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So we will see one more example of important sampling in the, in the Monte Carlo technique

that we have learned. And this time we are going to focus on statistical mechanics or statistical

physics. And we will look at phase transitions and we leave out critical fundamental because

that  becomes  too  technical  from  the  physics  perspective.  So,  we  just  talked  about  phase

transitions and how Monte Carlo in aids in seeing or demonstrating a phase transition. 

So, as a prototype system will take an Ising model and will describe what an Ising model is.

And so, phase transitions are really important things in condensed matter physics or statistical

physics,  where  the  system  changes  from one  phase  to  another  as  function  of  the  driving

parameter, and that  driving parameter  could be anything which could be related to the you

know the parameters of the Hamiltonian or it could be thermal effects, which is temperature, or

it could be other things, you know, such as a bias voltage and things like that. 

So,  this  study of  phase  transitions  is  always  important  and interesting,  because  the system

changes from one phase to another. So let us take an example as the Ising model. 
(Refer Slide Time: 01:58)

So what is an Ising model, so it is a model of a magnet or it shows magnetism and that also has

a phase transition? So, it mainly shows a magnetic phase transition and that is what is being



used for the essential you know, idea, the premise behind it is that which is also true for many

other  magnetic  models,  such  as  Heisenberg  model  etc,  that  the  bulk  magnetism  of  any

substance or any material, it results from the contribution of the magnetic dipole moments of

many atomic spins coming from the constituents atoms or ions for that particular element or

that particular material. 

So, we are going to talk about magnetism and magnetism is coming from the magnetic dipole

moments of the atomic spins. And this Ising model postulates a lattice and in principle this

lattice  could be of any geometry  it  could be in any dimension could be one dimension to

dimension three dimension and so, on. And the geometry could be you know a linear chain in

one dimension or a square lattice into dimension or cubic lattice in 3 dimension you can have a

simple cubicle artist or you can have FCC face centered cubicle artist or a body centered cubic

lattice in a two dimension one can have a honeycomb lattice or one can have you know other

more complicated lattices such as Kagame etc and so on. 

And with magnetic dipole or a spin located at each of these lattice sites, okay, so, suppose we

are talking about a two dimensional square lattice, which is easy for us to demonstrate. So,

these are the lattice sites the corners of weathers vertical and horizontal lines the intersect, so,

these are the lattice points and here destroyed with a different colour there are spins which are

pointing like will in principle in any direction.

But for Ising model will talk about only spins pointing up or down drawn a little, you know, out

of the axis because just to show you the direction, but these are perfectly either pointing up or

pointing down this is like a set component of any spin half object. And so, everywhere there is a

spin of this kind and we want to see whether this has a finite magnetism and for that one has to

postulate model or a model Hamiltonian. 
(Refer Slide Time: 04:50)



And for the Ising model, the model Hamiltonian looks like here, just let us come to this in a

while. So, these spins in this model are represented by scalar variables, which we call us Si,

which can assume only two values, namely plus one and minus one. Okay. So, they cannot take

any other values. So, plus will correspond to say up and minus will correspond to down but that

is just a convention, you can take your own convention to be just opposite of this convention.

So, the interaction between the spins and that being the only term in the Hamiltonian is between

the nearest neighbour spins these spin variable BSi, so, it is Si into Sj is the spin variable. So

there is a sum over liquidated ij not put this sum over. So, these are some over i and these are,

so when we write like this, these are nearest neighbours. Okay, and B's is an external magnetic

field. And this negative sign is simply conventional. 

And the B can have either plus sign or minus sign, if it is a plus sign, then that would facilitate

or rather that would, you know, promote that all the spins pointing in the same direction. So,

either you have plus one into plus one, which will give you a plus one, or you can have a minus

1e into plus or minus 1, which will again give you a plus 1, so that the energy is minimized by

the spins pointing in the same direction. 

So, if it  is between two neighbouring sides, that is true for all the neighbouring sites in the

lattice.  So,  the  essentially  the  oldest  spins  will  be  pointing  up  and  one  would  had  a

ferromagnetism in this  particular situation,  if j  is negative,  then the it  is energetically more

favourable to have these neighbouring spins align in the opposite direction that is one being

plus the other being minus in which case the product will be minus and hence this minus will

multiply  with  this  minus to  give me sort  of  plus  sign but  then j  being negative  battle  the

minimize the energy.



