very strong 

instantaneous disturbance, an instantaneous localized disturbance. So, you have a 

exceedingly localized instantaneous disturbance.


And then you ask yourself how does the wave function evolves subsequent to that 

disturbance. So, the answer to that is what is called the Green’s function of the system. 

So, the rest of the next lecture we will spend a lot of time trying to understand how to 

calculate this greens function and then I am going to explain to you why it is so 

important to ask and answer this question ok. So, I am going to stop here and I hope you 

will join me for the next class.




Thank you.


