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So, ok let us continue our discussion of Stokes’ Drag on a sphere falling in a fluid. So, 

basically the goal of this exercise is to reach the point where we can derive the classical 

formula that we have encountered in our school days namely this one.
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So, this equation 4.217, so that is . So, eta is the coefficient of viscosity of the 

fluid u is the speed with which the ball is falling and that ball has radius a. So, basically 

that is the drag experienced by the ball when it is falling with that speed in the fluid.


So, that is what we want to derive.
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But then the derivation of that is not simple because it involves taking into account 

turbulence and the fact that there are these Reynolds numbers that are involved and you 

have to expand in powers of Reynolds number. So, I do not want to spend too much time 

on the technical details because it is very easy to get lost. So, I will just highlight the 

salient features.
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So, the first feature was that we have we expand this equation. That means, there is 

Navier-Stokes in the case of steady state there are no time dependences. So, first we 

render that dimensionless by rescaling the variables.
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Then we expand all the unknowns whether its pressure or velocity and so on in powers 

of this Reynold’s number. And you will see that the first order terms are related to the 

second order terms and so on. So, the first order in Reynolds number is related to the 

zeroth order and Reynolds number in this way.


So, 4.182 will tell you how V 1 dash which is the first order correction to the velocity of 

the fluid. So, I am assuming that the ball is at rest and the fluid is flowing around that 

ball which is the same as ball flowing in the fluid. So, whatever it is 4.182 is the one that 

tells you how the fluid velocity will change because of the Reynolds number.


So, V 1 dash is the first order correction to the velocity because of the obstacle ok. Point 

is that, so once we derive all this and then we take into account the fact that the we are 

talking about incompressible fluid. So, in steady state the you know velocities are 

divergence free.




So, that will mean that basically this pressure and velocity and all that which satisfies 

pressure especially satisfies the Laplace equation. Because if you take divergence of 

4.193 for example, you will get del square p equals 0.
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So, then you write down the del square V equal 0 and then you can express the radial 

component in terms of the tangential component. And the tangential component is 

expanded in linear combinations of these Legendre polynomials.


(Refer Slide Time: 03:56)







And then finally, we will be able to write down one equation purely for the coefficients 

of the that the coefficients that appear in this radial function.


So, you see this sorry the tangential component of the velocity is expressible in terms of 

these quantities. So, the basic point is that you have to calculate these quantities once 

you know what these quantities are, you know V theta and because you know V theta 

from this formula you will know V r.


So, if you know this quantity you will know V theta and V r. So, how do you calculate 

this quantity you insert that into these equations which are basically expanded out 

versions of 4.193. So, you take 4.193 and you expand it out. So, if you expand it out you 

will get.


So, where does this come from? This comes from matching the Reynolds number on 

both sides. So, you expand in powers of Reynolds number and you substitute into that 

Navier-Stokes in steady state situation and you compare the powers of Reynolds number 

and you get 4.193 from there. So now, that you have got this you go ahead and substitute 

your expanded out forms for V 1 dash in terms of the V r V thetas and therefore, the V ls.


So, from the from this you can also , so from this you can find out the pressure 

also, so it will have its own coefficients ok. So, when you insert all this you will see you 

will get one equation which will only involve the V l thetas ok.


So now, 4.197 is as one thing it looks very horribly complicated, but you will see that it 

is not complicated mainly because it looks complicated, but its finally not because most 

of the terms in that summation are actually 0. Because in fact, only l equal to 1 survives 

because all the see the thing is the P l cos thetas are basically linearly independent basis.


So, these two being equal means that all the higher order derivatives of P l cos theta, I 

have to vanish because you do not find you know things to cancel that out somewhere 

else. So, you will be able to convince yourself that because the higher derivatives of P l 

cos theta are linearly independent of the lower ones, the higher derivatives are going to 

drop on specifically you can convince yourself that P l dash dash is identically 0. So, 

therefore, all the higher derivatives identically 0.


∇2p0



So; that means. So, if P l dash dash is 0; that means, basically it is only up to l equal to 1. 

In fact, you will find that only l equal to 1 will survive.
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So, if you so what you do is you kind of first convince yourself that is in fact the case ok. 

So, this P 4.179 was obtained by inserting our answers which expands the velocity in 

terms of the complete basis which is Legendre polynomials. So, once you substitute into 

4.1 you substitute that answers into 4.197 you get an answer for that the only relevant 

coefficient which is V 1 theta. So, it is only this is the only relevant one.


So that means, you remember that there was a V l in general it was like this, so where V l 

was something very general. So, it could have been anything. So, l could be anywhere 

from 0 to infinity. So, what this is saying is basically of all the possible V l’s only the 

ones which is relevant is l equals 1 ok.


