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Taw and the source-free part of the action depend on the electric and magnetic ields

rathes

he potentials directly. A term such as a(x)E(x) - B(x) is both quadratic
nvariant fields and is also Lorentz inv

in the

nt provided a(x) is a Lorentz

scala may be added to the source-free ian density to describe what

are known as axions. If a(x) is a constant, then this extra term does not contribute to
the dynamical equations, but it does so when it is a variable. Recent developments
in topological insulators have made this an important subject in condensed matter
physics.

3.3 Stress Energy Tensor of the EM Field

We just showed that a local conservation law for sources may be derived by us-
ing functional symmetries of the full Lagrangian, Now we show that a generalized

68 Field Theory

version of the continuity equation for the EM field alone may be derived by tak

ing into account the lack of an explicit dependence of the Lag

ian density of
asource-free electromagnetic field on space and time (the ice is only im:
plicit through the fields). To do this we start with the Lagrangian of the electromag-
netic field without sources,
I 3wl md "
L d’r (E°-B°) (390
8

Thus the Lagrangian densiy is,

T .
£=—(E°-B°) (391)
sn

‘This Lagrangian density is explicitly independent of the position and time coordi

So in today’s class I will be discussing something called the Energy Momentum Tensor

or the Stress Energy Tensor of the electromagnetic field.
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So, if you recall in the last class I had pointed out that there is a two component object
which is called a tensor which is conserved quantity so; that means, its made of the
components its an anti-symmetric tensor; that means, the diagonal elements are all 0 the

off diagonal elements are the components of the three components of the electric and
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be thought of as components of a 4 x 4 matrix whose components are as follows:

0, -E -E -k
E 0 B. B,
E B 0. -B
E/ -B' B 0

(348)

We see that F*¥ = E; where i = 1,2,3 and E) = E,, etc. This is will be used in the
subsequent example.

A Lorentz transformation from (x,1) to (x ,r ) preserves the indefinite metric (no
fixed sign), namely x* — c*1* = x? — ¢, We wish to make Lorentz four-vectors

resemble Euclidean vectors so that a Lorentz transformation becomes an orthogonal

transformation and we may exploit symmetries under orthogonal transformations.

This means that the time components of four-vectors a amultiplicative factor
of i Inthe preceding discussion we saw that F*0 = £y, In Euclidean space, F0 -

P9, 50 that Ey  iE. The Euclidean field tensor then becomes,
0 -if, -if, -iE
P (349)

‘This matrix is such that the function P(A) = Det[F A1} is unchanged under or-

thogonal transformations (similarity transformation with orthogonal matrices) of
the matrix . In this case, P(1) s the following polynomial

PR =2 B)- (EB)’ (350

Since the above should be unchanged under orthogonal transformations for each %,
itfollows that E? ~ B and E. B are uncha
in the Eucli space (with imaginary time). This transformation is nothing but the
usual Loren(z (nsf ingcial time Hence E- B and E— B rc Loreny

d under the orthogonal transformation

three components of the magnetic fields.
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q
a T 3.60)
mix E (T oW b (3.60)
or i
P _ 9 a) (361)
drt ¢
where pq = mitg and it = g
3.2 Lagrangian of the EM Field
Consider the four Maxwell equations in CGS units.
V.E=dmp;V-B=0 (3.62)
1B 4 10E
VXE= -2 ; VxB= =4 -4 (363)
cot ¢ cot

We wish to think of these as the uations of a suitable La ian.

" i
For this we have to identify suitable alized coordinates. It is well known
that these equations may be simplified and reduced considerably by working with
potentials—scalar and vector potentials. They are defined as E = ~V¢ — 124 and

B =V x A. The four Maxwell equations reduce to two.

s, .
V29— -0,V A =dnp (364
:
) 19 10A  4x
V(V-A)- VA4 (v - ) = (369)
P L

We identify the generalized coordinates as ¢; = (§(r),A(r)) where the vector r
plays the role of the index i. Just as we would have written L(Q.Q) = Y Li(Q-0)
if we had many degrees of freedom, we may suspect that the Lagrangian would be
of the form,

i 3 1[4
L /1/'/‘:\00\ /J'ypr/;mru /A/VIJII'.H\\I‘I‘ (3.66)
¢




So, the point is that this is a conserved quantity in the sense that its 4 vector divergence is

0 with respect to any one of the indices.
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3.3 Stress Energy Tensor of the EM Field

We just showed that a local conservation law for sources may be derived by us-
ing functional symmetries of the full Lagrangian. Now we show that a generalized

