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Generalized Coordinates, Configuration Space

In the last section we looked at some examples of constraint systems and we also

looked  at  the  classification  of  constraints.  Now  in  this  section  we  are  going  to

introduce the notion of configuration space and generalized coordinates. This use of

configuration  space  and  generalized  coordinates  is  a  new  way  in  which  we  will

represent our motion which we will be using in Lagrangian mechanics, okay.
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Now consider a mechanical system with n particles whose position vectors are given

by r1 vector up to r N vector. And the corresponding coordinates are given by x 1, y

1, z 1 and similarly all  the way up to x N, y N, and z N, okay. So there are 3N

coorodinates. And I will denote small n which is 3N and this is in fact number of

degrees of freedom of the system.

Now what we are going to do is this. We are going to shed this vector notation and we

are going to stick to only coordinate form. This facilitates again in the Lagrangian

mechanics. Now it would be useful if I instead of using x 1, y 1, z 1 kind of notation,

if  I  use the same letter  for  all  coordinates  that  would be of  course nicer  and the

equation of motion becomes very compact.



So and then we relabel or redefine new labels as u 1 as x1, u 2 as y 1, u 3 as z 1 and

then u 4 is your x 2 and so on. So finally your u n becomes z of capital N. So z

coordinate of the last particle. So there are 3N coordinates which I will put it in the

ntuplet as u 1 to u n, okay. So the relabeling of the coordinates as u 1 to u n represents

all the locations of all the particles.

Basically  gives  you all  the coordinates  of  the all  the  particles.  Now by the  word

configuration  what  I  really  mean  is  if  I  know the  location  of  each  one  of  those

particles then of course I know the configuration of  the system, okay. And the entire

information of this configuration is in fact included in this ntuplet there.

So instead of thinking of the motion of N particles in three dimensions now I am

going to think of a small n dimensional space that is basically 3N dimensional space.

So I will define a 3N dimensional space written as R n. This is basically collection of

all  these ntuplets.  So where each u i  is  basically  a  real  number.  Now we have a

physical world which is 3 dimensional.

And now I have this n dimensional space which is a abstract space and this space we

are going to call it as configuration space. So this is a configuration space of the entire

mechanical system. And now look at it this way. A single point in this n dimensional

space actually represents a configuration of the system. That means a single point

there has the information about all the particles or locations of all the particles in your

physical world.

And as these particles move in the physical world they would be tracing out their own

trajectories. The point in the configuration space also move and it will trace out one

single trajectory, okay. So a trajectory in configuration space which is given by N

functions of the coordinate u 1 as a function of t, u 2 as a function of t and so on, u n

as a function of t. So this is the motion of point in the configuration space.

And this in fact tells you about all the individual trajectories of all the particles in the

real world. Now we should not become confusing between the two words trajectories.

We have individual trajectories of all the particles in the real world and also we have a



trajectory of the entire system. So remember we will be often using a nomenclature

like this.

A trajectory of the system in configuration space and as opposed to there are of course

trajectories of particles but these trajectories are in real world, so in physical space,

okay.
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Now, what I am going to do is the trajectory of the system very commonly you will

find in many books is also called as c-trajectory or it is also called as path, both in

configuration space. So let us look at an example. So if i have a system with just one

single particle. It is moving in 3 dimensions. Its degrees of freedom are 3. There are 3

coordinates required.

Now,  what  is  the  configuration  space  for  this.  Oh,  the  physical  world  itself  is  a

configuration space for this particle because there are only 3 coordinates there. So the

minimum  you  know challenging  example  would  be  2  particles.  But  you  see  the

configuration space now is 6 dimensional and then I cannot actually visualize thus in

our 3-dimensional world.

So what I am going to do is I will do one simple example with two particles but both

of them are confined to a physical world which is one dimensional. So both of them

are moving along a real line and here is the configuration.
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So now in this example I have these two particles. There is a blue particle whose

coordinate is say x 1 and a red one whose coordinate is x 2. And of course in our

nomenclature I will  call  this as u 1 and call  this as u 2 and they both are in one

dimensional physical world. So they both are allowed to move along this line here.

Now what is the configuration space here?

Oh, that is going to be two dimensional because now we have a pair of coordinates u

1 and u 2 and such pairs will form a configuration space. The configuration space now

is two dimensional, so we have configuration space shown here on the left side. In

configuration space on the horizontal axis we will plot u 1 and on the vertical axis we

will plot u 2.

