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Okay, after having looked at the three examples of D’Alembert’s principle but if you

looked at those examples, they seemed rather lengthy and hard. But you see what

happens here. I have this D’Alembert’s principle and the D’Alembert’s principle is

written in terms of the Cartesian coordinates. Now the Cartesian coordinates because

of constraints are not independent of each other.

So we have to write the entire equation, identify the independent variables, then find

the coefficients of the virtual displacements of these coordinates and that finally will

be able to give or that  finally  will  give us the equations of motion.  But then this

procedure immediately tells us that I can now combine the D’Alembert’s principle

with generalized coordinates.

Because generalized coordinates we had already identified as independent coordinates

which will give us the mapping between independent coordinates and the Cartesian

coordinates, okay. So if we put these two together then we get what is called as the

Lagrangian equations of motion. And Lagrangian equations of motion will make the

procedure of finding equations of motions extremely easy.

We will  see  that  in  the  examples  towards  the  end.  Okay,  again  this  is  a  lengthy

derivation and remember in this derivation we have to always remember that we are

working in the state space which means all these quantities are treated as functions of

not only coordinates but also the velocities and the time.
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Okay, let me begin by writing down the D’Alembert’s principle here which we have

already seen and this D’Alembert’s principle only talks about the applied forces. And

if the system has a holonomic constraints then we know that for the capital N particles

we had 3N Cartesian coordinates minus the number of holonomic constraints that is k

in this case, 3N – k are the total degrees of freedom for this system.

And I will denote it by small n and what we need is small n generalized coordinates

and I  will  denote those by q 1,  q  2 and so on up to  q n.  And in the successive

derivation, many places we may have to write function of q 1, q 2 and q n, up to q n. I

will use a short form for it and just write q and if write q that means I am actually

talking about the set of generalized coordinates which is q 1 to q n, okay.

Now, we already have the transformations from the generalized coordinates to the

Cartesian coordinates. So here are the Cartesian coordinates and they are expressed in

terms of the generalized coordinates. So I will call this as transformations. Now from

these transformations I can immediately calculate velocity. So velocity of ith particle,

remember this is nothing but dr i/dt. So this is velocity of ith particle.

And that we can use the chain rule and then I get velocity equal to partial derivative r i

with respect to q j into q j dot and plus del r i by del t. And now you see the positions

or Cartesian coordinates were functions of generalized coordinates. But what about

the velocity? Velocity is not only the function of coordinates, generalized coordinates

but also functions of generalized velocities.



Because in the expression of velocity, generalized velocity appears here. Only thing

that is nice about it is it  is linear in generalized coordinate.  So the velocity of the

particle  when expressed  in  terms  of  generalized  velocities  it  is  linear  function  of

generalized velocities. So if I take the partial derivative of V i in this equation with

respect to q j dot. But then we can immediately refer back to the previous equation.

And from the previous equation I know that this would be equal to del r i/del q j,

okay. Once you take the derivative with respect to q j dot, the coefficient of that term

will remain. This identity we will use in future. So I am going to call this as identity

number 1.
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Now look at his expression. If I calculate this d/dt of del r i/del q j then what I get is

this. First, again you see this is the entire derivation is all about use of chain rule and

partial  derivatives.  So  when  I  take  this  derivative,  what  I  get  is  this.  I  take  the

derivative of del r i/del q j with respect to q l and into dq l by dt which is just q l dot

here, okay.

And  one  more  derivative  with  respect  to  partial  derivative  with  respect  to  time

because time appears explicitly. And as long as these transformations are nice in some

sense, nice means they are smooth. The easiest thing that we can do is if they are

smooth then I can interchange the order of derivatives. That means if I take these two

derivatives here, I can take del q j derivative first and then the derivative with respect



to time. Same thing about this also, this term too.

So now what I am going to do is I will write everything inside the bracket here which

is derivative with respect to q l and derivative with respect to t and derivative with

respect to q j I am going to do last. So that comes out of the bracket here. But identify

this bracket. What is this bracket here?

This bracket here, oh that is nothing but V i. Just go back one step and there it is. This

is exactly same as V i. It is a summation over q l summation over l del r i/del q l into q

l dot + del r i/del t and compare it with this equation here. So this is just equal to del V

i/del q j, okay. This actually tells you what. If the coordinate transformations are nice,

then I can actually interchange the partial derivative with respect to q j with the total

derivative with respect to time.