68 Field Theory

version of the continuity equation for the EM field alone may be derived by tak-

ount the lack of an explicit dependence of the Lagrangian density of

etic field on space and time (the dependence is only im-
ds). To do this we start with the Lagrangian of the electromag-
netic field without sources,

1

L=g / (BB 390)

Thus the Lagrangian densiy i,

| A,
£ E-B°)
8

gian density is explicitly independent of the posi
s on (x,) only through E and B). One may reg:
density as a function of the derivatives of the four-vector potential dyA,

Lagrange equations may be rewritten as,

Ovgs T
A, oAy

where summation over repeated indices is implied. Here dy = 5. First we rewrite

the Lagrangian density in a four-vector notation

So, the bottom line is that what I want to do now, is I want to convince you that there is
an conserved quantity in consistence consistent with Noether’s theorem there is a
conserved quantity which is also a two component tensor; that means, its basically a

tensor of rank 2. So, the question is how do you show that?

So, to show that we start with this Lagrangian of the source less electromagnetic field;
that means, imagine that there is a there is an electromagnetic field where there are no
sources or that is possible and basically the Lagrangian is given by the integral of the
Lagrangian density and the Lagrangian density is just the square of the electric minus
square of the magnetic field. So; that means, the difference of the squares of the electric
and magnetic field. So, keep in mind I am working in CGS unit. So, E and B have same

dimensions.



(Refer Slide Time: 02:20)

™

[
2= —(E2-B) 691)

8n
‘This Lagrangian density s explicitly independent of the position and time coordi-

nates (it depends on (x.) only through E and B). One may regard the Lagrangian
density as a function of the derivatives of the four-vector potential dyAp. In fact, the
Lagrange equations may be rewritten as,

LY

Oy - (392)
8oy (84
where summation over repeated indices is implied. Here dy = . First we rewrite
the Lagrangian density in a four-vector notation.
! FIE (393
» 3)
lon

where Fy = dAy — dyA,,. The reader may easily verify that this is correct by writ-
ing out all the components. Since £ is explicitly independent of Ay, the resulting
Lagrange equation is nothing but,

994 =0 (3.94)

‘The stress energy tensor, also known as the energy momentum tensor is a quantity
4 matrix that has the property that its four-divergence
ensity does not explicitly depend on the posi-

that may be thought of
i
tion and time coordin:

vanishes whenever (
efer to derive an expression for this in

amore general manner. For it in could also depend on the fields

s being massive, This is not
ien light interacts with mater, For
ingian may be introduced:

(3.95)

Now, bottom line is that you can also express this Lagrangian in terms of the field tensor.
So, this is what I had displayed earlier the 4 by 4 matrix and the anti-symmetric 4 by 4
matrix. Now, in terms of the field tensors you see the Lagrangian is purely a function of
the derivatives of the potentials as it were. Now you can see that because. So, the Euler
Lagrange equations therefore, can actually be even written as in the 4 vector notation

like this.

So, think of the way we would have written it in the context of point particles we would
have written it as d by d t of d I by d q dot equals d 1 by d q. So, basically this is taking
on the role of del nu. So, it becomes generalized to include spatial coordinates as well
and then this is del nu. So, you can prove that this is this because we see in special
relativity space and time indices are on an equal footing. So, you cannot really make a

distinction like that.

So, you should be able to accommodate a spatial as well as time indices. So, when you
do that you get this, but then keep in mind that this F mu nu does not depend upon the
vector potentials themselves it depends on the derivatives the derivative with respect to
space time coordinates. So, because of that the for the electromagnetic field in empty

space this the right hand side is always 0 ok.



So, now the left hand side you can convince yourself is basically this one. So, in our del
L by del you know if you differentiate with respect to one of them. So, you will just get
the other one and then because of anti-symmetry its this is the result. So, so in other
words the four divergence of any component of the vector potential is 0. So, bottom line
is that this is fine, but except that [ would have preferred a more general situation where
the right hand side is not 0; that means, [ want to take into account a situation where the

Lagrangian density is a function of the vector potential not only its derivatives.
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The equation for motion would then become Proca’s equation,

(me)?
A (3.96)
7

90AY 0" (9,A"

Lagrangian dens A]is explicitly independent of the position and time co-
ordinates. This means the Lagrangian depends on the position and time on through
the fields. Therefore,
) oot = ) S oo BSAOA 6
3,814,04] = (9,40 (1) = + (@0 (1)) % 0}
: A TN T80 ()
Using the Lagrange equation for the first term on the right-hand side we get,
N 324,04 52[A,04
0,L04,04] = (@49(0)dv 5 F(@dAp(1) <
8yAy(x) ddyAp(x)
324,04
N[(@Ap ()5 (398)
M) S Aeta)