So, that corresponds to an anti-ferromagnet, where the neighbouring spins are pointing in the

opposite  direction.  And what  one does or what  one if  one has gone through this  statistical

mechanics at the partial level or even at the rife level one knows that the thing to calculate is

what is called is a partition function and usually we talk about the canonical partition function,

which  means  that  the  system this  system of  n  Ising  on  a  lattice  is  connected  to  a  bot  of

temperature T and this is given by;

So, so, the magnetization is given by the expectation value of the spins at a site i and this is

written as 1 over beta Del logs z d del beta i where z is as said is the partition function it could

be the canonical or the grand canonical partition function and it is kind of the derivative is taken

with respect to the magnetic field at the site i and this would determine that whether the system

is in a paramagnetic state, when m would be equal to zero that is there is no net magnetization

of the system. 

And therefore ferromagnetic system or for magnetic systems, so for example, in general, the

value of m is not equal to 0. Okay, so this would tell us that whether we have a magnetic system

or magnetised system or a non magnetic system, of course, if B is large, then you always have

the all the spins pointing in the same direction as this external field. But most of the time, we

want to talk about the spontaneous magnetism,  that is the magnetization that one can have

without this B term, so that the driving or rather the competition is between j and KT.

Where KT is the thermal energy, which will try to randomize, all the magnetic moments are the

spins. And that will be done by the KT, which is a thermal energy and j is the magnetic term,

which will try to align them given that j is positive and with a negative sign at the front. So we

will have a magnetic system. Okay, so most of the time, we are interested in these spontaneous

magnetization without the second term in the Hamiltonian.

But it could be there, and it poses no problem because it is a one body problem or one body

term. And there is no problem in diagnosing the Hamiltonian even with this term being there. 
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So we essentially try to compute m okay. And this m is the magnetization as we have said, and

this let us say the average monetization and things like that, okay. So, where is Monte Carlo

coming into the picture and how do we get these Monte Carlo associated with this problem. So,

usually goal in Monte Carlo simulation is to compute the expectation value of an observable

that we have seen the expected value of the expectation value or just the expectation are various

terms  that  are  going  for  that  as  you  go  through  literature  they  have  different  you  know,

nomenclature. 

Now, this  particular  expectation  value  of  an observable  could be the magnetization,  as  we

commonly  know it,  that  this  magnetization  is  an  indicator  of  his  transition,  because if  the

magnetization vanishes, the system is safe to be in a para magnetic state. And if it is nonzero,

then it is magnetised state or a magnetic state. And this is exactly what we have just discussed.

And then we can have a feast transition as a function of the driving parameter from a magnet to

a federal magnet, okay? 

There is no act here, because we shall talk about the systems in thermal equilibrium, okay,

because temperature any experiment that you can think of is not done at zero temperature is

done at a finite temperature. So temperature will definitely play a role. Or rather, this ratio, as

we have just said that this ratio will play a role, because if j very large compared to KT, then we

have a magnetic system, as I said, could be ferromagnetic. 

And if in the other limit if j is much smaller than KT, then we have a para magnetic system with

no magnetic properties. Okay, so this ratio is very important in determining that whether the

system has a federal magnetic property or para magnetic property and things like that. So just

what we have written in the last  page about this  expectation value of Si as being the spin



variable that has given site i, let us just talk about Q, any sort of quantity for which we want to

calculate the correlation function or these expectation value.

And then what we have to do is that we have to take these Qi and which is exponential minus

beta Ei, Ei being the energy of the system, and i is not. So there is a bit of a sort of notational

issue, this i is not a site index that we have said earlier. So what we can do is that we can change

this if you like, to mn, and write this as Sm Sn, and maybe this as m, and then we can write this

as Sm, okay. 

Anyway, that is just so we know that these mn are actually these site indices of lattice could be

in 3 dimensions or 2 dimensions as we have said or in any dimension and any lattice geometry.

And so, this i rather would be the number of states that we are going to sample. And as we have

said that these states are generated at random from certain distribution. And so this is i is one to

M where M denotes the number of states or, you know, I mean, basically M is the size of the

sample or I mean sample means it is not the sample, it is not the material.