And every  point  u  1,  u  2  that  you  are  seeing  here  at  this  moment  are  basically

coordinates. It is a point in two dimensional space but what it actually means is that

the blue ball is at location u 1 and the red ball is at location u 2, okay. And as these

particles move in the space the dot or the point in the configuration space also moves.

So if you move these points then the configuration point also moves.

And  if  there  is  a  motion  as  you  can  see  here  then  of  course  the  point  in  the

configuration space will trace out a trajectory. So this here is our c-trajectory or if

there is no confusion I would simply called it as trajectory in configuration space or a

path in configuration space, okay. And individual particles as they move on the one



dimensional plane here they of course would have their individual trajectories.

Now, here the motion does not necessarily mean the equation of the curve in the

configuration space. What we mean is this. Let me take one example. Suppose in this

example the particles travel from u 1, u 2 equal to 0, 0 to 1, 1 and the motion is given

by u 1 (t) = u 2 (t) which is equal to t. So this is a uniform motion. The both the

particles are together and they are traveling along the line with uniform speed.

Now the equation of the curve that will be traced in the configuration space is actually

simply so I will call that as equation of curve and not by trajectory that is u 1 is equal

to u 2, okay. And here is another possible trajectory where u 1(t) = u 2(t) = t square.

Or in this case also both the particles remain together. They travel from 0, 0 to 1, 1 at t

is equal to 1.

But  using  this  motion,  this  motion,  and this  motion  even though they have  same

equation of curve or they travel along the same curve in the configuration space their

motions are different. In first case the two particles traveled with uniform speed. In

the other case they start slowly and they pick up speed as they run towards 1, 1 okay.

That  is  because  the  time  dependence  here  is  t  square  instead  of  t  as  in  the  first

example.
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So we will make this distinction between the two cases. The equation of curve in

configuration space is not the trajectory of the particle. Trajectory necessarily has a



time element in it, okay. Now there is a related idea and which of course we will use

later when we go to the Hamiltonian formulation and this idea is what is called as the

state space. So what we have seen here is thus.

It is not just the locations of the particles, but the speed with which they are traveling

or the location of the point  in the configuration space but  speed with which it  is

traveling in the configuration space also matters. So now consider a 2n dimensional

space and I will call this as R 2n and this 2n dimensional space actually contains all

the coordinates. And also all the velocities u 1 dot, u 2 dot, and u n dot, okay.

So all such u i's and u i dot. So this 2n dimensional space is called as state space.

Look, a curve in state space actually gives you a motion. Different curves in state

space means different motion because now the time element is already built into the

state  and  we  already  knew  that  the  Newtonian  equations  were  second  order

differential equations and that means if I give you a position and the velocity of each

one of these particles the trajectory is predetermined according to the Newton's laws.

So now here these 2n coordinates which include position velocities is actually called

as state of the system as opposed to configuration of the system. And why does not it

depend, why cannot we extend this to x double dot? See in the Newtonian mechanics

the accelerations are not free variables. The forces in the system, they are actually

predetermined x double dot.

So there is no freedom in choosing x double dot. So state space here is actually just 2n

dimensional including positions and their velocities. So now here even in this motion

of configuration space what we have done is thus. I have just taken the Cartesian

coordinates and relabeled them by new single scheme say u 1, u 2 up to u n and

plotted them as a point in n dimensional space.

But all these coordinates in configuration space, they actually refer to the coordinates

of individual particles. Now when we are dealing with one particle, say in a particle

moving in a plane. Typically if I use Cartesian coordinates and denote them by x and

y, it is very common for us to make a change of variable to plane polar coordinates

which is R n theta, okay.



And when you make these coordinate transformation from x y to R theta then we of

course have to rewrite the equations of motions. Now the first set x y and second set R

theta both still refer to coordinates of the particle. Now look at it this way. If I have a

configuration space, in the configuration space like in the previous example I have my

configuration space was 2 dimension. One continent was u 1. The coordinate was u 2.

If I make a change of coordinates in configuration space, see now what will happen.

Now the coordinates of the individual particles will get mixed and the resulting new

coordinates oh they may not be referring to the coordinates of any individual particle.

Now this notion is called as using generalized coordinates. Say in the next section I

will describe the use of generalized coordinates.
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Now, in the previous example where we had two particles which were moving along a

straight line, along straight line and the coordinate of one of the particle was called u

1, coordinate of the other particle was called u 2 and then you have a configuration

space and configuration space is 2 dimensional with one coordinate is u 1. The other

coordinate is u 2. Now, this is just a 2 dimensional plane with 2 axes.