We may now rewrite this as,
OL[A,0A -
A (04002 AN .\:) 0 (3.99)
80ydg(x L
Therefore, there exists a tensor called the energy momentum tensor or stress energy

tensor of the electromagnetic field that may be written as,

Y

=04,
0 =3,

5L (3.100)

such that it four-divergence vanishes,

So, for that we have to introduce a vector potential dependent Lagrangian density. So,
when you do that you get this relation and so, you will see that in addition to your usual
terms like this you also get these terms ok. So, this is called Pocas Lagrangian ok. So,

this is just to point out that more general situations are possible.

Now, I am going to show to you that the most general type of Lagrangian such as this
which includes you know dependence on the vector potentials themselves not just the
derivatives ok actually even the more general ones like this lead to conservation laws.
So, the question is how do you show that? So, to show that you just what you do is

basically you prove that this itself can be written as some 4 divergence.



So, as a result when you take this. So, if you can write this as del nu of something then I
can take this to the other side and then this becomes del nu and del 1 by del nu a rho
minus dot dot dot equals 0. So, this becomes your conserved quantity. So, that is what I
am going to do now. So, let us first evaluate that the gradient or basically the derivative

of the Lagrangian density with respect to one of the space time coordinates.

So, in that case it by chain rule you can show that this is equal to this. So, it becomes. So,
you see the Lagrangian density is a function of the vector potential and its first
derivative. So, the you know in the Lagrangian formalism the Lagrangian density is a
function of the vector potential and its first derivative. So, because of that you keep in
mind that in the Lagrangian formalism the coordinate and its you know time derivative

are considered independent q and q dot are independent variables.

So, but then you see q dot. So, keep in mind that I told you that in special relativity dot
means the time derivative. So, the time derivative has to be generalized to include the
spatial components as well because in special relativity space and time gets mixed up by
Lorentz transformation. So, there is no precise notion of time or space it is just space

time put together as a precise notion.

So, as a result the spatial derivative of the Lagrangian density can be written using chain
rule as follows and you see if you use Lagranges equation you can rewrite this term in
this way. So, this is the Euler Lagrange equations. So, now, when you do that you see
miraculously the right hand side of this just becomes the derivative or the gradient the 4

gradient of another quantity ok.

So, now bottom line is that this means that I can rewrite. So, I can basically rewrite this
equation ok. So, I can also rewrite this equation in this way ok. So, if you expand this out

you get this result. So, you can try this out.
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P PR OO o
the fields. Therefore,

2,801 = 0,45(0) SN L 3 3 ay ) SEA2A 397
L] = B (0) = + @ Ap(0) 35 397)
’ R0 A B

Using the Lagrange equation for the first term on the right-hand side we get,

OL/A,0A

£[A
9,L14,04] = (945(x))dy = + (9,040 (1)) %
L T S0 (x) P 50 ()
9LA,0A
(90 (x)) = (3.98)
e Ap(x)
We may now rewrite this as,
SEAM,
dy ( (9Ap(x) FYRE £[A,0A h,‘) 0, (3.99)

Therefore, there exists a tensor called the energy momentum tensor or stress energy

tensor of the electromagnetic field that may be

h? g
TV = (94) (3.100)
L (A
such that it four-divergence vanishes,
Wy =0 (3.101)

"The only problem with this definition in Eq (3.100), it is not symmetrical in the

indices ymmet 10 add another appropriate rank two
el 0 law. To find out which one, we have
[ or notation. Henceforth,

0,A1.Ay.A:). This means we
multiply the time component by ¢ in the position four-vector also : ¥ = (¢f,x,).2).

E=-V¢ l‘\. B=VxA (3.102)
¢

So, if I expand this out I get this result because that is what this is right. So, basically this
I can rewrite as del mu. So, del mu I can rewrite as del nu delta mu nu ok. So, that is
what I have done here. So, this term comes from here. So, when I do that and I put

everything to one side I get this equals 0.

So, what this means is basically saying that there is a conserved quantity called T tilde
which is now a two component object and its 4 divergence vanishes. So, the thing about
the not so, nice thing about this is that its not symmetrical. So, we want it to be
symmetrical because you know the anti-symmetrical portions do not convey much

meaning they are just a burden.

So, you will we will probably show that and some of the exercises that by the anti-
symmetric part does not convey much meaning. So, we want a symmetric version of this.

