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So, here we are going to look at the last chapter a ah simulation chapter on molecular dynamics

we have already looked at one of them called the Monte Carlo and this is the other one that we

see called as a molecular dynamics.

(Refer Slide Time: 00:45)

So, let us give a short introduction of what molecular  dynamics is and how the simulation

etcetera are carried out what is it based on what are the pitfalls and what are the advantages and

so on. And we have already said this first slide has is just for repetition and to remind you that

why simulations are important. The computer simulations are of course carried out with the

expectation of understanding properties of molecules or a large number of particles which are

interacting with each other via macroscopic you know interactions between them ok.

So, they are talking to each other or they are interacting with each other by certain a potential

the potential  the form of the potential  or the force involved will have to be decided by the

nature of the system or this nature of the particles. If you are talking about an atomic system

there will be some kind of force. So, if you are talking about molecular system you are talking



about a different kind of force and if you are talking about matching with the spectroscopic data

then we might really need another kind of force and so on okay.

In either of these cases we may have an external field that is present or an external potential that

could be present it is not necessary for that in fact we would leave it out of our discussion of

having a an external field or a potential to be present but nevertheless it could be there and it

does not harm the ah simulations in any way. This serves as a complement to conventional

experiments  which  we  have  discussed  at  length  that  sometimes  the  performing  the  real

experiments  can  become  very  hazardous  and  can  become  very  expensive  in  terms  of  the

resource the computer resources or the manpower that is involved.

Or it could be you know also very expensive in terms of the time which could take you know

even months and years of simulation in order to find a certain conclusion for a for a given

problem. Whereas this these experiments the computer experiments can be performed without

having us to spend that much of time and the results also can be analyzed in a you know within

a reasonable time.

The  simulations  are  likely  to  yield  something  new  what  I  mean  is  that  sometimes  some

correlations  sometimes  some  physical  properties  which  are  not  directly  achievable  in

experiments so that with simulations have a lot of value. And we have seen that earlier having

seen Monte Carlo so why do you want to see molecular dynamics.
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And the reason being that the simulation methodologies usually come in two flavours one being

the stochastic and the other is the deterministic. So, the stochastic modelling that presents data

and predicts outcome with certain levels of unpredictability or randomness we have seen this

we have taken a set of data points which are taken from a known distribution but random points

these are random points being taken.

And if you take all the random points with equal probability then we see that it is a normal

distribution or rather crude Monte Carlo. Whereas if we take them with certain you know bias

however the bias actually goes away as the number of points become too large and these are

seen in the Monte Carlo technique, that we have seen and the Monte Carlo technique actually

falls in this category of stochastic modelling.

So,  this  is  one  word  that  we  are  coming  across  which  we  have  not  mentioned  this  is  to

distinguish what we are going to learn here on the deterministic modelling that is another class

which is the same exact results for a particular set of inputs. And no matter how many times one

actually calculates the model. So, you are going to get the same set of you know output every

time you give the same inputs and that is all the case with a stochastic modelling.

You are likely to get a different slightly different maybe and there is an unpredictability for the

Monte Carlo technique this is called as the molecular dynamics. The molecular dynamics fall

into this category. So, what our MD simulations so Monte Carlo is abbreviated as MD and this

is done everywhere. So, it is MD simulations is a very common colloquial word used in this

particular context.

So, the basic idea of MD is to explore the behaviour of a physical system by computing with

significant accuracy the trajectories of individual particles constituting the system. So, you have

a large number of particles and these particles are interacting with each other’s through certain

potential okay which could be Coulomb potential which could be some other kind of potential

as I said that one can have an external field which or an external potential.
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But that could be you know sort of skipped at this moment. In the course of the computation

relevant information about the system is accumulated okay. So, the particles are moving they

are not stationary they are made to evolve according to certain equations of motion. Now these

equations of motion are to be solved pertaining to certain you know conditions or boundary

conditions as we have learned and these differential equations will give us finally the trajectory

of the particle of the system rather which is a set of particles not a single particle.

But a set of particles which have an interaction between them previously for studying these

other you know the initial value and the boundary value problem we have always talked about

one particle or one you know sort of entity of the system. And wanted to see that how it evolves

with time. Here we in addition to that we have a large number of particles and these particles

are interacting with each other.

So,  we  want  these  information  to  be  calculated  as  physical  quantities  which  come out  as

statistical  averages  along  that  trajectory  okay. So,  the  formal  basis  of  why MD works  for

different problems of statistical mechanics is the what is called as the Ergodic hypothesis. This

is a concept that is very common or fundamental to statistical mechanics. So what it says is that

the ensemble average of a system is same as the time average.

So a time average can be actually replaced by the ensemble average let us see what we mean by

that, suppose you have a gas an ideal gas which has is in a volume say which is there are these

particles constituting the gas and there is a certain a pressure volume and temperature of the gas



and the pressure occurs because these molecules of the gas is continuously exerting pressure or

colliding with the walls of these irregular shaped boundary that we have considered.