One  marked  as  u  1,  the  other  marked  as  u  2.  Why  cannot  I  make  a  change  of

coordinates here? For example I can change the coordinate axes to something like this

and call this as axis q 1 and call this as axis q 2. And the transformation between and

this is of course a linear transformation from u 1, u 2 to q 1, q 2. Now q 1 can be



written as u 1 + u 2 / 2 and I will write q 2 as u 2 – u 1.

Now see the two new coordinates q1, q 2, do they give me the configuration of the

system? Oh of course yes. Because I can take these two new coordinates q 1 and q 2

and I uniquely get u 1, u 2 or the inverse transformations we can immediately write as

u 1 which is equal to q 1 – q 2/2 and u 2 is q 1+ q 2/2. So given q 1, q 2 I get unique u

1, u 2 and u 1, u 2 is nothing but the configuration of the system.

 So I  am allowed to  do such a  coordinate  transformation.  But  look at  these  two

coordinates. This q 1 and q 2. Now q 1 and q 2 do not refer to the coordinate of any of

these particles. But of course we can interpret them. What is q 1, q 1 actually gives me

the centre of mass. Of course and assuming that the two masses are equal the centre of

mass of the system and q 2 here gives me the separation between second ball or u 2

and u 1.

So these new coordinates q 1, q 2 they do not refer to the actual coordinates of the

particles. But of course they contain the entire information. This set q1, q 2 are called

as generalized coordinates of the system. And then there is no really end to what kind

of transformations you can do.
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Your  transformations  need  not  be  linear  transformations.  You  can  do  non-linear

transformations. For example I can write s 1 as u 1 square + u 2 square to the power

half and I will write s 2  as tan inverse of u 2/u 1. And what would be meaning of s 1



and s 2. That would be slightly harder to interpret but thing to remember is even these

two coordinates they contain the information about the configuration of the system.

So  in  the  configuration  space  you  could  use  any  set  of  coordinates  and  those

coordinates will not necessarily refer to the actual coordinates of the particle and such

coordinates are called as generalized coordinates of the system, okay. I will give you

one more example.
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So in another example,  this we do very commonly so in this case in the physical

world I have two particles. For simplicity we will take masses to be equal. So both

masses are equal to m 1. And the coordinates of this one particle are given by x 1 and

y 1. The coordinates of the second particle are given by x 2, y 2. And one set of

coordinates, so basically both particles move in two dimensions.

Each one of them have two degrees of freedom. So the system of two particles have 4

degrees of freedom. So degrees of freedom are 4. So your configuration space is also

4 dimensional. Of course, I would not be able to show you the four dimensional space

on the paper but that is okay. Now which coordinates we will use. It is very common

to use coordinates instead of x 1, x 2; y 1, y 2.

We can of course use and this is a very common choice is to use coordinates like X

centre of mass, Y centre of mass and are r and theta. Now I will describe these. So the

centre of mass here will lie somewhere in between halfway through between m 1 and



m 2. This centre of mass has two coordinates X cm and Y cm. The coordinate r is

basically separation or the distance between the two masses.

And what is the angle theta? Theta can be chosen to be the angle that the separation

vector, angle between separation vector and x axis. And this of course you see neither

of these 4 coordinates X center of mass, Y center of mass, r or theta, they actually

refer to coordinates of any individual particles. The all the coordinates are not just

linearly but non-linearly involved in these 4 coordinates there.

So what we actually  have here is some sort  of a coordinate  transformation which

relates these two sets and this is of course the most common and most popular choice

of generalized coordinates for this problem and it will also become very clear why we

have this, why we choose these coordinates.
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So let me make this formal, okay. So start by saying that you have a configuration

space of a system which is n dimensional and the coordinates are given by u 1 to u n.

So this is one set of coordinates and we can now make a transformation to another set

of coordinates which I will call as q 1. So second set q 1 to q n. And of course the

coordinate transformations are given by so for each i q i must be some function of u 1

to u n and also probably t. I will add that.

This will become clear later or if you recall many times we go to accelerated frames.

Common example being rotating frames in which case the new coordinates actually



explicitly  depend  on time.  So each  coordinate  q  i  must  be  some function  of  the

coordinates  u  1  to  u  n  and  time  t.  So  this  is  for  all,  okay.  Now  any  arbitrary

transformation of course will not work.