So, now you have to go ahead and solve this equation and you will see that this equation 

has a solution I mean the basically if you make a substitution of r dash is 1 by q dash. So, 

you think of 1 by r dash as your independent variable rather than r dash.


You will see that basically that this V 1 theta is a polynomial in 1 by r dash ok. And so 

you can find out what that polynomial is and you will be able to convince yourself that it 

is in fact this. So, I know that I am kind of you see discourse is somewhat unusual in the 



sense that it is parts of it especially the Stokes’ drag calculation is fairly technical and it 

is not typical of the rest of the course.


So, do not want you to get intimidated by this discussion in the sense that not all parts of 

the course are going to be this technical and involved, it is only this calculation of 

strokes drags that is difficult. So, I am not going to necessarily insist that you appreciate 

all aspects of this calculation unless you really want to and I also do not want to burden 

you with asking these types of question in any examination.


So, this is only meant as a reference for you to you know go back to whenever if 

somebody if you yourself was wondering where that high school formula comes from. 

And you really were curious to know how to derive it I have just wanted to put it out 

there and. So, that you will know that there is such a derivation and you will feel 

satisfied that somebody has told you how to derive it.


So, it does not necessarily mean that you should kind of know it inside out unless you 

want to specialize in fluid mechanics. So, this is just merely meant to you know make 

you aware of the existence of this derivation and the salient step features and how the 

main procedure for deriving that formula ok.


So, having said that you see we can continue and say that look we wrote down the 

solution for that V l theta and we just convinced ourselves that only l equals 1 

contributes and the answer to V 1 theta is basically a polynomial in 1 by r dash. So, 

having assigned that polynomial is going to be precisely this thing. In fact, you can 

rather than deriving this you can go ahead and substitute this in at this answer here and 

you will see it is an identity.


In fact, think of that as an exercise rather than going through all those steps in a very 

systematic way you could you know take. So, a lot of it on faith and randomly verify 

cross check whether some of these things make sense by you know back substitution like 

this. You substitute 4.199 into 4.198 and convince yourself that it is an identity.




So, the point is that you will see that this choice is consistent with the idea that at infinity 

if  the velocity of the fluid should be what it was all along when that ball was not 

there which is u vector ok, so in the u in the z direction.


So, and in fact that is what you see here from this.
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So now, you see this is in some kind of a polar form if you really want it back in 

Cartesian form you can go ahead and bring it back to the Cartesian form and the 

Cartesian form for the velocity would look like this ok. So that means, when r equals 

infinity all these terms drop out and you only get u k hat ok


So, that at far away situations far away from the sphere, so r equal to a is the sphere ok r 

much greater than a is far away from the sphere. So, if r r tends to infinity, so you can 

convince yourself that the velocity is u times k hat ok. So, this is going to tell you exactly 

what is the velocity field; that means the velocity of the fluid as it flows around the 

sphere.


So, this is. So, it is quite nice to know that you can explicitly write down such a formula. 

So, if there is a sphere sitting here. So, you can even if you do not follow that derivation 

fully or not at all you should certainly appreciate the final answer here. So, there is a 

sphere sitting here with radius a and there is a fluid flowing with velocity u.


r = ∞



So, it is it comes from infinity in the k direction with velocity with speed u and goes 

around the sphere and then again you know flows away to infinity with the same speed 

far away. So, far away on the left side the speed was u far away on the right side the 

speed was u. So, the question is what does the speed look like near the sphere and the 

answer is this.


It is really nice to know that you can write down such an answer ok, so the thing is that. 

So now, what we want to know is that the we also want to know what is the force acting 

on the sphere because of this fluid and the force acting clearly is due to two parts one is.


So, the force acting per unit volume at any point r in the fluid is due to two parts one is 

due to the pressure gradient. So, minus grad p and the other is basically the internal 

viscosity. So, one layer is rubbing against another layer. So, that also causes a force to act 

at a point in the fluid because layers are rubbing against each other. So, there is one 

contribution due to pressure gradient the other contribution is basically due to the 

viscosity.
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So now, what we really want to do is we want to calculate the z component of the net 

force acting on the sphere. So, what we have to do is we have to calculate. So, this force 

per unit volume. So, you integrate over the volume of that small sphere of radius r. So, 



that will tell you the net force acting on the sphere. So, it is force per unit volume then 

you integrate over the volume.


So, this will be the net force and then you can re-express this in terms of the surface 

integral on the surface of the sphere. And you will see that this has the familiar 

interpretation of a some kind of a stress tensor. So, you have a matrix here which is of 

that form and ok. So, this is a jth component of that.


So, this is itself a component and then there is a grad which has another component. So, 

in some sense that is a matrix. So, that matrix dotted with the normal component is still a 

vector. So, bottom line this tells you the jth component of the total force acting on the 

sphere and we expect only the z component of this force to survive. That means, j equal 

to z is the only one which survives because we expect the force to be along the z 

direction.


