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So let  us briefly review the Monte Carlo technique that we are learning here.  And we will

introduce  what  is  called  as  an  important  sampling.  This  is  a  very  important  you  know

development in the distribution of the random numbers which would eventually give a very

accurate a much rather much more accurate estimate of the integral that we are attempting to

compute. 
(Refer Slide Time: 01:03)

So in summary Monte Carlo is the art of approximating an expectation value or we also can call

it an expected value as we were calling during our discussion by the sample mean of a function

of  simulated  random variables.  So  instead  of  choosing grids  of  definite  width  we actually

choose random numbers. So say we need to integrate a function like this and so this is f of x as

a function of x, so instead of doing such grading which we have d1 for these known integration

techniques here we sort of and so on.

So here we choose random points on this f of x which is the curve here and then calculate it

from its sample mean so these random points are taken from some distributions it could be

uniform distribution or it could be a Gaussian distribution or a normal distribution. And we

actually calculate the value of the functions at those points and take a mean of that and that is



the expected value or rather the value of the integral. So this is the main idea behind the Monte

Carlo.
(Refer Slide Time: 02:31)

So let us look at what random sampling is or rather important sampling is but before that let us

do another one.
(Refer Slide Time: 02:50)

We will come back to this in a while. But let us remind you that the standard deviation or the

variance of the MC technique is given by this Sigma equal to root over variance of these f of x

and divided by the root over n where n is the number of sampling points that we have drawn

from a random distribution  .  And we know the,  you know the  merits  of  the  Monte Carlo

technique. It is free from the curse of dimensionality so that if you go from 1 dimension to

dimension equal to 1 to dimension equal to 2or dimension equal to 3 and so on. 

It will, does not hurt the usage of it or applications of it and of course as we have said earlier

that our sole idea is to reduce the variance. And if we reduce the variance and then we get more



and  more  accurate  values.  And  for  that  two  things  can  be  done.  Either  we  increase  the

numerator in which Sigma gets decreased; so increasing the numerator means that increase the

number of sample points.

Now this is something that the experience says that the convergence is very slow. So if you

increase you know n from 10 to the power 6 to 10 to the power 8 or 10 to the power 9 that is the

number  of  sampling  points  that  you  have  chosen  from  a  random  distribution  then  the

convergence or the accuracy, improvement of accuracy is not all that much. Whereas if we can

reduce the variance that is decreases the denominator, then, Sigma will decrease as well.

And this seemed to be a more effective way of tackling the problem and this is what we want to

understand and these techniques for which we increase the accuracy is called as a variation of

variance reduction or reducing techniques okay. And the technique this particular has a number

of you know techniques there. And we will talk about mainly two of them. One being what is

called as the stratified sampling and importantly what we will learn is that what is called as the

importance sampling.

And in fact the important sampling is the more important of these two and we will discuss it

with a little more elaborately. But let us also look at the stratified sampling and understand that

how it works. We will come back to this the important sampling.
(Refer Slide Time: 06:07)

So what is this? So this technique divides the full integration range into the various subspaces.

So the final result is the sum of all partial results okay. So how this works is that so we divide

the integration domain let us call it R into say K regions. So namely, let us call them as R I

equal to so this is the these are RI where I runs from 1 to K. So then, the expected value in

literature this is often called as the expectation value or just the expectation okay.



This means the same thing the expected value is written as this E and then f of x which is equal

to over this space Fx with a probability density function P of x and now since we have broken it

down into K regions for evaluating the integral we will have to sum over these K regions. It is

not n sorry about that so this is K and then we integrate over a single you know jth block or jth

subspace. And then you sum over all the subspaces okay. So, this is so, the the Monte Carlo

estimate.

We call it just MC so MC estimate of the expectation becomes I equal to j equal to 1 to k

volume of the jth subspace this nj is the number of sampling points in the jth subspace and then

I equal to 1 to j f of x i okay. So that is the Monte Carlo estimate of this integral which in

addition to the f of x i from I equal to so this is n j rather. So from I equal to 1 to sum n you also

need to have another summation.

The over this all these subspaces where is the number of subspaces go from 1 to k so the entire

region R is actually broken into K subspaces. So just to remind you that n j is the number of

MC points used for the integration purpose on R j. So on this R j and the volume R j is the

volume of the subspace R j much. So this looks simple because it just gets extended from 1 you

know region or I mean the entire region being considered with the same probability density

function from that we go to a K such regions, which the entire region of integration is broken

into K of them.