The  conditions  for  the  transformation  to  be  a  valid  transformation  are  (i)  the

transformation,  so the  mappings,  by mapping I  mean this  is  one to  one  and also

invertible.  So that  unique point,  a  point  is  specified  by unique  set  of  generalized

coordinates. Also, we will insist that the mappings or the transformation functions are

sufficiently differentiable. That is they are smooth functions.

They are smooth functions and finally that the Jacobian which is defined as J which is

equal to determinant of matrix formed by del f i del u j. This must be non zero. This is

of course actually a necessary condition for the first condition there, okay. And in that

case we say we have transformed the coordinates to generalized coordinates q 1 to q i.

And now this of course even though this transformation use the new set of coordinates

which probably are useful in solving problems. But it still does not introduce any new

ideas here. You just had a n-dimensional configuration space which had Cartesian

coordinates  to  begin  with  and  you  made  a  transformation  or  we  made  the

transformation to new set of coordinates.

But when there are constraints in the system then of course something new happens.

Constraint means now the point in the configuration space cannot go everywhere in

the configuration space. Its motion is now restricted to some sub region or sub region

of the entire configuration space. This is the idea that we will see in the next section.

Okay, now what we want to do is this.

We are going to consider constrained systems and then look at how the configuration

space  looks  like  in  the  constrained  systems.  You  see  in  constrained  systems  the

particles or their motion is restricted in some way. Now that also means that the point

in the configuration space will not be able to go everywhere but the motion of that

point is also restricted in some way.

And  in  this  particular  section  I  will  only  focus  on  holonomic  constraints.  The



holonomic constraints remember they come in a nice equality.
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So  if  we  have  a  system  with  N  particles  with  configuration  space  which  is  3N

dimensional or the later we have been using is small n. Now what we have in the form

of constraint is an equation which is a function of the coordinates and probably time t

and this is what we call a holonomic constraint. Now what is the effect of holonomic

constraint on the motion of the point in configuration space is what we want to see. I

will start with just one particle first.

So in the first example consider a particle which is constrained to move on a spherical

surface. So in 3 dimensions the constraint equation for a particle whose coordinates

are given by x, y, z the constraint equation is x square + y square + z square is equal

to some R square. Now each holonomic constraint like this gives you a surface in 3

dimensions.

And  when  I  say  surface  what  we  really  mean  is  a  2  dimensional  surface  in  3

dimensional space. And when we say a 2 dimensional space what we really mean is

thus. So in this case too the surface here is actually not like a plane but it is a curved

surface. And its dimensionality is two, by that what we mean is thus. If you take a

point  and  its  neighborhood  and  approximated  by  a  plane  surface,  then  it  is  2

dimensional.

Which means imagine a situation like we are on the earth. We are constrained to



move on the surface of the earth but in our local domain it seems like we are only

moving on a plane surface. So in the neighborhood of each point or the neighborhood

of each point can be approximated by a 2 dimensional plane. That is why we call the

surface as 2 dimensional surface.

In the mathematical term this is called as a manifold. But we are not going there yet,

okay. That is a subject of differential  calculus but we do not want to employ that

language in this course. So here the particle will be confined to move on a surface of

the sphere. Now all that we know is that on the surface of this sphere each point can

be categorized or specified by 2 coordinates. You can use coordinates like x and y.

But  there  is  a  little  bit  of  problem there  because once we give  x and y can you

uniquely determine z or in this case actually you cannot because z will be either plus

or minus square root of R square - x square - y square. So we cannot determine z

uniquely. Which coordinate system? Of course all of us know that it is going to be

spherical coordinate system.

In spherical coordinate system, r, theta, phi. Now the same constraint, this constraint

here will actually look like r = R. And that means the points on the surface of this

sphere can be uniquely specified by 2 coordinates theta and phi. And does this theta

phi contain the information about the configuration of the system? Of course it does

because we already know that if I know theta and phi I can get x as R cos phi sin

theta.

Similarly y is R sin phi sin theta and z is R cos theta. So all that you really need

because we had one holonomic constraint the motion of the point in the configuration

space is the restricted now to a two dimensional surface. And on two dimensional

surface I need to find one coordinate system which uniquely determines each point.

And in this case that turns out to be theta and phi.
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So one holonomic constraint reduces one degree of freedom and which also means the

number  of  coordinates  required,  number  of  generalized  coordinates  required  to

specify the configuration of the system is also reduced by one. So in this case the

original degrees of freedom without constraints were 3. Then degrees of freedom with

constraint is 2. And of course number of generalized coordinates is also equal to 2.