But it is the sample of the states or rather the number of states that we are going to consider

from  you  know,  arbitrary  probability  distribution.  So,  we  have  learned  how  to  do  these

summations or integrals by using the Monte Carlo. 
(Refer Slide Time: 14:51)

So, the Monte Carlo crude or the simple as we have said, so crude and simple, the word crude

seems a little crude, then you can use the word simple, the simple Monte Carlo estimate of key

would be given by this, where Qm, so this is equal to Q is replaced by or the expectation of Q is

replaced by Qm, which is equal to Qi Pi and an exponential minus beta Ei, okay. And divided

by all these are some over i which are not appearing here, and Pi exponential minus beta Ei. 



So, Qm becomes more and more accurate if m goes to infinity, which means the sample of

states that we are considering goes to very large values. But then as you know that we have a

definite computational power. And we cannot go to any number of states to sample in physical

computer. But this is true that if m goes to a very large value that is going to limit in the limit

tending to infinity, your Qm will give you the accurate estimate of this expectation of Q. 

And if you are wondering what Q is, it could be anything for a given thermodynamics system.

In this particular case, we are having magnetism in our mind. So, now the question is, how

does, one choose the probability distribution, Pi, okay. And the simplest choice is, of course, to

pick  all  states  with  equal  probability,  with  no  a  priori  assignment  of  probability. So  I  am

completely unbiased. So it is a uniform distribution. 

So this uniform distribution, we have seen that they are not very helpful, because there are too

many  of  them one.  And  secondly,  you  do  not  know how to  distinguish  sort  of  the  more

important  set  states  from the  not  so important  ones.  And particularly  the  problem is  more

important as we also going to come later is that since we are talking about low a temperature

that is we are actually looking for the system to order as we tuned this j by KT, which means

that j is larger than KT. 

So we are in a limit of smaller temperature, it is only the system only, you know, spends more

time or rather, mostly be found in a few states, among this large number of a plethora of states

that we are having. So it is just only going to be reciting in these few states, which are only

most important and the rest are not important and not contributing to this sum. So that tells you

that if you take a random distribution, which means that equal distribution, uniform distribution

with equal probability, then that Pi can be taken to be as one. 

And then this Qm reduces to a particularly simple form, which is Qm equal to, again, this sum

over i and exponential minus beta Ei. So just to remind you, every time that beta equal to one

over KT, that is the convention that is used might have written it somewhere, but if not, then I

will write it should have written it here. So beta is equal to 1 over KT, where K is called as the

Boltzmann constant. And T the temperature in absolute scale. Okay. Alright, so we are with a

uniform distribution, we have a have an expression for Qm, which looks simple. 

But of course, we know that from our experience that this must be a poor choice, because you

are giving equal way to all states. Whereas all states are not really involved into this, sum, we

have seen particular problem that the function as a value, which peaks around a certain value.

So if you take a uniform distribution, you are really, you know, you have equal probability of



choosing points from the tail, which can cause which does not contribute much to the value of

the integral, that is the one that we have seen in the last discussion. 

So we know that this uniform distribution is rather poor choice, and perhaps something better

should be done. 
(Refer Slide Time: 19:34)

So let us just look at these, you know, the details of these simulation and implementation of the

Monte Carlo. So in an Ising model, let us take a 3d cubic system, simple cubic system of 10 L

equal to 10. So 10 + 10, +10, Ising space, which are 1000 spins, and each spin has two states,

okay. So if you have two spins, one can have seats which are like, up-up, or we can have up-

down, or we can have down-up, or we can have down,-down. 

So these are 4 states, which is equal to 2 to the power to because we have 2 spins, we have to

put the power to when you have n spins, so you have to do the power. And now since we have

thousand spins 10, into 10, into 10, which are arranged on a simple cubic lattice, left 2 to the

power 1000 states, and that is a very, very large number. And that is a number which is close to

10, to deeper 300 states. So if you really have a sample 10 to the power 300, states, that is no

physical computer, available, even as today would be able to sample them. 

And neither there is a need to do that. So at the; a typical good computer would, you know, do it

up to something like 10 to the 10 states. So what happens is that you are leaving out to tend to

the power 290 states from 10 to the power 300 states. So, these, the sum that you are trying to

calculate, which appears here, in this expression for Qm is dominated by only a small number

of states, the other states actually contribute very little.



