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Elasticity Theory and Fluid Mechanics

Written out in full this constraint expands out to these terms:
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So, ok let us continue our discussion of Stokes’ Drag on a sphere falling in a fluid. So,
basically the goal of this exercise is to reach the point where we can derive the classical

formula that we have encountered in our school days namely this one.
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The z-component of the force acting on the sphere is, Fy = [sdA(~cos(6)p +

15;v2), which after substitution of pressure and velocity becomes,
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‘This is the famous Stokes formula for the drag-of a sphere in a viscous fluid. This
derivation appears quite formidable and some simplification is called for. But this
comes at the expense of making educated guesses that are not always obvious to
the inexperienced. We now explore this simpler approach for the case of a cylinder

So, this equation 4.217, so that is 6znyua. So, eta is the coefficient of viscosity of the
fluid u is the speed with which the ball is falling and that ball has radius a. So, basically

that is the drag experienced by the ball when it is falling with that speed in the fluid.
So, that is what we want to derive.
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We adopt the boundary condition that at the surface of the sphere the fluid is at rest
since it is assumed that there is no slipping between the surface and the sphere. We
are going to set

)
Wwr0)=Y :ﬁl’,mmb)x Violr) 4.188)
;

) )
\,,M,“;ewr‘ﬁ‘,;ﬁl’y 05(6)) = ~1(1+1)P,(cos(6)) (4.189)

(1,60 2”/‘
)

/ dr Vig(r)r) Pi(cos(6)) @190)

oy
):';Hl’,wua‘ Violr) @.191)

i=0
Furthermore, since V*p = 0 and we also assert that the pressure vanishes at infinity,
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Elasticity Theory and Fluid Mechanics

Written out in full this constraint expands out to these terms:
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But then the derivation of that is not simple because it involves taking into account
turbulence and the fact that there are these Reynolds numbers that are involved and you
have to expand in powers of Reynolds number. So, I do not want to spend too much time
on the technical details because it is very easy to get lost. So, I will just highlight the

salient features.
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Figure 4.10: Turbulence is one of the great unsolved problems of Newtonian me-
chanics, due to non-linearities in Navier-Stokes equation. In Richard Feynman's
words, “It always bothers me ... why should it take infinite amount of logic 0 fig-
ure out what one tiny piece of space-time is going to.do?”
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For small Reynolds numbers, we may expect all quantities to have an expansion of
the form L ,
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These have to be supplemented with the incompressibility condition, namely,




So, the first feature was that we have we expand this equation. That means, there is
Navier-Stokes in the case of steady state there are no time dependences. So, first we

render that dimensionless by rescaling the variables.
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These have to be supplemented-with the incompressibility condition, namely,
Vi (1) =05 Vyevy (1) =0,.. 4.184)
since these conditions are valid term by term. This means,
¥y =V, =0, (4.185)
Now we go on to apply these compute the drag force acting on a solid

sphere and a solid cylinder assuming the flow is streamline and has small Reynolds
number

Elasticity Theory and Fluid Mechanics

Case of a Sphere

We imagine a solid sphere with center at the origin and radius a immersed in a fluid
that has velocity at infinity equal to u = u k. To analyze this, it better to work with
spherical polar coordinates and spherical pol
associated with these are given in the boxes at the end of this discussion. We pur-

ricks that simplify
r justification of these

valid for alltypes of functions of the coord

mﬂab

Then we expand all the unknowns whether its pressure or velocity and so on in powers
of this Reynold’s number. And you will see that the first order terms are related to the
second order terms and so on. So, the first order in Reynolds number is related to the

zeroth order and Reynolds number in this way.

So, 4.182 will tell you how V 1 dash which is the first order correction to the velocity of
the fluid. So, I am assuming that the ball is at rest and the fluid is flowing around that
ball which is the same as ball flowing in the fluid. So, whatever it is 4.182 is the one that

tells you how the fluid velocity will change because of the Reynolds number.

So, V 1 dash is the first order correction to the velocity because of the obstacle ok. Point
is that, so once we derive all this and then we take into account the fact that the we are
talking about incompressible fluid. So, in steady state the you know velocities are

divergence free.