That is exactly what has happened on the right hand side there okay. So that is the

identity number 2. Now look at the virtual displacements.
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The virtual displacements remember are delta r i is equal again by chain rule it is del r

i/del q j into delta q j. And what happened to the time term? Remember, these are

virtual displacements. That means these displacements are taken at an instant t so no

delta t term for this one, okay. Now go back to the D’Alembert’s principle and look at

the first term. One of the terms is p i dot into delta r i and then summed over i.
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Now let us start analyzing this, simplifying this. The first thing I will do is write p i as

m times dv/dt okay. Then second step I will take this delta r i and write it as, this is

given by the equation  here okay.  Now what  I  have  here  is  this.  I  have  m i  into

derivative of one function with respect to t into second function. So think of this as

your second function and v i as your first function and write it as time derivative of m

i v i into the second function.

But if I use, if I take a derivative of this, then it would be derivative of v i into the

second term plus v i into derivative of the second term. So we can immediately see

that you need to subtract the second term too. And if I subtract that second term that is

what we get here, okay. So it is m i v i into time derivative of the second term. Now

we simplify this. Now identity number 1 goes here.

This part here gets replaced by derivative of v i with respect to q j dot okay. And

secondly on this side I have d/dt. This term here gets replaced by the term here. And

now you see what happens, something nice. So this one here is m i v i into del v i by

del q j dot but this is nothing but del/del q j dot of half m i v i square. And similarly

on this side, this term becomes del/del q j of half m i v i square.

But we identify half m i v i square. What is that? That is the kinetic energy of the ith

particle. Now if I take this summation inside, I can do that because d/dt and the partial

derivatives  are  linear  operators.  So  I  can  take  this  summation  inside  and  then



substitute t is equal to sum over i half m i v i square okay. So this term from the

D’Alembert’s principle simplifies to this. All along there is a delta q j sitting outside

the bracket.
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Now the second term has sum over i F i vector dot delta r i. Now this I will write here

again and write down the expression for delta r i. That is nothing but partial derivative

of r i with respect to q j into delta q j summed over j, okay. And now if you rearrange

then what you get inside this bracket, this bracket here, I will call this as q j. And this

q j is called as generalized force, okay.

Now finally what do I get? Put everything together, the first term and the second term

and the D’Alembert’s principle looks like this. In this case, I have summation over j.

Remember the summation over i in the kinetic energy term is over the particles. So

that goes from 1 to capital M. This summation here is over generalized coordinates.

This goes from 1 to small n.

Remember small n was 3N – k and k was the number of holonomic constraints. So

delta q j’s are independent of each other. What does that mean? This identity must be

true for any arbitrary delta q j immediately implies that each one of these coefficient

brackets themselves must be 0. This is how you get these n. So there are n equations

here, these n equations, okay.

What is the nature of these equations? These are second order differential equations.



You can immediately see that t will be treated as function of q, q dot and then when

you take the derivative of t with respect to q dot I get first of all terms in q dot. And

then I have one more time derivative with this. So basically the final equations will

involve q double dots. So these are second order n differential equations, okay.
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I will take this a little further and look at only a special case. Remember this special

case  includes  large number  of  problems.  So if  I  can express  the  force on the  ith

particle which is f i as minus gradient of, gradient with respect to ith coordinates or

coordinates of ith particle of some potential function. So here V is not velocity, but

this is capital V. This stands for the potential.

So if our forces can be derived from some scalar potential by using this process, then I

can calculate q j immediately; q j will be equal to minus of grad of v i. Remember

grad is with respect to i or with respect to x i, y i, z i into del r I by del q j. But by

chain rule we immediately know that this is exactly equal to, so this is exactly equal

to minus of del v by del q j. So make a second stipulation.

See we made a first stipulation that the forces are derived from some scalar potential.

I of course did not say that this is conservative force. This could be function of r i and

also time t. Remember if it  is independent of time t then this will be conservative

force. If it depends on time t then it will not be a conservative force. However, you

should be able to define some energy term there, okay.



So first thing we do is that the forces are derived from some scalar potential  and

second stipulation I will make is that if velocity is independent of q j dot then del v by

del q j dot is 0. And then I can now put everything together in my equation.

(Refer Slide Time: 17:58)

So because del over del q j dot, there is a dot here, del over del q j dot of T – V.