But even those small number of states, you are going to miss because you are only you are

going  to  miss  a  one  in  10  to  the  power  290  states,  and  this  is  going  to  be  a  very  bad

approximation,  because  the  ones  that  are  dominantly  contributing  to  the  integral  are  being

missed. And these are not, you know, helpful at all. So a Qm will eventually give a very bad

estimate of Q, okay. 

And, and that is the reason that the important sampling comes to the rescue, okay. So, we are

going  to  now use  important  sampling,  and  actually  sample  states  which  are  accessible  or

achievable by a physical computer can sample and will have to only demarcate those states, and

we have to have a rational behind that. So, we have learned important sampling, we just want

to, you know, recapitulate it in this particular situation. 
(Refer Slide Time: 22:25)

So, we know that, on the other hand, if you have some ways of knowing which states could

make important contributions to the sum above, we could pick them into our sample of m states

and ignore all others; this is done by the important something, okay. So our strategy would be

to, instead of picking up m states, randomly from a uniform distribution, we want that every

state of the system. 

So every state of the system is not as likely as any other state, rather, we pick them from a

probability given by this one over z, and exponential minus beta i. So this is like some over i

exponential minus beta i. So this is the probability that is going to be used not the probability

one, which corresponds to a uniform distribution, you remember that we have used Gaussian or

a normal  probability  distribution with some mean and variance for solving an integral  that

appeared in the last discussion. 



In this particular case, that Gaussian distribution is replaced by this one, this distribution this

Bi, where that is, as we have learned that z is called as the partition function of the system,

which is sum over all states, all configurations, and exponential minus beta here. So the Monte

Carlo estimated takes a particularly simple form, where Qm equal to 1 over m, and sum over

Qi, and because all these Boltzmann factors that have completely cancelled each other, and you

are left with only a Qi.

And  so  this  particular  formalism  or  others,  choice  of  this  probability  distribution  entirely

depends  upon  the  problem and  what  has  to  use  really  common  sense  and  looking  at  the

integrand, or the function that needs to be integrated. And carefully and then decide on the

probability distribution for doing the importance sampling. So this is the importance weight that

we have learned in order to do this problem. 

Okay, so Qm really takes a form, which is 1 over m and sum over Qi. And we have cancellation

of these Boltzmann factors that are there. 
(Refer Slide Time: 25:15)

Now, the question is that how exactly do we pick our states? Okay, it is not only about the

probability distribution, but for the reason that we will just see in a short while. So, we have to

make a strategy for picking up the important states and as I said that at small temperature not all

states are equally likely to contribute to the integral and there are a certain number of states that

are important and one is to really know the technique in order to do that. 

So,  it  is really  not a simple task.  And it  is  done by a technique which is  called a Markov

process. So, all Monte Carlo techniques really rely on this Marko processes as the generating

engine for the state of states that are that will be used for computation of the expectation value



okay. So what is the Markov process the market processes a mechanism which a new state mu

starting from an old state mu with a transition probability p going from you to mu okay. 

So, you have a state mu and you want to go to a state mu and there is certain probability for

going towards that there is done by the metropolis algorithm will see that in a way, but this

there is a probability and then from again from new one can go to another one called lambda

and from lambda and other one to say Chi and from Chi to another state and so on. So, you

actually depend or rather generate a sequence of states and these states are fairly independent

from each other.

Because for a true Markov processes, it is written here, the probability should satisfy that they

should not vary with time okay. So, over the time, these probabilities should remain constant,

and they should only depend upon the properties of this pair of states mu and nu and no other

states okay. So, this  is very important that for the probability in going from mu to nu will

depend upon the properties of these mu and nu states and no other states that are there in the

ensemble. 

And of course, the normalized probability should also be equal to one and this is a true for any

for all states new the final states and this is a normalization of the probabilities okay. 
(Refer Slide Time: 27:49)

So, in a Monte Carlo simulation, one uses the Markov processes these processes that repeatedly

to generate a Markov chain of states this is what exactly I was saying, starting with a mu, we

use the process to generate a new state mu and then use nu to generate another state lambda and

then proceed in this particular manner to generate a large number of Markov states. 