So, that will mean that basically this pressure and velocity and all that which satisfies
pressure especially satisfies the Laplace equation. Because if you take divergence of

4.193 for example, you will get del square p equals 0.
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Figure 4.11: Velocity field around a sphere

Imposing the incompressibility requirement we get,
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[k Field Theory
This means that the radial component is always related to the tangential component

(vg(r ,6)sin(6))

So, then you write down the del square V equal 0 and then you can express the radial
component in terms of the tangential component. And the tangential component is

expanded in linear combinations of these Legendre polynomials.
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Written outin full this constraint expands out o these terms;
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One may solve this systematically by setting r = -+ and expressing Vi g as a simple

polynomialin ¢ . The soluton to this would b,




And then finally, we will be able to write down one equation purely for the coefficients

of the that the coefficients that appear in this radial function.

So, you see this sorry the tangential component of the velocity is expressible in terms of
these quantities. So, the basic point is that you have to calculate these quantities once
you know what these quantities are, you know V theta and because you know V theta

from this formula you will know V r.

So, if you know this quantity you will know V theta and V r. So, how do you calculate
this quantity you insert that into these equations which are basically expanded out
versions of 4.193. So, you take 4.193 and you expand it out. So, if you expand it out you

will get.

So, where does this come from? This comes from matching the Reynolds number on
both sides. So, you expand in powers of Reynolds number and you substitute into that
Navier-Stokes in steady state situation and you compare the powers of Reynolds number
and you get 4.193 from there. So now, that you have got this you go ahead and substitute

your expanded out forms for V 1 dash in terms of the V r V thetas and therefore, the V Is.

So, from the from this you can also V2p,, so from this you can find out the pressure
also, so it will have its own coefficients ok. So, when you insert all this you will see you

will get one equation which will only involve the V 1 thetas ok.

So now, 4.197 is as one thing it looks very horribly complicated, but you will see that it
is not complicated mainly because it looks complicated, but its finally not because most
of the terms in that summation are actually 0. Because in fact, only 1 equal to 1 survives

because all the see the thing is the P 1 cos thetas are basically linearly independent basis.

So, these two being equal means that all the higher order derivatives of P 1 cos theta, I
have to vanish because you do not find you know things to cancel that out somewhere
else. So, you will be able to convince yourself that because the higher derivatives of P 1
cos theta are linearly independent of the lower ones, the higher derivatives are going to
drop on specifically you can convince yourself that P 1 dash dash is identically 0. So,

therefore, all the higher derivatives identically 0.



So; that means. So, if P 1 dash dash is 0; that means, basically it is only up to | equal to 1.

In fact, you will find that only 1 equal to 1 will survive.
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134 Field Theory

In order to facilitate the integration, we write the velocity field in a mixed repre-
components are in polar coordinates but the unit vectors are in

So, if you so what you do is you kind of first convince yourself that is in fact the case ok.
So, this P 4.179 was obtained by inserting our answers which expands the velocity in
terms of the complete basis which is Legendre polynomials. So, once you substitute into
4.1 you substitute that answers into 4.197 you get an answer for that the only relevant

coefficient which is V 1 theta. So, it is only this is the only relevant one.

So that means, you remember that there was a V 1 in general it was like this, so where V 1
was something very general. So, it could have been anything. So, 1 could be anywhere
from O to infinity. So, what this is saying is basically of all the possible V I’s only the

ones which is relevant is 1 equals 1 ok.

So, now you have to go ahead and solve this equation and you will see that this equation
has a solution I mean the basically if you make a substitution of r dash is 1 by q dash. So,

you think of 1 by r dash as your independent variable rather than r dash.

You will see that basically that this V 1 theta is a polynomial in 1 by r dash ok. And so
you can find out what that polynomial is and you will be able to convince yourself that it

is in fact this. So, I know that I am kind of you see discourse is somewhat unusual in the



sense that it is parts of it especially the Stokes’ drag calculation is fairly technical and it

is not typical of the rest of the course.