So, you see because of that Navier-Stokes Reynolds numbers expansion we have this 

relation. So, now what we want to do is we see we got v from v we want to get p. So, 

after we get p we substitute here because now p and v are related because we can restore 

the dimensional quantities in that Reynolds number expansion formula which tells you 

how p is related to v.
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So, from here you can conclude that p has to have this form ok and because v has this 

form and you compare both you will see that this constant is perfectly determined like 

this ok. So, it is explicitly determined.


So, now you have an explicit formula for the pressure acting in the fluid and also the 

velocity of the fluid ok. So now, you can go ahead and calculate the net force acting in 

the z direction and that is basically you just put j equal to z and that is what that is ok.


And then you go ahead and calculate that integral and you will find that this is nothing 

but, so this is dA would be what. So, it will be A square d omega ok. So, that is your 

surface area I mean there is a surface area element. A square d omega d omega is a solid 

angle sin theta d theta d phi, but phi integral is 2 pi and sin theta d theta is basically d cos 

theta and then you integrate and you will get this answer ok.


So, this is the Stokes’ drag yeah. So, it is a lot of work it is a tremendous amount of work 

to get a formula that you already know from your high school days.
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But I just wanted to point out that certain results which you are forced to memorize are 

actually very deep.
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And they come about for very deep reasons and this is one of them ok. So, you might be 

wondering you know this is too much and this is too much effort it is too technical is 

there a simpler way of getting this.


So, that is what I have said in this last paragraph you can, in fact many of the books that 

get this result through a derivation actually do not go through all these steps explicitly. 

They reduce the number of steps by making some assumptions which they finally, do not 

justify properly. So, it is just that the reader has to and of again believe some of those 

statements.


So, if you are going to believe some of those statements then you might as well believe 

this itself. So, why bother trying to go through some steps, where a lot of them are again 

things you have to memorize without proof. So, you might as well memorize this without 

proof..


So, that is the reason why I did not want to do that initially. So, I have spelled out all the 

steps that are involved in deriving Stokes’ drag. But however, it is still worthwhile to see 

if now that we at least know we have some confidence that you can explicitly derive 

some formula if you wanted to. So, it is desirable to see if there is another version of this 

calculation which uses fewer steps.




So, in fact there is such a version and I am going to use that to calculate Stokes’ drag not 

on a sphere, but on a cylinder. So, you have the same problem and you have this 

infinitely long cylinder ok and there is some kind of fluid that is flowing past the 

cylinder ok.
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So, so you see in this situation. So, you see this is the cross section of the this is the cross 

section of the cylinder. And so there is a infinitely long cylinder and there is fluid 

flowing past this.


And clearly the fluid is going to drag this sphere around as it goes around this. So, so this 

is a cylindrical problem is cylindrical symmetry rather than spherical symmetry. So, the 

simplification. So, these are the standard starting equations this will this is because of the 

Reynolds number expansion with the units restored and this is the due to the 

incompressible fluid and there is this relation. So, we have to combine these two.


So, we have to solve these two with this additional as a assumptions. So, the question is 

you know. So, we did a very systematic for the case of the sphere we actually did a very 

systematic job of solving this by expanding in powers of you know the basis functions 

and all that. So, if you did not want to do that you have to simplify things further by 

making some answers.




So, this is an simplifying assumption that we say that this pressure is expressible in terms 

of the position vector in this way. So, that is exactly why I am saying that it is kind of not 

very convincing. So, most of the books actually start something you know they make 

some statements like this and then they proceed and that simplifies the equations a lot 

you get your final answers very quickly, but it is not at all clear why this should be the 

case.


But at the same time it is it is not that unreasonable because after all you see the pressure 

yeah. So, basically what this is saying is exactly what I actually derived. So, what this is 

saying is that it only involves cos theta it does not involve cos square theta or anything 

any higher power. So, what this is this is just cos theta its u dot r is basically u r cos theta.


So, it automatically assumes that p is proportional to p 1 cos theta p 1 cos theta is just cos 

theta. So, I in the case of the sphere I actually derived that I showed that all higher ls do 

npt contribute only the l equal to 1 contributes.
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Whereas, here it is kind of assumed that that is the case and if you of course, assume that 

that is the case you can necessarily it is true that you can simplify this a lot and this thing 

gets simplified very quickly and as usual you express your radial in terms of the angular.
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And then you go ahead and rewrite.
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Yeah it is still long, but you can go ahead and in the case of cylindrical you get these two 

components in terms of the coefficients.
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So, then you can go ahead and. So, in the case of the cylindrical term there are some a 

peculiarities which are not there for the sphere,


For example, you get this log term. So, this log term becomes unstable when r is very 

large. So, the basically the reason for this log term is because we have ignored the 

convective derivatives so. In fact, Oseen who is a researcher in this field has pointed out 

that if you include the convective derivative then you get some sensible terms even at r.