So, what we do is that we add a term like this.
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Or,
Ej=—(9,A%) - (9" (3.103)

161(1,2) =3,0(2,3) = 1n(3,1) =2, then,
By =0/ - 0! (3.104)
- ) 3
B =Y (04 -0 (3.105)
25

! 0 el iv2
£ M‘)’: (9A°) = (9" :;m‘,\ A"

1
(3 Ay b, ) (@AY - A"

I
T FaP (3.106)
67 6m

16m

where Fy = (9,Ay — yA,). Now itis quite easy to caloulate T,

L | e g |

F (3.107)
A(dvAp) 4nd(0vAp) 4n

Thus,
! pogv | p i
= 04p)F*? +3, m/@,/“’ (3.108)

P
P
As we can see, this is not symmetric in the indices g, v. To make it symmetric, we
first write this with both the indices on top on the left,
Fav ! W AP\ ~ | op
T ('A°)FS + 0 — FopF® (3.109)
4n 16n
Then we add the following new tensor,

- 1
= — (PR (3.110)
4n k

‘Then this becomes,

So, the rest of this is just making comparison with the traditional electromagnetic fields
in the Maxwell kind of language rather than the 4 vector language. So, now what we do
is that you see this T tilde is not symmetric; however, this S tilde can be added to this

which makes it symmetric.
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1
(DA =) (@AY -3'A P (3.106)
16n

I
iy
16n "

where Fy = (9,Ay ~ yA,). Now itis quite easy to caloulate T,

N ) '
2 L o po__Lpw (3.107)
Aoy amdy) i
Thas,
v_ | wosv | ™ "
Ty= = AP 48, g (3.108)

As we can see, this is not symmetric in the indices 1, v. To make it symmetric, we
first write this with both the indices on top on the left.

o J‘" PR ulml""w (3.109)
“Then we add the following new tensor,
& J‘T‘u"‘\“l}l‘ (3.110)
Then this becomes,

g g = L popn, !
4

Yt gt g 31

which is clearly symmetric as the product of F's is symmetric. The only thing that
remains is to show that this procedure does not violate the conservation law. For
this we first start with the Lagrange equation:

Y [y

E} 0. 312
Ao, oA,

So, what we are going to do is that we are going to define a new object called T mu nu

which is basically this T tilde which we derived by simply combining Euler Lagrange



equation with you know chain rule. So, you see that is what we got T tilde and we
showed that see we showed that its conserved, but then we can also add the S tilde; S
tilde is basically a new two component object which when added to this T tilde still has

to maintain conservation laws.

So; that means, we have to make sure that T mu nu is still conserved in the sense that its
4 divergence is 0. So, in other words because T tilde already is conserved we have to
make sure that S tilde is also conserved, but then on top of that we have to choose a S
tilde such that T tilde plus S tilde is symmetric. So, you see this choice ensures that it is
symmetric. So, if you add this to this if you add these two you get T mu nu which is

clearly symmetric ok.

(Refer Slide Time: 10:54)

dy 0. (3.112)
oA, oA,
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The RHS is zero because £ depends only on the derivatives of A and not directly

on A. This s true only for Lagrangian without sources. This means,
QF =0 (.113)

First we rewrite,
(i J'“ A PP + 8 ‘lﬁla,,l“” (3.114)
§, J'xur‘,\kl““ (3.115)

Itis easy to see that 9,5, = 0.

P4 ()9, P (.116)
4n

of 1.p, and F*® is antisymmetric. Since
the answer is zero. The term ,F* = 0
0. Now we have to verify that 9, 7% = 0.

| w_ | » 0 ‘
9,14 41"“"" Ap) P J“m\r\‘,w,‘l“ o (OyFop)FP @117

We know that d,F*? = 0. If we write

1 I
Ay = 5 By = ) + 5 Ay +dpy), (.118)

we should retain only the antisymmetric part as this is multiplying F*? in the first
oo, which s antisvmmetric, Hence

So, but then we have to show that S tilde is conserved. So, to show that S tilde is
conserved you just take the derivative of S tilde with respect to say del mu and you will
see that it is conserved. So, because these are mu F mu nu is anti-symmetric under
interchange of mu and rho F mu rho is anti-symmetric under interchange of mu and rho,

but then this is just the product of del rho and del mu which is clearly symmetric.



So, when you mix a anti symmetric with symmetric term you get 0 ok. So, similarly this
is 0 because this is conserved F mu nu is conserved ok. So, as a result S tilde is clearly

conserved.