So, do not want you to get intimidated by this discussion in the sense that not all parts of
the course are going to be this technical and involved, it is only this calculation of
strokes drags that is difficult. So, I am not going to necessarily insist that you appreciate
all aspects of this calculation unless you really want to and I also do not want to burden

you with asking these types of question in any examination.

So, this is only meant as a reference for you to you know go back to whenever if
somebody if you yourself was wondering where that high school formula comes from.
And you really were curious to know how to derive it I have just wanted to put it out
there and. So, that you will know that there is such a derivation and you will feel

satisfied that somebody has told you how to derive it.

So, it does not necessarily mean that you should kind of know it inside out unless you
want to specialize in fluid mechanics. So, this is just merely meant to you know make
you aware of the existence of this derivation and the salient step features and how the

main procedure for deriving that formula ok.

So, having said that you see we can continue and say that look we wrote down the
solution for that V 1 theta and we just convinced ourselves that only 1 equals 1
contributes and the answer to V 1 theta is basically a polynomial in 1 by r dash. So,
having assigned that polynomial is going to be precisely this thing. In fact, you can
rather than deriving this you can go ahead and substitute this in at this answer here and

you will see it is an identity.

In fact, think of that as an exercise rather than going through all those steps in a very
systematic way you could you know take. So, a lot of it on faith and randomly verify
cross check whether some of these things make sense by you know back substitution like

this. You substitute 4.199 into 4.198 and convince yourself that it is an identity.



So, the point is that you will see that this choice is consistent with the idea that at infinity
if r = oo the velocity of the fluid should be what it was all along when that ball was not

there which is u vector ok, so in the u in the z direction.

So, and in fact that is what you see here from this.
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Now we wish to calculate the force acting on the surface r = a due to the fluid. The

Juzleity]

forces are due to pressure and viscosity. The force per unit volume, including both

these contributions acting on the fluid, is writable as

f(r) = =Vp 41V (4.206)

In order to obtain the force acting on a surface, it is better to proceed as follows.
Consider some component j = x,y,z of the force,

fia(0) = =V p 4V (4.207)

We rewrite this as the divergence of some vector.
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The j-component of the total force acting on some volume may be written as
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that the term 6

So now, you see this is in some kind of a polar form if you really want it back in
Cartesian form you can go ahead and bring it back to the Cartesian form and the
Cartesian form for the velocity would look like this ok. So that means, when r equals

infinity all these terms drop out and you only get u k hat ok

So, that at far away situations far away from the sphere, so r equal to a is the sphere ok r
much greater than a is far away from the sphere. So, if r r tends to infinity, so you can
convince yourself that the velocity is u times k hat ok. So, this is going to tell you exactly
what is the velocity field; that means the velocity of the fluid as it flows around the

sphere.

So, this is. So, it is quite nice to know that you can explicitly write down such a formula.
So, if there is a sphere sitting here. So, you can even if you do not follow that derivation
fully or not at all you should certainly appreciate the final answer here. So, there is a

sphere sitting here with radius a and there is a fluid flowing with velocity u.



So, it is it comes from infinity in the k direction with velocity with speed u and goes
around the sphere and then again you know flows away to infinity with the same speed
far away. So, far away on the left side the speed was u far away on the right side the
speed was u. So, the question is what does the speed look like near the sphere and the

answer 1s this.

It is really nice to know that you can write down such an answer ok, so the thing is that.
So now, what we want to know is that the we also want to know what is the force acting

on the sphere because of this fluid and the force acting clearly is due to two parts one is.

So, the force acting per unit volume at any point r in the fluid is due to two parts one is
due to the pressure gradient. So, minus grad p and the other is basically the internal
viscosity. So, one layer is rubbing against another layer. So, that also causes a force to act
at a point in the fluid because layers are rubbing against each other. So, there is one
contribution due to pressure gradient the other contribution is basically due to the

viscosity.
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ce that the term 0 =
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¢ outward normal is /. Now we calculate the
on the surface r = a. From Eq. (4.182) we see that (after restoring
dimensional quantities),
Vp=nVy (4.210)
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Since the velocity field is diver ¢ duc to incompressibility, we must have
2p — 0, since from the preceding discussion only I — | is being considered. The
pressure may be written as

n :
p(r8) =", cos(6) @211
2

and the velocity field as,

v=ucos(t) (1 ;"' :"), wsin) (1 ;"“ 4”,)“ @21)

Thus, )
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: ;

and,

So now, what we really want to do is we want to calculate the z component of the net
force acting on the sphere. So, what we have to do is we have to calculate. So, this force

per unit volume. So, you integrate over the volume of that small sphere of radius r. So,



that will tell you the net force acting on the sphere. So, it is force per unit volume then

you integrate over the volume.