And volume is the volume of these regular irregular shape boundary that we are talking about

and temperature comes out because of the kinetic energy of the molecules okay. So, this is the

equal partition theorem says that per harmonic degree of freedom the kinetic energy or the

energy total energy is per degree of freedom is at thermal equilibrium equal to half KT. 

Now the particles of the gas are of course moving and they are interacting with each other they

could be interacting via some really complicated potentials or they could only be interacting

with each other when the meet that is they sort of move or flow as non-interacting particles and

then they sort of undergo a solid sphere or a hard on collision elastic collision. And then they

change their directions and sort of this is you know goes on in the system.

So  as  the  system  you  wait  for  the  system  to  evolve  the  system  comes  with  a  different

configuration if we are able to you know identify the molecules or the atoms constituting this

gas  somehow  by  either  colouring  them  or  naming  them.  Then  we  will  find  a  different

configuration at every different instant of time in which case the pressure volume temperature

etcetera or other physical parameters they would be functions of time.

And this is what again goes against the spirit of a equilibrium stack make where we actually

when we talk about a pressure or a volume or our temperature these are often the or rather these

are always the equilibrium quantities and they do not depend on time. Now in order to have

these that then cannot be we cannot quote things which are functions of time yet we want their

equilibrium values.

So this Ergodic hypothesis is proposed where it says that let me make several mental copies of

this  system  so  this  is  the  system  of  an  ideal  gas  at  a  given  some  pressure  volume  and

temperature and so on. So, if I make several mental copies of this gas and say that and they are

called as ensembles. So, that we understand that as time progresses if we make really large

number  of  these  ensembles  then  the  gas  or  rather  the  system  would  actually  visit  some

ensemble or the other during its course of evolution okay.



So which means that we are making an assumption that our system is actually travel cursing or

visiting all these different ensembles or the mental copies that we have made of the system in

our mind. And then if we wait for long enough and kind of assume that the system has visited

all the mental copies or the ensemble then instead of taking a time average we can take an

ensemble average.

So, taking a time average and ensemble average would be same and we would get you know by

taking this ensemble average we would get the equilibrium properties of the system and then

there is no time dependence.  So, this is called as Ergodic hypothesis. And the Monte Carlo

simulations they crucially depend upon this hypothesis. So, as I said that that instead of time

averages over very long paths the ensemble average for different physical quantities are done

okay.
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Here we shall really study at the most rudimentary version of this MD simulation because it is

not a really a specialized course it says a course which gives you an overview of the different

numerical techniques.  So, will  restrict  ourselves to constant energy and constant number of

particles and ah if you are aware of statistical mechanics. So, if you have learned statistical

mechanics at the undergraduate level then you know that this corresponds to what is called as a

micro canonical ensemble.

And in a canonical  ensemble the system is actually  if  it  is put in a thermal  contact  with a

temperature bath. Temperature bath is an object which even if you or that is in contact with the

when it is in contact with the system ah the system can exchange energy with the bath the



temperature of the bath does not change but and the finally the system comes in equilibrium

with the bath by exchanging energy okay. 

And this  is  called  canonical  ensemble  and  when you also  x  relaxed  the  colour  trained  of

keeping the number of particles to be same that is called as a grand canonical ensemble alright.

So, I just give you an example to say this room is very big and I have a cup of tea in the on my

on my table and I would not drink it. But since it is a little hot I cannot immediately drink it or

all of it and I keep it on the table.

Now the as I as a time progresses the tea will get become colder and colder but the temperature

of the room does not rise. So, the whole room is like a temperature bath and the tea is like our

system which is which could be an ideal gas and so on. So, these are some ensembles that one

talks about as I told that the three of them one is called as a micro canonical which is already

said and then we can have a canonical ensemble which talks about exchange of energy and

there is also a grand canonical ensemble which talks about exchange of the number of particles

all right.

So we will restrict ourselves to the simplest case which is for a given you know energy so the

energy is same the number of particles is same there is no bath. So, the system cannot exchange

energy with a bath so it is an isolated system so to say.

(Refer Slide Time: 15:43)

Once again we reiterate that this is really very rudimentary introduction of the subject and there

are lots of specialized references not only the five that I have listed but very large number of



them and one can go through this if one is interested or one takes it up for further specialized

studies. They are these Rapaport's book on the art of molecular dynamic simulations or Hale on

the molecular dynamic simulation again Frankel and Smit understanding molecular simulations.

Maitland Et al, on the intermolecular forces of origin and determination and Deuflhard on the

computational molecular dynamics challenges methods and ideas ok.

So these are very brief introduction of the subject now let us get into the details or rather the

technical details of this particular topic of molecular dynamics.