(Refer Slide Time: 11:43)

& 1 | S
9,5 4_(47,”1,,..\“ PP 4 s 0pAv)0,F** (3.116)

of p,p, and F¥ is antisymmetric. Since
the answer i zero. The term 9, F* = 0
§, = 0. Now we have to verify that d,, 7% = 0.

from th e equation. Hen

1

1 w_ o, 5
0,1% 41“)‘””\"” ¥ Mm\ Ap)0,F*? o OyFop)FF 3.7
We know that d,F*P = 0. If we write
1 I .
90 = 5 (00— 0pAy) + 5 (9,49 +0pA,), (3.118)
we should retain only the antisymmetric part as this is multiplying F* in the first
term, which is antisymmetric. Hence,
3=~ L QB+ L@ Fop)F =0 3,119
9,1 mu/\ ) K!:H\ o) ( )
Now we show that 7% has an easily identifiable physical meaning.
i ‘—I"’!‘”- ‘n‘l FoP (3.120)
P AT A a
Here,
1 1
™ R FopF® @.121)
i lon
and, say,
o_ | [T sy
T F FIR) - —FF (3.122)
dn 4 L
Weknow, F = (A~ 9A”) = (L 2AT+ V0) = ~E;and F = (- 1347~ V9)
Ej. Also - g5 (E* - BY) = iz FopF®. Hence,
" IR I e "
T —(E*-B) = — (B2 +B%) =, (3.123)
8t 8

So, we can construct a T mu nu which is conserved which has this property ok. So, in
other words it is firstly, symmetric an secondly, its also conserved. So, now, we can go
ahead and ask ourselves what is the actual meaning. So, we have constructed a
symmetric object. So, it is completely unrelated to F mu nu clearly because F mu nu is

anti-symmetric fully anti-symmetric where S T mu nu is symmetric.

So, that is the big difference the similarity is that both are conserved T mu nu is
conserved F mu nu is conserved in the sense the 4 divergence of both are 0. But then
these two are not related at all because one is anti-symmetric, the other is symmetric. So,
the question is we know what is the physical meaning of F mu nu I just displayed that
earlier its a 4 by 4 matrix with diagonal element 0 the other components of the matrix are

basically the components of the electric and magnetic fields.

So, now, the question is in a similar way we want to understand what are the components
of T mu nu. So, for that let us work out specifically T 0 0 ok. So, we can start by say T 0

nu and then we work out T0 0, T0 1 T 0 2 and that will be useful. So, you see when I try



to work out T 0 nu its going to come out like this and specifically T 0 0 is going to be

like this whereas, T 0 3 for example, is going to be like this, but then what is F 0 1.

So, i you see the Latin indices correspond to the spatial coordinates the Greek indices
could be either spatial or time coordinates. So, it includes time if I write Latin indices
like 1 a h it implies that its only the spatial coordinates excluding time. So, if that is the
case then F 0 i is clearly minus E i and the covariant version of that is plus E i. So, and
also the this is by definition the Lagrangian density. So, it is basically minus 1 by 8 pi

yeah. So, its with a minus sign. So, A squared minus B squared.

Now, if you combine these two. So, T 0 0 is this and you subtract this out you see you
will get this result and this is the energy density of the electromagnetic field ok. So, that

is the physical meaning of T 0 0.

(Refer Slide Time: 14:11)
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which is nothing but the energy density of the electromagnetic field in CGS units.
Now if we examine,

] A, A
Pl =gl -t = -2 %o p (3.124)
%
0w o M i
FR=pp - =-22 4 S p, (3.125)
dz  dy
Hence,
5 | I
1% = B, —Bf, = (ExB) (3.126)
T
Thus 7% is proportional o the i component of the Poynting vector § = & (E:x
B). The conservation law
19 . 11
0=0,T"=-=71"+ VirY=-=+-V.§ (.27
AT “),- ) e
o '
) (3.128)

o

“This equation may be derived directly from the original form of the Maxwell equa

tions without using fou Start with these two (in free space J = 0);

10B 1E

VxE {VxB (3.129)
cot co
Take the dot product of the first one with B and the second with E and subtract.
Then we get,
1. B 1 OE
B-VxE=--B.5;E-VxB=-E.5 (3.130)
¢ oo - ot
Subtract the first from the second,

IO LB 10, o dxd
E-VxB-B-VxE=-E- %+ B2 = @28 = T (3131
¢ d ¢ a 2o ¢

L

So, similarly you can work out what is the physical meaning of TO 1, T 0 2, T 0 3, but
specifically if you look at T 0 3, it comes out as the z component of E cross B. So, that is
basically the z component of the pointing flux. So, the pointing vector. So, that you know
from electromagnetic theory corresponds to the momentum carried by the

electromagnetic field. So, the momentum density as it were. So, this is the energy



density, this is the momentum carried by the electromagnetic field. So, bottom line is that

you have these two ideas ok.