So, this will be the net force and then you can re-express this in terms of the surface
integral on the surface of the sphere. And you will see that this has the familiar
interpretation of a some kind of a stress tensor. So, you have a matrix here which is of

that form and ok. So, this is a jth component of that.

So, this is itself a component and then there is a grad which has another component. So,
in some sense that is a matrix. So, that matrix dotted with the normal component is still a
vector. So, bottom line this tells you the jth component of the total force acting on the
sphere and we expect only the z component of this force to survive. That means, j equal
to z is the only one which survives because we expect the force to be along the z

direction.

So, you see because of that Navier-Stokes Reynolds numbers expansion we have this
relation. So, now what we want to do is we see we got v from v we want to get p. So,
after we get p we substitute here because now p and v are related because we can restore
the dimensional quantities in that Reynolds number expansion formula which tells you

how p is related to v.
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The z-component of the force acting on the sphere is, F.. = [dA(~cos(8)p+
135:v:), which after substitution of pressure and velocity becomes,
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"This is the famous Stokes formula for the drag-of & sphere in a viscous fluid. This
derivation appears quite formidable and some simplification is called for. But this
comes at the expense of making educated guesses that are not always obvious to
the inexpericnced. We now explore this simpler approach for the case of a cylinder




So, from here you can conclude that p has to have this form ok and because v has this
form and you compare both you will see that this constant is perfectly determined like

this ok. So, it is explicitly determined.

So, now you have an explicit formula for the pressure acting in the fluid and also the
velocity of the fluid ok. So now, you can go ahead and calculate the net force acting in

the z direction and that is basically you just put j equal to z and that is what that is ok.

And then you go ahead and calculate that integral and you will find that this is nothing
but, so this is dA would be what. So, it will be A square d omega ok. So, that is your
surface area [ mean there is a surface area element. A square d omega d omega is a solid
angle sin theta d theta d phi, but phi integral is 2 pi and sin theta d theta is basically d cos

theta and then you integrate and you will get this answer ok.

So, this is the Stokes’ drag yeah. So, it is a lot of work it is a tremendous amount of work

to get a formula that you already know from your high school days.
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But I just wanted to point out that certain results which you are forced to memorize are

actually very deep.
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Case of a Cylinder

Tostudy this case, as before, we have to use the identities for cylindrical coordinates
given in the box at the end. As before, the equations to be solved are,

Vp =1Vl (4223)
subject to the incompressibility constraint,
Vov=0

and the boundary conditions ¥(r = ) = u; Naturally, in this problem, we

1o assume that there is no variation in the z-direction and we may as:

loss of generality that the z-component of the velocity of the fluid is also zero,
Instead of following the brute-force method adopted in case of a sphere, we prefer
asimpler route, viz., we assert that the pressure is linear in the velocity of the fluid
atinfinity. The reason is that small Reynolds number flow equations are linear PDES
and the solutions also depend linearly on the parameters on the boundary, such as
the velocity at infinity and so on. But pressur lar quantity and velocity is a
vector quantity. The alar from ake the dot product with

another vector, in thi tion vector is the only option. The coefficient is

then some function of the magnitude of the position vector
p(ro) = (u-r)f(r

Here, uis the ve uid at infinity and th
ity rapidly enou ,0) = 0. In this case
NS equation Eq. y be rewritten as (we

d(urcos(9)f(r) n:Y"v, " {'u

And they come about for very deep reasons and this is one of them ok. So, you might be
wondering you know this is too much and this is too much effort it is too technical is

there a simpler way of getting this.