(Refer Slide Time: 16:44)

So, what we have to solve is what are called as the equations of motion. So, we need to generate

trajectories for a given system of particles and in short this called as a EOM. So, the MD aims

to numerically  integrate  the equation of motion of N interacting particles.  So,  this  EOM is

written as m i d2 r i dt2 equal to F i where i equal to 1 to n, now remember this is called as a

Newton's equation of motion all of you are familiar with right from you know maybe class 6th

or 7th or 8th maybe.

However it is not the only equation of motion that we know we have Lagrange's equation of

motion, we have Hamilton's equation of motion and so on. Lagrange's equation of motion is the

second-order whereas the Hamilton's equation of motion is a first-order equation. So, anything

would do but we are mostly familiar with this so we are starting with this as a equation of

motion and we have N particles capital n is a number of particles.



So let us just remind you saying that the Lagrange's EOM and Hamilton's EOM are possible.

So, if I depends on the positions of the particle it can depend upon other things but let us just

talk about only positions of the particle and ignore velocity dependent forces. So, when you

have velocity dependent forces when you have a damping term or if you are talking about a

charged particle in an electromagnetic field that also has potential or rather the force of course

depends upon velocity.

And so there are complications there so we ignore these velocity dependent forces. And so these

are the positions of the particles are given by r 1 r 2 and r n. And third is that assume no

external forces are acting on the system okay. So, these are the main feature of what we want to

do so this is the equation that we want to solve and as I said that this could have been solved

even otherwise by in the spirit of solving just a differential equation.

But now imagine that there are these interacting particles and this interaction has to be taken

into account okay. 

(Refer Slide Time: 21:04)

So, we can talk about different kind of potential  and a few potentials  that we are going to

consider is the following which is mostly therefore you know molecular interactions. So, one is

called as so one is called as a Lennard-Jones potential and for charged particles one can have a

Coulomb potential  and you know the vibrational spectra of atoms they can be described by

what is called as a Morse potential okay. We will see briefly what they are mostly going to talk

about Lennard-Jones potential.
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So, let us write down Lennard-Jones potential, so I consider a system of particles interacting

with each other via Lennard-Jones potential. So, V r1 r2 r3 etc r n is takes a form where i equal

to 1 to N j equal to 1 to N -1 just leaving that one particle and then there is a V r ij and where V

r ij takes a form 4 epsilon this is very conventional to write it this way it is a sigma by r ij 12 -

sigma by r ij 6 and this called as a 612 potential because of these powers 6 and 12 where r ij it

is equal to ri – rj, so, that is the distance between i and j it only depends on the distance and not

individually on this ri and rj.

And so they denote the distance or magnitude of the distance i and j and so if you actually plot

this it takes a form as more like it so this is your V of r and this is r so I am writing that ri - rj

for a moment as r so this one is written as r. And so this is the form so what it says is that it is

very strongly repulsive at short distances and very weakly attractive at large distances okay. So,

there is the form of the potential and this is the distance the unit of distance is Sigma and this is

a particular point we will find out what this write down this as something like a sigma star or

some such notation that is given here.

This has a depth of epsilon where epsilon is the one that you it appears that the as a coefficient

of these bracketed term. So, there is 4 epsilon, so this is the that and this is the distance r so at

as r goes to 0 as the to you know molecules they come very close to each other there is an

enormous you know repulsion and as they go away from each other there is a weak very weak

attraction.  And  this  attraction  asymptotically  vanishes  when  the  distance  between  the  two

molecules that become very large. So let us see some features of these potential.
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So, let us just write it as LJ, so LJ potential then are chose so it has a pairwise additive form

what we mean is the following that there are two sums i and j and this is pairwise additive and

so these two additions  are  referred to as being pairwise additive.  So,  it  depends on all  the

positions of the particles only through N into N - 1 by 2. So, there are you are summing over

really n of those particles a pairwise distance.

So, these are number of pairwise distances ri - rj which is of course equal to r ij okay you know

the sum of N numbers is N into N - 1 by 2 and so these are n particles so they this form of the

potential depends upon these number of these many number of N into N - 1 by 2 numbers of

pairwise  distances  it  obeys  translational  and  rotational  invariances  okay.  For  any  pair  of

particles why translational because it is ri - rj and because it is a magnitude even its rotationally

invariant okay.

So, even if you rotate the system then it does not matter because it is just the magnitude of the

distance. so there is no angle involved etcetera. For any pair of particles the potential has a

shallow we have not of course quiet  shown it as shallow but it is a shallow minimum at a

distance Sigma star which is equal to 2 to the power 1 by 6 Sigma which is equal to 1.122

Sigma. So, this is the equilibrium distance of this so this is called as the equilibrium distance.