So the Markov processes chosen specially when it runs, I mean, when it runs for a long enough

time, starting from a given initial state, it will eventually produce a succession of states which

appear  with  the  probabilities  given  by  the  Boltzmann  distribution,  okay. So,  reaching  the

Boltzmann  distribution  is  equivalent  to  coming  to  coming  in  thermal  equilibrium  for  a

particular case. 

So, as you generate more and more Markov chains or rather states in the Markov chain, what

happens is that you are likely to reach an equilibrium which is called as a thermal equilibrium

or  is  called  as  the  Boltzmann  distribution.  And  so,  what  happens  is  that  the  what  is  the

particular utility of this Markov process, without the Markov process, we would have chosen

states with at  random with probabilities,  which are given by or proportional  to exponential

minus beta Ei, Ei being the energy of that particular state, or that configuration. 
And  this  actually  would  have  been  more,  you  know, disastrous  compared  to  even  simple

minded Monte-Carlo. And we would have actually land up rejecting virtually all states, because

the  probabilities  for  their  acceptance  were  exponentially  small.  Okay. So  just  without  the

Markov process, if we have gone ahead and use this probability, we would have virtually left

out all states, because any particular state would come with exponential small probability, and

that would have served no purpose. 

Okay, that would have been even worse than actually calculating the whole in the Monte Carlo

estimate with a uniform distribution. 
(Refer Slide Time: 30:15)

So let us quickly go through the details of the simulation. So we wish to start from a random

configuration of spins in L cross l cross L. system, which is equal to N spins and L being the,

you know, the lateral dimension of the lattice. So we have assembled cubicle artists consisting



of L cube number of spins. So for this one can generate a random number from 0 to one and

multiply that by n, which is equal to LQ and approximated to the nearest integer to identify the

spins in the on the lattice. 

So okay, so this is, this is a bit, alright, so what we mean to say is that you want to identify sites

in the lattice, and that you want to do randomly, so what you do is that you either you run

identify estate by this method, or a side by this method, rather, it is a site in that lattice by this

method, and then you occupy it via either an upstream or downstream, okay. And to produce a

Markov sequence,  if you use another random number generator, so that a particular  spin is

picked up, say Si, and this call this configuration mean, okay.

So, you start with a random configuration of spins by generating a random number where spins

are, you know, you say that between 0 and 1e, if it is less than .5, I will put down spin and if it

is greater than .5, I will put on up spin and things like that. So randomly in the lattice, you have

put up and down spins, then you need to generate a Markov sequence your generator, okay. And

for that, you pick another random number, okay, use another random number generator, and call

that. 

So  identify  your  spin  by  that  random  number  generator  by  multiplying  it  by  N  and

approximating dating to the nearest integer, call this particular configuration, as mu, add mu

means the initial configuration, now flip the spin from if the spin is initially up, then flip it to

down, or if it is initially down, then flip it to up and call this new configuration as mu. Okay. So

you have an old configuration mu which has from a given random distribution of spins on

lattice you have generated that.

Now you have identified one spin, and have caused the flip, call this new one as new, the new

status or configuration as mu, calculate the change in energy according to the Hamiltonian. So

Hamiltonian is just writing down the Ising term, it is Si Sj with the ij. So you calculate the

energy of the changing energy of the Hamiltonian, E mu, and E nu, E mu – E nu. So let us call

that E mu nu is  E mu – E nu. And so this difference is defined as this. 
(Refer Slide Time: 33:34)



And now, this E mu nu will decide whether the mu is acceptable or not acceptable. Okay, so

this flipping of spin is acceptable or not. And so we define certain conditions that if E mu nu is

negative,  that is the because of this flip, the energy is minimized, and we accept the move

immediately without any further condition. Now, even if E mu nu is positive, we draw another

random number x, and check whether he exponential minus beta, E mu nu is greater than x,

then if you then you accept the mu.

And if it is less than, so this should be less than instead of this will, so this is not, if you have a

greater than equal to then of course, you accept the mu, if it is less than, then you reject the mu,

okay, you cannot  have  both  greater  than  equal  to  and less  than  equal  to.  Now repeat  this

procedure several times by forming a long trajectory in the configuration space. So what I mean

to say is that you identify another spin, do the same procedure, and see that accept the mu or

reject the mu, go to another spin. 