So, that is what I have said in this last paragraph you can, in fact many of the books that
get this result through a derivation actually do not go through all these steps explicitly.
They reduce the number of steps by making some assumptions which they finally, do not
justify properly. So, it is just that the reader has to and of again believe some of those

statements.

So, if you are going to believe some of those statements then you might as well believe
this itself. So, why bother trying to go through some steps, where a lot of them are again
things you have to memorize without proof. So, you might as well memorize this without

proof..

So, that is the reason why I did not want to do that initially. So, I have spelled out all the
steps that are involved in deriving Stokes’ drag. But however, it is still worthwhile to see
if now that we at least know we have some confidence that you can explicitly derive
some formula if you wanted to. So, it is desirable to see if there is another version of this

calculation which uses fewer steps.



So, in fact there is such a version and I am going to use that to calculate Stokes’ drag not
on a sphere, but on a cylinder. So, you have the same problem and you have this
infinitely long cylinder ok and there is some kind of fluid that is flowing past the

cylinder ok.
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Elasticity Theory and Fluid Mechanics

Figure 4.12: Velocity field around a cylinder

So, so you see in this situation. So, you see this is the cross section of the this is the cross
section of the cylinder. And so there is a infinitely long cylinder and there is fluid

flowing past this.

And clearly the fluid is going to drag this sphere around as it goes around this. So, so this
is a cylindrical problem is cylindrical symmetry rather than spherical symmetry. So, the
simplification. So, these are the standard starting equations this will this is because of the
Reynolds number expansion with the units restored and this is the due to the

incompressible fluid and there is this relation. So, we have to combine these two.

So, we have to solve these two with this additional as a assumptions. So, the question is
you know. So, we did a very systematic for the case of the sphere we actually did a very
systematic job of solving this by expanding in powers of you know the basis functions
and all that. So, if you did not want to do that you have to simplify things further by

making some answers.



So, this is an simplifying assumption that we say that this pressure is expressible in terms
of the position vector in this way. So, that is exactly why I am saying that it is kind of not
very convincing. So, most of the books actually start something you know they make
some statements like this and then they proceed and that simplifies the equations a lot
you get your final answers very quickly, but it is not at all clear why this should be the

casec.

But at the same time it is it is not that unreasonable because after all you see the pressure
yeah. So, basically what this is saying is exactly what I actually derived. So, what this is
saying is that it only involves cos theta it does not involve cos square theta or anything

any higher power. So, what this is this is just cos theta its u dot r is basically u r cos theta.

So, it automatically assumes that p is proportional to p 1 cos theta p 1 cos theta is just cos
theta. So, I in the case of the sphere I actually derived that I showed that all higher Is do

npt contribute only the 1 equal to 1 contributes.
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Whereas, here it is kind of assumed that that is the case and if you of course, assume that
that is the case you can necessarily it is true that you can simplify this a lot and this thing

gets simplified very quickly and as usual you express your radial in terms of the angular.
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1(d 9 910w\ vy 20y,
s ,ﬁw) 2te%

Vo(1,0) = Wy 1(r)cos(0) 4wy o (r)sin(9) 4232

|
vi(r0) (=we, 1 (r)sin(0) 4wy 2(r)cos(9)) (4.233)
r

For large r we must have v(e2,0) = u or v,(%0,0) = u- 7 = u cos(9) and vg(,0)
w9 = ~usin(9). But,

Vg(00,0) = Wy, | (20)cos(9) +wy 5(o0)sin(0) = —u sin(0) (4.234)

Vr(00,0; (=we.1(e)sin(0) 4wy 2(ee)cos(9)) = u cos(9) (4.235)

Thus wy (02.9) = 0 and wy (o) = . Since wy,(a,0) = wy ,(a,0) = 0, this a
lows us to suspect that perhaps wy, () = 0. We shall proceed under this assump-
tion for now. Now we multiply Eq. (4.231) by r and differentiate Eq. (4.230) with
respect § and Eq. (4.231) with respect r and equate. We also set

vo(r) = o (r)sin(0) 4236)

|

v,(r,0) wy2(r)cos(0, (4.237)
r

[(d d,1 11 (
(=woa(r) = =(-wq2
r\arar 02 = e

1 N 2
(wea(r)) 2

7+ Wyl
r R

50 that

(uf 9 )3

—r=Wys(r

ot ar M2 or

9 Wealr) 921
(=waa(r)). (4.238)

daror drrr

And then you go ahead and rewrite.
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The general solution to this is w 2(r) = &+ 1Cy + rCsLog(r). Clearly, since vy ~
wealr
Woa(r) and vy ~ ==

Thus,

and these have to be finite at r = oo, we must set Cy = 0.