Now what I am going to do is this. I am going to add one more constraint to this

problem. So if I add one more constraint, so in addition to the existing constraint, so

the first constraint was x square + y square + z square = R square. Let us add one

more constraint to this. Say x + y + z = 0. Now what does the second constraint do? If

there was no first constraint, the second constraint also gives you a plane surface.

In this case of course it is a plane passing through the origin. And if I did not have

first constraint I just have the second constraint, the particle will be confined to move

on the surface of the plane. How many coordinates are required. Or in this case of

course you need just two coordinates because given x and y I can actually uniquely

determine the z coordinate, okay. But anyway in this case x, y suffices.

In the first case we needed theta and phi. But what if the system is constrained by both

these constraints simultaneously? Then of course the particle is forced to move on a

intersection of the plane and the sphere. So the first constraint defines a surface of a

sphere. The second constraint define a plane. The intersection of these two will be a

circle. So circular path is intersection of the sphere and the plane.



And now the particle will be confined to move on this line which is circular. So what

has happened? Now your accessible or accessible region in the configuration space is

just one dimensional. Again why would I call it one dimensional? Because all I need

or if you look at a neighborhood of a point then it can be approximated by a line

segment.

So the number of degrees of freedom now, originally it was 3 but degrees of freedom

with  constraints  is  now just  1  which  is  actually  3  minus,  so  original  degrees  of

freedom minus the number of holonomic constraints in the system. And this is the

idea that we will take over to arbitrary configuration spaces.

So if you have n dimensional configuration space and if you have one holonomic

constraint,  this  holonomic  constraint  will  define  a hyper  surface in  n dimensional

space and the dimensionality of that hyper surface will be n-1. Now you have one

more constraint which is also holonomic that defines another n-1 dimensional surface

and the intersection of these two will be a n-2 dimensional surface.

So when we use the word surface,  we actually  mean hyper  surface  in the  higher

dimensions, not just the ordinary two dimensional surface, okay. So what I will do is

I will take several examples from this point onwards. In fact if I want to show you a

configuration space then of course I should stay with just one degree of freedom or 2

degrees of freedom or 3 degrees of freedom which I can actually draw and show it

you.

But  with  these  examples  we  will  be  able  to  visualize  the  abstract  n-dimensional

spaces and the hyper surfaces in those. So here is my first example.
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So simple pendulum. This is a pendulum with length l. The bob is connected to the

suspension point by a rigid wire.  So here the original degrees of freedom without

constant are 2 and the coordinates used are x and y. Number of holonomic constraints

is 1 and that is given by x square + y square = l square. Then the dimensionality of the

accessible region in the configuration space is one.

So degrees of freedom with constraint is just one. So the coordinate that we will use is

in fact the generalized that we will use here is theta and that is x is R cos theta and y is

equal to R sin theta. Now the question that we ask is this. So here of course it is one

particle moving in two dimensions. The configuration space without constraint is just

the plane, xy plane.

Once  you  put  the  constraint,  now  the  particle  cannot  visit  every  point  of  the

configuration space. It has to stay on the circle. But then the question we would ask is

this. The manifold or the accessible surface here is one dimensional but it is not like a

straight line. But it is like a circle. So here another consideration that goes into the

accessible configuration space is that the geometry is like a circle.
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Let me take another example.  This is  our Atwood’s machine which we discussed

earlier. So there is a pulley which is suspended and there is a mass one and there is a

second mass here. And the coordinates  that we will use is y 1 and y 2 for this. And

here of course there is one constraint. So there is one holonomic constraint which is y

1+ y 2 is equal to constant which means our configuration space is actually now one

dimensional.

Originally it was two dimensional with two coordinates y 1 and y 2 but now it is one

dimension and I can either use y 1 or y 2 but notice that the geometry of if I use y 1

then  the  coordinate  y  1  varies  between  0  and  some maximum length  l.  And  the

geometry of this one is that of a line segment.
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The third example is a double pendulum. Here we have one pendulum and the second

pendulum is connected to the first one. So let us say this length is l 1, this length is l 2

and this angle here is theta 1, this angle here is theta 2. The number of, there are two

masses moving in two dimensions. Without constraint, the configuration space would

have been 4 dimensional.

With constraint now the number of degrees of freedom are just two because there are

two holonomic constraints here. One is the length of the first pendulum is l 1 and the

length  of  the  second  pendulum  is  l  2.  So  the  coordinates  which  we  will  use,

coordinates which we will use are theta 1 and theta 2. And we can of course get all the

coordinates of the particles from theta 1.