So, now, you can show that because you see if you look at some region of space, if
energy in that region of space is increasing its because momentum is flowing into to that
region or if the energy is decreasing it because momentum is flowing out of that region.
So, that is the energy conservation. So, that the 4 divergence of the energy momentum
tensor equals O implies that actually implies that conservation law. So, if you explicitly
work this out what this means is basically this result this d u by d t plus divergence of S

equals 0 ok.

(Refer Slide Time: 15:26)

e a2 w2 Oy OA N
FRogat-ga = - g, (3.125)
dz
Hence,

UL 1
B, B, (
T Jn, E, JﬁIJA n

ortional to the i —th component of the Poynting vector § = 4 (E

ExB) (3.126)

Thus % is
B). The con

(3.128)

“This equation may be derived directly from the orig fthe Maxwell equa.

ce J =0)

s. Start with these tw

tions without using fo
198 19E

VxE= -2 VxB=- (3.129)
o ca

Take the dot product of the first one with B and the second with E and subtract,

Then we get,
) (I S )
B-VXE=—-B.% E-VxB=-E-° (3.130)
o P
Subtrac the first from th second,
1L 1 OB 10, o 410
E-VxB-B-.VxE=-E.5 +-B.° SR = T (3
c o ¢ o 2d co
But,
E-VxB-B-VxE=-V-(ExB) (3130
Hence,
)
M iv.s=0 3.13)
ot

of radia-
ase in energy
of radiation, But for the glectromagnetic field, not onlv is the enerev conserved but

‘Thus the Poynting vector is nothing but the energy fiux, or the momentum

tion flowing into or out of a volume. This leads to an increase

So, now this of course, could also have been derived directly from Maxwell’s equations
you know using just the vectorial notation which I am not going to go through. So,
bottom line is that this is for T 0 nu. So, therefore, for T 0 nu there is a conservation law

of this sort.
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R B—
E-VxB-B.VxE= E. By lp. B L0 gy S0 g,
¢ o ¢ A 2o co
But,
E-VxB-B-V<E=-V (ExB) 613)
Hence, 7
)
Hiv.s=0 (3.133)
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is because of momentum flux flowing in and out of the system. Just as 7% is the
energy flux, 74,74, 73 are the components of the momentum flux
i 10 i
o1V T4y, =0 (3.134)
con

But 7% = L(E xB); = L§;. Define (I, 7%,7%) = T¢
V=0 (3.135)
Here us the ene

flux. This is bec
momentum of the

(ensity), § s the encrgy flux, and T i the flux of the energy

not only is the olume conserved, the total

M radiation ([ d"rS) is also co

Energy
deaslt

But then you could also do it for T T i nu that or T nu 1 basically is that you do not have
to look at the zeroth component you can look at the other ones. Now if you look at the
other ones also you get a similar conservation law ok. So, now, you see what was earlier

u in the d u by d t now becomes the pointing vector in there.

So; that means, not only is energy conserved in a region. So, the momentum is also
conserved the total momentum in a certain region is also conserved if the momentum S
is a kind of energy flux. So, because from here you can see that S represents a kind of
energy flux. So, now, if the energy flux is changing its due to some other kind of flux
which is the flux of the energy flux. So, which is that meaning of the remaining

components of the energy momentum tensor ok.
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Here  is the energy (density), S is the energy flux, and T is the flux of the energy

flux. This is because not only is the olume conserved, the total
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Figure 3.3: The meaning of the various components of the stress energy tensor

e
d Q(r,r) = 0 (1) = O(r.1), where M is

an orthogonal matrix independent of position and time. Choosing an appropriate
suchas ¢ =0and V- A = 0 (radiation is easy to convince oneself

A ltis [
f that this quantity vanishes identically. Hence, this does not yield

ed quaniity has the expres

motion.

So, that is less intuitive and harder to visualize intuitively, but nevertheless you can still
write down a matrix which is symmetric and its 4 by 4 and you can easily identify if not
all many of the components. So, you see the first column corresponds to the energy

density at the top left and then you have the momentum density in the remaining rows.