¢
Vo(r0) = (== +Co+Cy +C3Log(r)) sin(0) (4.239)
R

C
W(n0) = ~(*2 +Cy+CsLog(r)) cos(d) (4.240)
7

FIGUTe 4,12; VEIOCILY el around a cynnaer

Yeabh it is still long, but you can go ahead and in the case of cylindrical you get these two

components in terms of the coefficients.
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This solution is not reliable far from r = a. Thus further terms will have to be
included to take care of the Log(r) term. For now, let us assume that infinity means
some distance R..

Vo(e0,0) & (C3Log(Rw)) sin(0) = —u sin(9) (4.241)

Vy(00,0) & =(C3Log(R.0)) cos(0) = u cos(9) (4.242)

Also at r = a the velocity should vanish

¢
0= (== +C +Cs + CsLog(a)) sin(0)
2

(
0= (= +Cy+CLog(a)) cos(9)
@

140 Field Theory

This means,

au . u(l42Logla))

C G +
Y dogR) T 2aglRa)

(4.245)
This in tun means,

| du
v9(r0) = 5 (

2Log(Ra) 1

r
u—2uLog(~)) sin(0) (4.246)
a

u r
- +u—2ulog(~)) cos(9 4247
’ a

So, then you can go ahead and. So, in the case of the cylindrical term there are some a

peculiarities which are not there for the sphere,

For example, you get this log term. So, this log term becomes unstable when r is very
large. So, the basically the reason for this log term is because we have ignored the
convective derivatives so. In fact, Oseen who is a researcher in this field has pointed out

that if you include the convective derivative then you get some sensible terms even at r.

So, at R equal to infinity these equations do not converge to what we expect because of
this log term. So, what we have to assume is that what Oseen has shown is that basically
when you include the convective derivative R equals infinity effectively becomes some r

equals R infinity which is a some very large term.

So, that I mean I am just being sloppy here. So, what basically it means is that you can
get away by writing log r, but because you have ignored the convective derivative you
should not you are not entitled to set us lowercase r equals infinity. You are only allowed
to go up to R some large value of R which is R subscript infinity. So, that serves as a

proxy for an small R being infinity.

So, the bottom line is that when this is the case you expect this to be you know u theta

and so on. So, that is the way the C’s are determined. So, the C’s are determined by



forcing v phi and v r to be these two known values, but not at R equal to infinity, but it is
proxy value which is r equals R capital R subscript infinity which is large, but not

actually infinite.

But then also of course, the velocity should vanish on the surface of the sphere because
kind of there is no slippage condition. So, the cylinder is stationary. So, the fluid should
be stationary along with the sphere when they are touching. So, from that you can fix the

remaining coefficients.

(Refer Slide Time: 26:10)

140 Field Theory

This means,

. Au . u(l+2Log(a) u .
C e + Gy (4.245)
2Log(R.) 2Log(R) Log(R..)

This in tum means,

1 du

)= o) 7

’
u-2uLog(")) sin(0) (4.246)
a

1 A Loc" n o
(== +u—2uLog(-)) cos( (4.247)
2Log(Rx)" 1 a
One may proceed to evaluate the force acting on the cylinder. This is left to the
exercises. The answer is
Firag = 2muC (4.248)

where € =2/Log(R..). This result says that the drag force tends to zero since R., —
oo, But this is merely a reflection of the drastic approximations used. Oseen has
shown that the main reason is due to neglecting the convective ative v- Vv
in the simpler analysis. Upon inclusion of this term, the vanishing
‘tamed” and takes the value
7Te] (4.249)
Log(%)

where Re i the Reynolds numb

1 du

0= ) R

Ty ¢
w—2uLog(~)) 9 sin(0)
a

au ’ g
— +u—2uLog(-)) F cos(9] (4.250)

So, all these coefficients get fixed by these two requirements and the only thing is that
you will have to deliver this peculiar proxy for infinite distance which is R subscript
infinity ok. So but then you will see that finally, drops out of your calculation for the

drag.