And you again, pick up a random number, identify your spin, flip it, see the weather the mu

acceptable according to this  condition,  and things like that.  So we actually  generate  a long

trajectory  of  these  systems  in  the  configuration  space.  And  this  is  precisely  called  as  a

metropolis algorithm. There are more things which are our Ergodicity and so on, I will not go

into  details,  but  what  our  motive  is  to  explain  that  these  Monte  Carlo  simulations  are

particularly very important for a variety of situations including, you know, simple computation

of simple integrals to very complicated cases such as this as the phase transition and things like

that. 

So, this is roughly the simulation details, the expected value of the magnetization is computer

so as to demonstrate the phenomena of phase transition. So after the thermalization after the



thing,  the  system has  achieved  the  equilibrium  or  the  Boltzmann  distribution,  the  thermal

equilibrium so to say, then, you calculate the magnetization and see that if the magnetization is

has a finite value and large value so to say, so that we can see that the system is magnetic. 

And if it is either zero or very small, then we will have to see that it is a non magnetic system or

poorly magnetic system, and so on. So, if you have a varying parameters a temperature or or

that  j  over  KT,  then  there  is  a  particular  TC  that  one  can  achieve  TC  is  the  transition

temperature, so, one can identify a transition temperature in a given system. And this is from a

para magnet to ferro magnet, this transition temperature is called a quire temperature. 

Incidentally, in one dimension, the system has no transition, that is the transitions are only at T

equal  to you know zero,  which means that there is no ordering temperature finite  ordering

temperature. And the reason is simple. The reason is that the energy difference between the

demagnetized states of the para magnetic states and the magnetic states is only by just breaking

one bond. And that is a one over N effect. 

So if N is large, that effect is very small. And then you always have a disordered system or a

para magnetic system, accepting at equal to 0, which is not a physical reality. Okay, so these are

precisely where they are applied. Let me show you  an algorithm which we make things a little

more clear. 
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So it is a flow chart for Monte Carlo. So we will have so this I am just drawing the boxes and

then we will write what are the steps and things like that. So this and okay and then there are

just give me a minute to finish this drawing. So set up all right an initial configuration to define

H and you can set a counter here okay. Then you come to this one, and then you say that flip a



spin and calculate the delta E which is delta equal to E mu minus E nu, if delta E is less than

equal to 0 then you accept flip which we have said.

If delta E greater than 0 then choose random number x okay then you see that whether x, x is

greater than equal to exponential minus beta delta E if that is the case then you accept the move

accept flip, flip if not reject the flip and one actually goes to a new configuration. So, then you

calculate Q which is equal to you know sum over all these states and then Qn or Qi whatever

we have written earlier.

 Qi  exponential  minus  beta  Ei  divided  by  exponential  minus  beta  Ei  and  so  on  and  stop

iterations when delta E becomes almost equal to 0, which means that the system is not iterating

and the system has reached an equilibrium and then by flipping farther spins, the energy of the

system is  not  changing.  So,  that  is  the  equilibrium  that  we  are  talking  about  the  thermal

equilibrium that we are talking about and then of course, use this Q which is equal to 1 over m.

Sum over Qi from 1 to m and then use this  thing to calculate  the expectation value of the

quantity  that  you  are  interested  in  as  we  have  told  several  times  that  this  could  be  the

monetization and the magnetization being nonzero would indicate that the system has gone into

a ferromagnetic state okay. And one can do this in one dimension and one does not find any

phase transition which means that there is no finite temperature at which or other this j by KT is

not you know at any.

So, this only happens at T equal to 0 which means the value of this ratio to be infinity or a but

in two and three dimensions, there are finite temperatures that was the phase transition occur,

okay. So, we have seen very elaborately the utility and the versatile nature of this Monte Carlo

simulation. And these are very important, you know, simulation tools that are accepted by the

computational community.

Both in you know, various branches of science and engineering. The good thing is that, you

know, a lot of things one does not really need to know and it depends upon some distribution,

which  is  more  preferred  than  other  the  distribution.  So,  these  are  important  sampling,  the

important sampling is a very important step in improving the accuracy of this Monte Carlo

method, we shall stop here and with this discussion on the Monte Carlo and we will proceed

with another simulation in the next discussion. 