And then doing the procedure, repeating the procedure for all of them and then taking the the

sum of all these subspaces. So if we claim that this is any advantage over the crude or the

simple MC estimate that we have done, then, we have to convince ourselves from calculating

the variance. 
(Refer Slide Time: 11:34)



And so the MC variance is so it is a sigma square equal to sum over j equal to 1 to K and a

volume of Rj and so this is a square divided by n j. And then the variance of this R jth subspace

and this f of x so were these variants of this R jth subspace for the function the integrand. In

fact it is equal to 1 by volume of the R j. And then of course the usual variance, that we talked

about 1 minus volume of R j. And then, you have a Fx px dx whole square.

So this is integral over RJ and Square and then of course we have a px dx okay slightly longest

expression. But it just says that you know this is how the MC variance is calculated in this

stratified sampling technique and so if you select carefully the number of points then this can

lead to a lower variance than the simple-minded MC that we have seen earlier. So we will write

that by selecting carefully the number of points this can lead to lower variance compared to the

we have used this word earlier crude or a simple MC estimate alright. 

So the next technique that we are going to consider is called as the importance sampling let us

go back to our slide which is there. 
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So this important sampling is really believing that not always you have a unique probability

density function would give you an accurate estimate. So in some cases you could have a better

probability density function which gives a better estimate they could be proportional to each

other or they could be you know different than each other. But we will have to make sure that

that gives you a sort of better estimate of the integral. 

So if  I  am trying to  sort  of  understand what  is  this  importance  weigh? let  us  see this  old

problem that we have done. So we have a circle consider this as circle, something completely

inscribed it is hard for me to draw this. But let me see if I can. So we wanted to find out the area

of this circle or in other words you say that you want to find out the value of pi. And this is the

same thing because this is equal to 1 unit and this is equal to 2 units.

So then that the area of this is equal to PI r square where r equal to 1 so it becomes equal to PI.

So the area of the circle is equal to PI. So if you can calculate by using the MMC technique and

we have thrown points at random. Let me show it so these are points at random thrown which

are inside the circle which have fallen inside the circle. So these all these points that satisfy x I

square plus y I square is less than equal to 1 okay.

So these are the points and then also consider this blue point say for example which have not

been into the circle. So these points are not important points for us because these points do not

contribute to the either the computation of Pi or you know the area of the circle. So for us the

important ones or the important prize trials rather the important trials are the red ones. And so if

there is a way for us to assign appropriate weight to some of the points that is the red points

here and actually assign very little importance to the blue points.



Then we would do this thing much easier or they will be much more accurate if we know how

to exclude these blue points from the red points, the red points being the important points, all

right.  So  this  is  the  main  idea  of  this  important  sampling.  So  the  methods  that  we  have

introduced so far, they generate arbitrary points from a distribution and these arbitrary points

while we are saying because they are from their random points from a given distribution to

approximate the integral.

So we have approximated the integrals by simply writing down that this is 1 over n sum over

this f of x I and I equal to 1 to n n is the number of sampling points F x I is a value of the

function at all those sampling points you sum all of them up divided by the number of sampling

points  this  is  equal  to the integral.  And basically  what  you have to  do is  that  you have to

integrate f of x. dx from some you know lower limit to some upper limit.

So  this  is  what  we  have  done.  But  so  these  are  arbitrary  points  from  a  distribution  to

approximate the integrals  okay and in many of the cases okay the points these points they

correspond to the ones that are at the value of the function under consideration where the values

are close to zero okay. So we are really talking of the blue points which do not contribute to the

computation of Pi or the area of the circle.

So if the value of the function at those random points many of them would be there, if we are

choosing at  random without  really  looking at  the nature  of the function.  Then,  we will  be

wasting our computational resources and our time okay. So if the value of the functions are

close to zero then those things will not be should not be considered in the sampling of the

points in order to do the integral so because they contribute very little to the approximation to

this approximation.

So in many cases the integral comes with a given density which is called as the probability

density function or the pdf, okay. However, there will be cases where another distribution okay

you carefully choose it that another distribution gives a better fit to the integral which means

gives you a more accurate  estimate of the integral.  And we have to look for these another

distribution and this another distribution is what is done in the important sampling.

So, this another distribution is more important is the important you know distribution which

provides  a  better  estimate  of  the  integral.  Let  us  see how to go about  which will  give  an

example which will make things clearer.
(Refer Slide Time: 19:53)



So what we have said is that the pdf, the probability density function p of x may not be the best

pdf for a MC integration. So what it really means what is meant by a best is that so this this pdf

may not minimize the Monte Carlo variance okay. And in which case we want to use a different

pdf and perhaps simpler olit q x from which we can draw samples okay. So this q x is called as

the importance density or importance density function.

So this is an important thing and how do we find q x is a matter of you know choice and one

has  to  really  understand  the  behaviour  or  the  properties  of  the  function  that  we  want  to

integrate. We will see that so we can write E of y or the expected value of the function which is

E as  f x. So that is we know that between two limits lower and upper limits a and b is written

as f x p x d x.  So p x is our, the probability density function.