Then similarly the diagonal components from T 11 T 2 they correspond to radiation
pressure ok. So, the remaining components are basically identifiable as shear stress and
energy and momentum flux. So, bottom line is that put together all these components are
lead to their appropriate conservation laws and basically put together are responsible for

the energy momentum content of the electromagnetic field ok.
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T (x) = ApAg T*(x ), (3.136)

peated indices is implied. Let us imagine
me of the label x'is one where the particle is at rest. In this
case, the tensor has only one component viz, the time-time component equal to the
energy density

T%%(x) = 85,0860 mc* 8(r) (3.137)
Now imagine that we view this particle moving with some velocity v in the positive
x-direction, then the energy momentum tensor in this frame would be,

() = AUAY me* 3(r) (3.138)
Now.
pad 3139
N=350 (3.139)
We write the Lorentz transformation as
A= (3.140)
where = (1,,0,0). We substitute the formulas for r = (y(x— £x"),,z) and A

inEq. (3.138) to get (8(r ) = 8(x )(y )8(z ),
2 25 LRTTRYY
TR (x) = Y)Y (1) me® 8(y(x = =x"))8(y)8(z)
¢

PO (1) me 8(r—rolt)) (3.141)

“The last result follows from the observation ry = (£2°,0,0) = (v1,0,0) and (1)

| we may write for a particle of rest mass m moving with

So, now I am going to show to you some examples that will convince you about this
especially the 4 vector notations and tensor notation and so on so forth. So, I have given
you some examples. So, let us start with some simple example like Noether’s type of
example. So, imagine that you have a vector potential A and you replace it by a
transformed vector potential where you simply rotate that A by some amount ok, but that

phi is a scalar. So, it does not get rotated.

Now, so, if you work in this gauge for example, where phi is 0 and divergence of A is 0
then you can easily convince yourself that this type of rotation leaves the Maxwell
equations invariant. So, the Lagrangian invariant so; that means, there must be a
conserved quantity and that conserved quantity is basically going to be this ok. So, you

can convince yourself that is what it is ok.

So, bottom line is that yeah. So, this is a trivial example because even though it looks
like. So, I have given you this example to convince yourself that there are many
situations in which you get a conserved quantity which is actually trivial. So, if you work
this out you will find that this appears to be a conserved quantity and indeed it is simply

because its also identically 0 ok.



So, I gave you this example just to point out that not all conserved quantities are
interesting for example, if you get a 0 as your answer its certainly conserved, but its not
interesting ok. So, now, let us go to some really interesting examples. So, now, I want to
find the energy momentum tensor for example, of a point particle. So, see if you have a
point particle if its at rest, then its energy momentum tensor is clearly only energy there
is no momentum nothing else certainly none of the other components are going to be

there. So, its going to just be energy density at the location of that point.

So; that means, the. So, if T dash is the reference frame in which the particle is at rest
clearly this is the energy momentum tensor. It is just m ¢ squared which is the energy
times the Dirac delta function at r dash which means assuming the particle is at the
origin. So, m ¢ squared Dirac delta at r dash is basically the energy momentum tensor of
the point particle. So, now, the question is I want to find out what this energy momentum

tensor is if you transform to a moving frame ok.

So, if you transform to a moving frame you get this t mu nu. So, now, you know that
from your the fact that these are tensors under Lorentz transformation its going to
transform like this ok. So, when it transforms like this its clear that since T dash is
Kronecker delta of rho equals 0 and sigma equals 0 this is how its going to transform and
we know what are these lambdas which are basically the matrix involving space time

rotations which is basically the Lorentz transformation.

So, and we can clearly work this out as gamma into v mu. So, vmuis 1 v by ¢ 0 0. So,
that is for boosts along the x direction which is customary ok. So, if you work this out
you will see that the t mu nu can be written like this ok. So, where its going to involve
the 4 velocity of the particles in that new frame. So, the general frame and gamma is the

dilatation factor and this is r naught is the location of the particle at any given time.
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case, the tensor has only one component viz, the time-time component equal to the
energy density

T%%(x) = 80860 mc 8(r) (3.137)
Now imagine that we view this particle moving with some velocity v in the positive

X-direction, then the energy momentum tensor in this frame would be,

() = NAY mc® §(r) (3.138)
Now,
.
N=37% (3.139)

We write the Lorentz transformation as
Ay =, (3.140)
where ¥ = (1,%,0,0). We substitute the formulas for r' = (y(x— L) y.z) and A
inEq. (3.138) to get (§(r ) = 8(x )(y )3(z ),
" 2 1\ ¥ 25 LN NYYRTY
T (x) =y v (e)v*(r) me* §(y(x = -x"))d(y)d(z)
¢

WO (1) me® §(r = rolt) (3.141)