So, you will get an answer for the velocity and therefore, from the earlier result from the
pressure also if you know the velocity you can get pressure because you have that grad p
equals eta del squared v. So, if you know velocity you can solve this and get pressure,
but all of them will involve this R infinity, but then later you will see that when you
actually evaluate the drag that yeah. So, it will appear in the this form it will involve R

infinity as a multiplicative constant ok.



So, it will come out as this and dimensionally also the viscosity in two dimensions is
kind of different from what it is in case of three dimensions. So, there are two
dimensional because its cylindrical symmetry the z does not play a role ok. So, it is kind

of I mean the z is along the cylinder.

So, along the cylinder does not play a role. So, it is effectively a two dimensional
problem, but bottom line is that this proxy for infinite distance Oseen has shown that if
you properly study this by including the a convective derivative. This proxy for infinite
distance of course, also in dimensionless units will be something which is inversely

proportional to the Reynolds number.

So, remember that all this analysis is valid for low Reynolds number. So, we are
expanding powers of the Reynolds number. So, therefore, this r infinity which is
according to Oseen 7.4 by Reynolds number. So, bottom line is when r Reynolds number
is small which is the regime in which this is valid this proxy for infinity actually is a

divergent which is what we expect alright.

So, you get us less familiar formula for the Stokes’ drag of a cylinder a placed in a
moving fluid. So, this is not what you learned in high school because it has this peculiar
thing that Reynolds number is involved, but for sphere that drops out to lowest order

which is why you learn it in school ok.

So, I have come to the end of a fluid mechanics and elasticity theory.
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Chapter 5

Toward Quantum Fields: Scalar and
Spinor Fields

‘Thus far we have encountered classical fields such as the electromagnetic field and

Jensity fields of fluid: on. Now we explore the idea that any
classical field equations, such as Maxwell's equations, wave equations and so on,
are obtainable as the equations of motior able Lagrangian/Hamiltonian.
‘This would be partici e ature of the quantum me-
chanical version of th es as the tudying quantum mechan-
ics using Hamilonians, ar

veloped. We start with the wave equation

So, in the next class I am going to explain you know how to motivate the introduction of
quantum fields. So, till now we have all we have studied there is no mention of quantum

mechanics anywhere. So, it is all classical.

So, in from the next class onwards I will explain to you how it is that many of these
concepts which involve a infinitely many continuous degrees of freedom, for of classical
systems can now we studied quantum mechanically. So, if there are point particles you
know how to study you know how to go from classical mechanics to quantum

mechanics.

But if you have infinitely many particles a infinitely many classical degrees of freedom
and if that infinity is of the continuous kind making it a field. So, it becomes important
for us to you know what it is we are expected to do in order to study that quantum

mechanically.

So, of the most important of these applications would be to study the Maxwell’s study
Maxwell’s equations quantum mechanically. So that means, so if you look at empty
space electromagnetic fields cause electromagnetic waves which are classical. But then if
you study electromagnetic fields quantum mechanically you do not get electromagnetic

waves you get quanta of energy.



So, basically you get discrete energies and these are called photons. So, this would be a
first rigorous demonstration of the fact that radiation is actually made of quanta and this
is first famously demonstrated or realized by Einstein in his theory of photoelectric

effect. So, which we all learn in school.

So, a photoelectric effect simply cannot be explained if you posit that electromagnetic
fields are classical waves. So, it can only be explained by invoking the quantum theory
of the electromagnetic field or a quantum theory of radiation. So, the question is what is
the logical justification for a quantum theory of radiation and that is basically involves
studying the equations of electric and magnetic fields this Maxwell’s equations not

classically, but quantum mechanically.

So, that is going to be our a important goal in the next few lectures. So, I hope you will

join me for that and.

Thank you for listening.