So, at R equal to infinity these equations do not converge to what we expect because of 

this log term. So, what we have to assume is that what Oseen has shown is that basically 

when you include the convective derivative R equals infinity effectively becomes some r 

equals R infinity which is a some very large term.


So, that I mean I am just being sloppy here. So, what basically it means is that you can 

get away by writing log r, but because you have ignored the convective derivative you 

should not you are not entitled to set us lowercase r equals infinity. You are only allowed 

to go up to R some large value of R which is R subscript infinity. So, that serves as a 

proxy for an small R being infinity.


So, the bottom line is that when this is the case you expect this to be you know u theta 

and so on. So, that is the way the C’s are determined. So, the C’s are determined by 



forcing v phi and v r to be these two known values, but not at R equal to infinity, but it is 

proxy value which is r equals R capital R subscript infinity which is large, but not 

actually infinite.


But then also of course, the velocity should vanish on the surface of the sphere because 

kind of there is no slippage condition. So, the cylinder is stationary. So, the fluid should 

be stationary along with the sphere when they are touching. So, from that you can fix the 

remaining coefficients.
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So, all these coefficients get fixed by these two requirements and the only thing is that 

you will have to deliver this peculiar proxy for infinite distance which is R subscript 

infinity ok. So but then you will see that finally, drops out of your calculation for the 

drag.


So, you will get an answer for the velocity and therefore, from the earlier result from the 

pressure also if you know the velocity you can get pressure because you have that grad p 

equals eta del squared v. So, if you know velocity you can solve this and get pressure, 

but all of them will involve this R infinity, but then later you will see that when you 

actually evaluate the drag that yeah. So, it will appear in the this form it will involve R 

infinity as a multiplicative constant ok.




So, it will come out as this and dimensionally also the viscosity in two dimensions is 

kind of different from what it is in case of three dimensions. So, there are two 

dimensional because its cylindrical symmetry the z does not play a role ok. So, it is kind 

of I mean the z is along the cylinder.


So, along the cylinder does not play a role. So, it is effectively a two dimensional 

problem, but bottom line is that this proxy for infinite distance Oseen has shown that if 

you properly study this by including the a convective derivative. This proxy for infinite 

distance of course, also in dimensionless units will be something which is inversely 

proportional to the Reynolds number.


So, remember that all this analysis is valid for low Reynolds number. So, we are 

expanding powers of the Reynolds number. So, therefore, this r infinity which is 

according to Oseen 7.4 by Reynolds number. So, bottom line is when r Reynolds number 

is small which is the regime in which this is valid this proxy for infinity actually is a 

divergent which is what we expect alright.


So, you get us less familiar formula for the Stokes’ drag of a cylinder a placed in a 

moving fluid. So, this is not what you learned in high school because it has this peculiar 

thing that Reynolds number is involved, but for sphere that drops out to lowest order 

which is why you learn it in school ok.


So, I have come to the end of a fluid mechanics and elasticity theory.
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So, in the next class I am going to explain you know how to motivate the introduction of 

quantum fields. So, till now we have all we have studied there is no mention of quantum 

mechanics anywhere. So, it is all classical.


So, in from the next class onwards I will explain to you how it is that many of these 

concepts which involve a infinitely many continuous degrees of freedom, for of classical 

systems can now we studied quantum mechanically. So, if there are point particles you 

know how to study you know how to go from classical mechanics to quantum 

mechanics.


But if you have infinitely many particles a infinitely many classical degrees of freedom 

and if that infinity is of the continuous kind making it a field. So, it becomes important 

for us to you know what it is we are expected to do in order to study that quantum 

mechanically.


So, of the most important of these applications would be to study the Maxwell’s study 

Maxwell’s equations quantum mechanically. So that means, so if you look at empty 

space electromagnetic fields cause electromagnetic waves which are classical. But then if 

you study electromagnetic fields quantum mechanically you do not get electromagnetic 

waves you get quanta of energy.




So, basically you get discrete energies and these are called photons. So, this would be a 

first rigorous demonstration of the fact that radiation is actually made of quanta and this 

is first famously demonstrated or realized by Einstein in his theory of photoelectric 

effect. So, which we all learn in school.


So, a photoelectric effect simply cannot be explained if you posit that electromagnetic 

fields are classical waves. So, it can only be explained by invoking the quantum theory 

of the electromagnetic field or a quantum theory of radiation. So, the question is what is 

the logical justification for a quantum theory of radiation and that is basically involves 

studying the equations of electric and magnetic fields this Maxwell’s equations not 

classically, but quantum mechanically.


So, that is going to be our a important goal in the next few lectures. So, I hope you will 

join me for that and.


Thank you for listening.