And this has a value which is 1.1 to 2 times this of course shown it with a lot of you know over-

exaggerated it but this is not too far away from this and it is a very shallow potential which you

have shown it as a lot of depth because of to show these distance and all that, 5 is for distances



lesser than the interaction is sharply repulsive and for Sigma to be greater than Sigma star the

interaction is weakly repulsive sorry weakly attractive.

So very important thing here is that the energy and the length scales are 4 epsilon and Sigma

respectively.

(Refer Slide Time: 31:44)

So, let us write down certain values for the noble gases this is an example. So, gas, so this is

helium, neon, argon, Krypton and xenon okay. This is epsilon in Kelvin this is Sigma star in

Angstrom and this is m this is in not in grams this is in mu and finally the density which is in

gram per cc okay. So, this is 10.80 this is 36.68 this is 120.0, 171.0, 221.0 where the Sigma

stars in angstrom are 2.57, 2.79, 3.38, 3.6, 4.1.

 

So, it is between 2.52 4.1 in for these cases and the masses are 4.002, 20.180, 39.948, 83.800

and 131.290. Similarly for the densities it is equal to .179 in gram per CC .901 1.984 and 3.740

5.897  okay. So,  it  is  important  to  you  know see  that  for  the  Lennard-Jones  potential  the

corresponding force which is given by let  us call it  f Lj which is equal to - grad Vi or we

decided to you know write it as okay so on a given so this is and this is like r 1 r 2 r n on the ith

particle is given by so let us write that, so let us write Lj here and the i here.

Let us just drop this Lj for the moment and then write this as r 1 r 2 r n and this is equal to j 0

equal to i, so this is not equal to i can be j which is not equal to i equal to 1 to N f r ij and ri - rj

ok where f r ij this is equal to 6 for epsilon by Sigma square 2 Sigma by r ij to the power 14

Sigma by r ij whole to the power 8 and so on okay. 
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So, maybe a note on the units for the simulation so using conventional units for this simulation,

a MD simulation is actually inconvenient because one is that the numbers could be so small or

the so large that it will introduce difficulty for the computers to handle those numbers. And that

is the reason that one has actually come up with natural units for these so we have 4 epsilon is

the unit for energy Sigma for length and m for the mass okay.

And remember that this is the equation of motion that we have talked about so this mass is

important. And so if you are given a simple problem that what is in a LJ potential if 4 epsilon

equal to Sigma equal to m equal to 1 is set so this is are set to 1 what is the unit of time that is

the question okay. So, we have 4 Sigma equal to a sorry not for Sigma is 4 epsilon equal to

Sigma equal to m equal to one and time is then in root over m Sigma square by 4 epsilon.

Let me tell you how because energy has got say we just talked about potential energy which is

MGH so M G is acceleration due to gravity so we will write it as M L T -2 okay because length

by you know it is a meter per second square so it is that is the way it is LT -2 and H is again

length so we are talking about MGH nevertheless even take 1/2 MV square also does not matter

so finally you land up with M L Square t to the power -2 alright.

And we want T so we have a T square here which is equal to ML square by E and so T is equal

to root over ML square by E and this is equal to M is M L square is Sigma square and E is for

epsilon and that is how it is M Sigma square by 4 epsilon.

(Refer Slide Time: 39:55)



Let us quickly look at two more potential so we have Coulomb potential which we are very

familiar with, so if one has charged particles then one for electrostatic charges, we can write

down a Coulomb potential  which is of the form of the V Coulomb rij again for the pair of

particles Qi Qj divided by 4 PI epsilon zero r ij and again r ij it is equal to ri- rj so, again it

depends on the distance between the two particles.

And the Qi and QJ are the electrostatic charges. So, this is a different kind of potential than

what we have already seen it is of course a false off asymptotically and so this is a V Coulomb

ends function of r so it is actually strongly repulsive at short distances and becomes weakly

repulsive at large distances. 

(Refer Slide Time: 42:03)



And let  us also look at  another one called as a Morse potential.  So, it  is important  for the

vibrational spectra of atoms okay. So what happens is that you can have the vibrational spectra

as well from the harmonic oscillator potential. But this is better than the harmonic oscillator

potential in terms of having in an harmonic term so there is an N harmonic term being present

and Morse potential is written as Vr equal to some De 1 - exponential r - re whole square, so r is

the distance between the atoms, re is a equilibrium bond distance, De is the well depth and a

controls the width of the potential.

So one can actually talk about so this is your so this is De which appears as a coefficient of this

term so this is V of r and versus r so see that there is harmonic part there. So, this is re and also

one can get a force constant which is the you know the elastic modulus of the atoms can be

obtained by a Tailor expansion about r equal to re okay. So, these are the different potentials

that one can talk about for which would generate a force field which gives you an interaction

between the particles with their atoms or molecules or something else.

And then one can solve the equations of motion with some conditions and we will see the

details of the solution according to certain algorithm in the next discussion. 