So this is equal to we simply rearrange things here so we write it as a p x and q x and q x and d

x okay. So if you see this if you now call this as your new and in bracket which is we believe

that this is the important or density function or importance as we said earlier density function

then this is nothing but so this is equal to the expected value of f x p x / q x and so on okay and

which is weighted by this q x.

So we have simply introduce this q x distribution and these it becomes the expected value of

that of this quantity which is f x p x by q x which is weighted by the q x.
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 So thus by generating n samples which are from this xi from from qx for i is equal to 1 to n.

And the estimate of the integral becomes i equal to 1 over n. sum over i equal to 1 to n f of x i P

of x i divided by q of x i and this is called as or written as i equal to 1 to n. And we write W

which is called as the importance weights it is written with a small w and f of x i okay and

where w of well you let make sure that this is written as so this w of x I that is a smaller w so

this is p x i divided by q x i okay. 

This usually it is written like this and so this is the weight or which are called as the, these are

the importance  weights okay. So this  is  a  ratio  of the old probability  distribution  which is

uniform or which is you know taken from another distribution. And q x is a new distribution so

it is the ratio of that. And so we have to normalize the weights such that some over i equal to 1

to n. w x i should become equal to 1 and in which case we can write down this integral as

simply 1 over n sum over i equal to 1 to n. I hope this is visible it is i equal to 1 to n. Let me

then rewrite it more carefully so I equal to 1 to n and you have a w x i f x i. 

So now instead of weighting it by the p which is a probability density function earlier one, we

now weight it by the importance weights. And there is this of course has to be normalized I

equal to 1 to n and w x I and so on. And this is equal to 1 over n i equal to 1 to n and w n x i f x

i and so on ok where your w n x i equal to w x i divided by the normalized wxi i from 1 to n.

Now this is the main issue that is the main concept that is involved here is that we have instead

of this p x we have w x and w x is derived from this p x with another distribution q x which

seemed to fit this better. So let us see a little more on the variance and so on. 
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Of course the estimate is biased because instead of a uniform one you have taken a biased

distribution  which  fits  your  problem  more  closely  but  this  bias  actually  vanishes  in  the

asymptotic limit. So it asymptotically as n tends to infinity okay. So the variance of this thing is

given by variance of this q distribution is given by it is equal to 1 by n f of x p x square sorry

this is divided by q x and then one has to square this minus d x.

This is square d x minus E for the p 1 this is for the p, pdf the original pdf square. So to say f of

x this is that original thing that we have discussed. So this variance is for the new one minus the

old one and to reduce the variance q x should be chosen to match the shape of p x or f x p x. So

what I am trying to say is  that q x is often is proportional to p x.  So in summary a good

important sampling q x satisfy certain properties.

q x is greater than  0 whenever f of x is not equal to  0 okay. q x should be close to being

proportional to which is what I just said to f x and then of course what is important is that it

should be easy to simulate values from q x okay it should be as I said earlier that it should

perhaps be easy to simulate values so that we get a better estimate and things like that for the

for the integral that we are trying to compute.
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So this is just one thing that one wants to take care of so it says the let us say the final comment

or rather this pitfalls  of importance sampling because we are taking a ratio you need to be

careful about the tails of the distribution of this distribution of q suppose q has a distribution

which is you know having a normal or Gaussian distribution one needs to worry about the tails.

Even though it is a sort of a slightly improbable situation that it would happen but the tails of

the distribution, the new distribution that is the importance distribution q still matter okay.

So how does it matter? so while you know q x may roughly be same shape as f of x serious

difficulties  arise  if  q  x gets  much smaller  than f  x  and why is  it  a  difficulty  because  this

importance weights are proportional to the ratio of these. I mean get smaller than f of x is not

the right this thing gets smaller much faster than, much faster than f of x and around or among

the tails of the distribution.

Because  in  this  case  what  happens  is,  that  for  a  particular  value  of  x  I,  the  Monte  Carlo

estimator which is f x i by q x i so maybe actually maybe come order of magnitude larger, than

typical values of this okay. Rather typical values of q of f x not q f of x okay. So these are some

of the things. So basically what I mean to say is that it is very highly improbable that you know

in the tails of the distribution things, can these ratio can become much larger than the typical

values.

Then they would start contributing dominantly which is what is not you know wanted. So but

these are very improbable situations. 
(Refer Slide Time: 36:28)



Let us see an example of how to use this important sampling and how important sampling can

improve the approximation  for  a given integral.  So consider  a function  f  of  x equal  to  10

exponential minus 2x-5 okay. And suppose we want to calculate the expected value e f x by

two methods. One is let us call it as a normal sampling which is what we have been exposed to

from the beginning that is using a uniform distribution.