“The lat result follows from the observation ry = (%2%,0,0) = (v1,0,0) and (1)

o) o
7 Thus in general we may write for a particle of rest mass m moving with

velocity v(r) = 4ro(t),

me*

™ (x) = (0 (1) 3(r-rolt)) (3.142)

VI-%

”
where (1) = (1,%2),

W In this example, we consider the stress energy tensor of a (perfect) fluid in
thermodynamic equilibrium. In the rest frame of the fluid, the stress energy tensor

So, in general you can write this. So, this is what its going to be m ¢ squared is the rest
energy and this is the instantaneous velocity of the particle and this 4 vector velocity is
just one for if that is time component and its v by c if it is space component right. So, this
is your energy momentum tensor of a point particle which is quite interesting because its
nice to know. So, you see in the case of point particle also the energy momentum tensor
has all kinds of off diagonal components all those shear components and those which

ones I displayed right.

So, the momentum flux and energy flux all kinds of off diagonal things are there in this.
So, yeah. So, its not something we could have guessed. So, that is why we have to derive
it ok we could not have guess this. We could have guess the T dash which is basically

energy momentum tensor when the particle was at rest, but not when it was in motion ok.
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So, similarly we can asks a similar question what is the energy momentum tensor of a
fluid? So, if a perfect fluid. So, imagine you have a perfect fluid in the rest frame you are
in the rest frame of the perfect fluid in which case its energy moment. So, it has pressure

it exerts pressure the fluid could exert pressure, but it also certainly has a mass density.

So, you have the energy density and the pressure. So, these are the components of the
energy momentum tensor when the. So, when the fluid is at rest. Now the question is
similarly suppose you are moving relative to the fluid what is the energy momentum
tensor? So, as usual you do a Lorentz transformation and you can convince yourself that.
So, the energy momentum tensor is actually given by the as usual the 4 velocities and the

pressures and the densities ok. So, this is your Minkowski metric.

The Electromagnetic Field and Stress Energy Tensor 75

is purely diagonal, with the time component being the rest energy density and the
spatial components related to the pressure.

pt 00 0

. 0 p 00
) 3,143
=19 0, o .1y

0 0 0 p

Being a rank two tensor, its components transform as the product of two position
four-vectors would. Therefore,

™
(3.144)
where A} ‘ But,
' =cAy (3.145)
is the four-velocity. Also,
1 = AnPAy (3.146)

With summation convention over repeated indices is implied. In the right-hand side
weset 1% = diag(~1,1,1,1) to obtain,

W =-NA+ Y A (3.147)
=23
Thus,
i ) '
) = p+ (P + o) p= (o4 Dy 0. (B148)
, I

The above expression is the en

momentum tensor of a perfect fluid (no heat
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Thus,

Wi

T () = '’ p+ (" p=(p+ LAWA +pu® (3.148)
a2

The above expression is the en momentum tensor of a perfect fluid (no heat

conduction and no v

0is known as ‘dust’. Now we
g for the equations of motion

physical applications,

a slightly different topic, na
function methods.

34 Solution of Maxwell’s Equations
Using Green’s Functions

At this stage it is appropriate to study some specific solutions to Maxwell’s equa-
tions using the Green function concept that is so ubiquitous in field theory. Green

functions are used to solve inhomogeneous partial differential equations of the type,
T (B, v )u(x) = f(x) (3.149)
7 Field Theory

subject to appropriate boundary conditions. Here x is a d-dimensional vector and T
is some operator that is at most second order. The idea is to first obtain the ‘Green
function’, which is nothing but the solution to,

T(0h,049,)Glx,x ) = 8(x=x) (3.150)

subject to the same boundary conditions, then one may simply write,

u(x) /m’\ Gl x)f( @3.151)

So, this is the energy momentum tensor of the perfect fluid. So, in the next class I will
explain to you how to solve Maxwell’s equation. So, this till now I have explained to you
the content of the energy momentum tensor of the electromagnetic field. So, which is a
nice concept. So, in the next class I will tell you specifically how to find the solutions of
Maxwell’s equation that is analogous to you know calculating the trajectory of a point
particle see after all Maxwell’s equations are basically Euler Lagrange equations of some

suitable Lagrangian.

So, solving Euler Lagrange equation is basically finding trajectory if that is was a point
particle. So, this is basically also like finding a trajectory except now that the coordinates
of a point particle, but the they are actually fields themselves the coordinates are the
fields themselves. So, the trajectory we are looking at is basically how the fields
themselves change with time ok. So, that is what we are going to do in the next class. So,

I hope you will join me for the next class.

Thank you.