So x would be sin theta 1, y 1 would be equal to l 1 cos theta 1 and x 2 is x 1 + l 2 sin

theta 2 and y 2 is equal to y 1 + l 2 cos theta 2. But then the question we want to ask is

this. What is the geometry of the accessible surface in the configuration space. So

theta 1 variable here goes from 0 to 2 pi and theta 2 also goes from 0 to 2 pi, okay. I

could of course plot these in 2 dimensional plane.

I can plot theta 1 on this axis and theta 2 on this axis. And the accessible region here

is between 0 and 2 pi for theta 1 variable and 0 and 2 pi for theta 2 variable okay. This

is the accessible region of the configuration space. But you see the geometry is like

this. In this case, theta is equal to 0 or theta 1 is equal to 0 and theta 1 is equal to 2 pi.

These 2 points are not different from each other.

So the entire line here and this line here of the configuration space are same. So what

I am going to do is in fact fold this plain region and join theta 1 is equal to 0 line to

theta 1 is equal 2 pi line. What does that make? That makes it into a cylinder. And

then we realize that same thing is true for theta 2 also. So what I need to do is take the

cylinder and the lower circle of the cylinder must match with the upper.

So you fold the entire cylinder to make it into a torus. So the geometry of this system

with the constraint is like a torus. And this makes it lot more interesting. Now the

geometry  here is,  remember  this  torus  is  actually  embedded in the 4 dimensional

configuration  space  for  the  system.  The  4  dimensional  configuration  space  was



unconstrained system. Once we put the constraint, now the point which represents the

system can only travel on this torus here. So the geometry is that of a torus. I will take

one more example and then we will complete this section here.
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In the third example of a dumbbell.  So you have a dumbbell  with 2 masses.  The

separation between them is given by variable r and the angle this dumbbell makes

with horizontal axis is given by theta. And this of course the dumbbell is free to move

in your physical 2 dimensional world whose coordinates are marked as x and y.

Now, there is one constraint in the system that is the separation between the 2 masses

is constant. So the constraint here is r is equal to constant, okay. Let us mark this as d.

And remember the generalized coordinates for unconstrained system. We considered

this  dumbbell  example  earlier  and  the  generalized  coordinates  which  were  most

common were Y center of mass, r, and theta. This was for unconstrained system.

But  now  I  have  one  constraint  which  is  r  is  equal  to  constant.  That  means  the

accessible space here is X cm, Y cm, and theta. And I can of course plot this in 3

dimensional space where I will use, so the configuration space here will look like this.

I can plot x on one axis, y on the other axis and then theta I can plot on the third axis.

But remember theta takes values only from 0 to 2 pi.

And what must happen here? Theta is equal to 0 plane which is x y plane is also same

as the theta is equal to 2 pi plane. And somehow I must sort of fold this together to



join  theta  is  equal  to  0  plane  and  theta  is  equal  to  2  pi  plane.  Of  course  in  3

dimensional pictures here, I would not be able to show you that. But what will it

really make? It makes some kind of a hyper-cylinder in 4 dimensional space, okay.

However, for the purpose of you know depiction, I could actually stay with simple

diagram like this in 3 dimension itself and remember every time I am tracing out the

trajectory of the system, as the dumbbell rotates the trajectory moves upward in the

theta direction and when it completes one rotation by 2 pi it actually exists from here

and jumps back into the theta is equal to 0 plane.

So this is another way in which we can visualize the configuration space here. So this

sort of summarizes this section. When you have N particles, you have 3N dimensional

configuration space. But if there are constraints, if there are k constraints which are

holonomic then each of these constraint can be used to eliminate one of the variables.
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And  so  in  the  summary  for  N  particles  with  k  holonomic  constraints  the

dimensionality of the accessible configuration space is reduced to 3N – k. So with

constraints, degrees of freedom reduced to 3N – k. And somehow we should be able

to find 3N – k generalized coordinates. So sum q 1 to q m which uniquely determine

points on the accessible surface. These are called as generalized coordinates.

The same name generalized coordinates for constrained system, okay. So in the next

section, I will now start using the idea that the normal forces in the system which



actually  give  rise  to  holonomic  constraints,  they  are  perpendicular  to  the  surface,

accessible  surface  of  the  configuration  space  and  hence  those  forces,  constrained

forces  will  not  do  any  work.  And  then  we  will  take  one  more  step  towards  the

obtaining Lagrange equation, okay.