Remember here the derivative of V with respect to q j dot anyway is going to be zero

and minus del over del q j T – V. This one has come from your generalized force

term,  okay.  So  I  will  now  define  a  new  quantity  called  as  Lagrangian  and  this

Lagrangian is defined as T – V.

And  this  of  course  will  be  function  of  all  the  generalized  coordinates  q,  all  the

generalized velocities q dot and also may depend on time t. And then for given this

Lagrangian I  have Lagrangian’s equations  which are n second ordered differential

equations. These are our equations of motion. Rather a length derivation but you see

when we looked at the examples of the D’Alembert’s principle we anyway manually

did this. We started by writing everything in terms of Cartesian coordinates.

Then identified the independent coordinates. Then looked at the coefficients of the

independent coordinates and set them to zero. This derivation already has done that.

So now equations of motion can be directly obtained by applying this. We do not have

to  do  all  that  lengthy  procedure  that  we  did  in  the  examples  of  D’Alembert’s

principle. Okay, immediately we will try this for some examples.
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The  first  thing  that  I  want  to  try  is  this  must  work  if  my  system is  free  of  any

constraints. So take for example a single particle whose coordinates are given by x, y,

and z okay. And there is a force on this particle. So remember because there are no

constraints  x, y, z are independent of each other.  Why would I not use x, y, z as

generalized coordinates?

Of course yes, I will use x, y, and z as generalized coordinates. Now the force say is

given by minus of grad V where V is some function of x, y, and z okay. So this is a

single particle moving in a conservative force field. And let us try to find the equation

of motion. First of all the Lagrangian would be, what is the kinetic energy? That is

simple. It is 1/2 m x dot square + y dot square + z dot square and this minus the

potential. Remember potential is function of x, y, and z.

So let us write down. There are 3 generalized coordinates, there will be 3 Lagrange’s

equations. The first equation for x. So this equation would be d/dt of del over del x

dot of Lagrangian minus del l over del x is equal to 0. So let us calculate this.
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What is the partial derivative of Lagrangian with respect to x dot? So that is nothing

but d/dt. This is just mx dot - del l/del x. But the first term of Lagrangian does not

have any x.  So this  immediately  gives  us  del  v/del  x  = 0.  And this  gives  us the

equation mx double dot = - del v/del x but we know that is just exactly equal to F x.

there you go. We recover Newton’s laws which were written in Cartesian coordinates

which do not have any constraints written there.

So this is  how the Lagrangian will  give you the Newtonian equation.  Here is  the

second example.  The same single particle,  see this  is  what  I  had said in our first

lecture that when we change the coordinate system and go to a new coordinate system

then we have to do lot of work to find the equations of motion. And I gave you the

example of plane polar coordinates.

So in plane polar coordinates the equations of motion look very different. They are

not simply equal to mr double dot is equal to f i okay. So here I will apply the same

situation but I am going to use cylindrical coordinates as r, theta, and z. By the way,

in the previous case of course there are two more equations, one for y and one for z

too, okay.
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Now in case of cylindrical coordinates, can I use them as generalized coordinates? Of

course yes. So the Lagrangian which is function of now the coordinates q, q dot, and

t; remember here q represents r, theta, and z; q dot of course represents r dot, theta

dot, and z dot. This is equal to kinetic energy. How would I write kinetic energy, oh

we already know. The radial velocity is just r dot.

So r dot square plus, what is the tangential velocity? That is r theta dot. So that is plus

r theta dot square and plus z dot square and minus v. Now apply, what would the

equation for r look like? Equation for r. that would be d/dt of del l/del r dot – del l/del

r = 0. This is our first equation and this will be equal to or this simplifies to d/dt and

what is the derivative of Lagrangian with respect to r dot?

Oh, that immediately just gives me m r dot and everything else of course, all other

terms are independent of r dot. This minus now when you are taking the derivative of

Lagrangian with respect to r remember oh, there is a r in this term too. So you should

not forget that one. So this one will just become mr theta dot square. And then there is

a r here too. There is a r here too.

So that would be equal to minus, so that will be del v/del r and this must be equal to 0.
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And this gives us m r double dot - r theta dot square = - del v/del r. And what is that?

That is nothing but r component of the force. So that is del v/del r is F r. What about

theta equation? Okay, so let us derive this theta equation too. Equation for theta is d/dt

(del l/del theta dot) – del l/del theta and this must be equal to 0 and calculate this. So

theta dot only appears in the second term here.