Or B the important sampling using a different distribution and how do we choose the different

distribution, we will just come to that okay. So let us look at this normal sampling a all right .
(Refer Slide Time: 38:17)

So we will use a uniform distribution let us write that uniform distribution as 0 & 1 which

means the mean at 0 and the variance is 1. So let us write that mean equal to 0 and variance

equal to 1 so we want to compute the integral 0 to ten exponential minus 2x mod x - 5 d x okay.

So a regular approach would be to generate x i from uniform (0,1) distribution here because we



have taken it to (0, 10) because this integral has an approximate value of 1, we could do that

okay.

So this intake this integral has a value which is close to 1. S so this is this uniform density or a

uniform density function. Compute so this is 1 and this is compute the sample mean, mean of

10 times f of x i okay. So basically you pick random numbers from this distribution uniform

distribution which is like this ok. So this is from 0 to 10 and this is 5 say just to mark this. So

this is your p of x. And so one chooses value values at random from this and then calculate i

equal to 1 over n i equal to 1 to n f of x i to calculate the integral. So this will give the value of

the integral.

So note one thing which will become more clear that the this is the important sampling with

importance function so, w x is equal to nothing but your p x okay. So, now let us look at the

more important thing which is called as a important sampling all right.
(Refer Slide Time: 41:49)

So for doing that take a note that f x is peaked at x equal to 5 and decays quickly on either side

of 5 alright. See if that is the case doing or taking a uniform distribution is probably not such a

good idea. So what we can do is that one can take a Gaussian factor which is like exponential

minus you know some alpha x square etcetera with a peak at 5 at 5 and minimal variance and

the variance can be equal to say 1.

So we can write down the integral as so it is from 0 to 10 and we have this function which is

minus five and then there is a 1 over ten and now there is a 1 over 2pi exponential minus x - 5

whole square by 2 and in 1 over 2pi exponential minus x - 5 whole square over 2 and dx. See

exactly we have introduced a queue below and a queue above, so this is the importance weight.



So, this gives the expected value of f of x w of x with x chosen from not from a uniform

distribution but from a normal distribution with mean at five and variance equal to 1.

Remember that we have used this language or terminology for denoting a normal distribution

with the first of the argument that represents the mean and the second 1 represents the variance.

So here we identify p of x equal to 1 over 10. q of x is equal to the normal distribution which is

(5,1) and w of x which is equal to a root over 2 pi exponential minus x - 5 whole square by 2/10

and this is nothing but equal to p x over 1 x okay.

So this, please go back and see the definition this is exactly what we have done. So instead of a

constant distribution which is like 1 over 10 and we have now taken a distribution which is

normal with variance and a mean that is given here okay. So w x is the importance function

here, let me write that here itself or you can call it the importance weight and so on. So let me

box this.  
(Refer Slide Time: 46:19)

So if that is the case then the integral is more compactly written as 0 to 10 exponential of minus

2mod x -  5  root  over  2 pi  exponential  x  -  5  whole  square by 2 and 1 by root  over  2 pi

exponential  minus x - 5 whole square by 2 d x okay. So this is the original f x and this is the

density  being  integrated  or  so.  This  density  corresponding  to  the  and  N(5,1)  the  normal

distribution.

So let us plot this thing to have a more intuitive understanding. So this plot of the integrant

from a  and  b.  So  let  us  take  so  let  us  take  a  different  color  for  so.  This  is  the  uniform

distribution all throughout which is same so this and this is equal to the distribution okay. And

so we are showing it I mean it is slightly the it should have been slightly more rounded. But

what is important here is the following.



So you have so this is like 2 and a 4 and maybe yeah well let me just do it. So this is 5 okay, so

this is 6 and this is a 4 and so on. And this is of course this is like a point to 0.4 0.6 these are

normalized 0.8 and 1. And so this is  corresponding to the uniform the normal sampling and this

corresponds to the importance sampling. You can see that this important sampling is likely to

give better results because this is peaked at 5 where the function peaks it. 

So you have another distribution from which you want to take and this distribution is a better

than the uniform distribution. So you see that the value of the function falls off quickly on

either  side  of  5  the  uniform  distribution  does  not  know  anything  about  it  whereas  the

importance distribution that knows that this is you know it falls off quickly and so on. So the

uniform distribution has pdf equal to 1 over 10. 

And  the  important  sampling  equal  to  this  exponential  minus  2x  -  5  into  root  over  2  pi

exponential  x  -  5  whole  square  over  2  okay. So,  this  is  it  gives  you  an  intuitive  way  to

understand why the importance sampling gives much more accurate results for this. It is a very

important  thing  in  the  study  of  Monte  Carlo  where  we  should  always  weight  it  by  an

importance  function  rather  than  by  doing  a  normal  sampling  especially  for  complicated

integrals.  This makes much more you know or rather provides much better  estimate of the

integral. 