So this will be equal to d/dt of mr square theta dot and plus now remember theta does

not appear in the kinetic energy part, theta only appears in the potential part. So this

will be equal to del v/del theta = 0 fine. And what is this del v/del theta? Can you

make a guess?
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This is of course the angular momentum of the particle about the given origin. So this



is nothing but d/dt of angular momentum. Remember this is capital L, not the curly l

that we are using for Lagrangian. So this is angular momentum and this will be equal

to what would be del v/del theta. This is nothing but 1/r. So I will write it as r into del

v by r times del theta. This is nothing but r F theta sorry with a minus sign.

And what is r into the tangential force? This is in fact torque. So the second equation

we get is dl/dt is equal to torque and the force. And what about the z equation? That is

straightforward.  That  we  already  know.  That  would  look  exactly  same  as  the

Cartesian  coordinates  that  we used earlier.  So  that  equation  simply  comes  to  mz

double dot is equal to F z.
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One more application of Lagrange’s equations. This is one of the problems we have

looked at  earlier  and remember  the  amount  of  work we have to  do to  solve  this

problem. This is the one with the rheonomous constraint where the trolley from which

the pendulum is suspended, this trolley is moving with some predetermined function

of t. So this distance is given by f (t) okay.

Now  since  you  remember  this  example,  I  will  quickly  write  down  here,  the

generalized  coordinate  that  I  am  going  to  use  is  angle  theta  and  the  Cartesian

coordinates  of  this  bob  are  x  and  y.  So  I  will  immediately  write  down  the

transformation equations. Transformation equations would be x = f + l sin theta and y

= l cos theta. I can immediately calculate the derivatives of this.



So your x dot is f dot + l cos theta times theta dot and your y dot is – l sin theta times

theta dot. Now write down the Lagrangian. Oh what is the kinetic energy term? It is

1/2  m x  dot  square  +  y  dot  square  and minus  the  potential  energy.  What  is  the

potential  energy  here?  That  is  minus  of  mgy.  Remember  y  points  down.  So  the

potential energy is –mgy. Now write this in terms of the generalized coordinate theta.

So that would be 1/2 m and this would give you f dot square plus 2 times l times cos

theta f dot theta dot plus I would get l square cos square term as a coefficient of theta

dot square which is coming from here and l square sin square theta coming from the

second equation. We can immediately see that this adds to l square theta dot square.

And plus mg times l cos theta, okay. Now let me do steps one by one.
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First thing we will calculate these del l/del theta dot. Del l/del theta dot is nothing but

remember f is independent of that dot. So the first term will go away. Then we get m,

so that  would be  ml  cos  theta  into  f  dot.  That  is  coming from here.  You take  a

derivative with respect to theta dot and you would get the coefficient and plus m l

square theta dot okay.

This is one term and when you take a time derivative of this, so d/dt (del l/del theta

dot) this will give us d/dt of ml square theta dot plus so I will immediately simplify it

here itself. It will be ml square theta double dot plus now I will get two terms there.

Remember you have, this is the total time derivative. That means I must do ml cos

theta times f double dot and plus it will be ml minus sin theta into f dot and theta dot



okay. And also look at del l/del theta.

Remember now theta appears in several places. So in the Lagrangian theta appears

here and theta appears here. So you get two terms there. So I will get the derivative of

this will be mlf dot theta dot into –sin theta – mgl sin theta. And when you equate

these two, this term here cancels with this term. That leaves us with ml square theta

double dot plus, so I will take this to the other side.

So mgl sin theta and this will be equal to –ml cos theta into f double dot. And then

you will see we get the final equation which is theta double dot + g/l sin theta = - f

double dot by l cos theta. This is the equation we had derived earlier and remember

the amount of work that we had to do but with the Lagrangian this becomes very easy.

So you see we obtained these equations very quickly from the Lagrangian.

And this is a great utility of the Lagrangian mechanics.  I am going to look at the

detailed  examples  of  the  Lagrangian  mechanics  and how we extend it  to  include

dissipation or even velocity dependent forces. Remember velocity dependent forces

are important. Magnetic force is velocity dependent force. So those forces are also

important. So all that extension including applications I am going to do in third week.

In the second week what we will do is we will derive the Lagrangian equations but

from  a  more  aesthetically  pleasing,  more  elegant  principle  called  as  Hamilton’s

principle.


