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Low and high temperature equations of state

Okay, welcome back! so if you recall in the last lecture I had stopped at a stage where I derived

the specific heat of an ideal Fermi gas.

(Refer Slide Time: 00:50)

So the answer we obtained where these so the specific heat at constant volume was found to be

proportional to temperature and so there was a relation between specific heat at constant pressure

and constant volume which was of this nature. So and also we derived the equation of the state of

an ideal Fermi gas at low temperature. So recall that this is applicable at low temperatures by low

temperatures I mean temperatures small compared to μF and if you remember what μF was,

μF was  the  chemical  potential  at  absolute  0  so  that  is  also  known as  Fermi  energy  so  the

chemical  potential  at  absolute  0 is  known as  Fermi energy.  So the specific  heat  at  constant

volume is proportional to temperature at low temperatures and this is a hallmark of basically

what is called electronic contribution to the specific heat of a solid. So the electronic contribution

comes from the fact that fermions for solid contains fermions I mean it contain electrons has a

you know in their orbitals of the item that make up the solid contain electrons.



And the electrons contribute to the specific heat of this solid and their contribution is governed

by  Fermi  Dirac  statistics  so  we  have  been  successful  in  showing  that  the  specific  heat

contribution of the electrons to the solid is proportional to the temperature at low temperatures,

okay and also at low temperatures we can derive what is known as the equations of state and you

can see that at low temperatures unlike so there is a dramatic departure from a classical ideal gas.

So if you recall, the classical ideal gas was pV = NT so this is for a classical ideal gas this is

regardless of what temperature I am talking about this is always true so but then you can see that

as temperature is lowered as the pressure so if you fix the volume and fix the number of particles

as temperature is lowered the pressure actually falls of a classical ideal gas but not so for a gas

made of fermions.

So if you have a quantum gas made of fermions and so even though it is ideal it still as this

dramatic departure from a classical ideal gas and origin for this I have already explained it is

because of Pauli exclusion principle. So basically what was happening here is that if you start at

0 temperature for example for a classical ideal gas at absolute 0 the pressure is strictly 0 but the

for a Fermi gas at absolute 0 the pressure is not 0 for the simple reason that you know we have

already shown that pV is a so regardless of whether it is Bose gas Fermi gas or classical ideal gas

pV = 2/3 U.

So it is just so happens that at absolute 0 that total internal energy of a classical ideal gas is 0

because basically at 0 temperature all molecular motion ceases and so the molecules basically

come  to  a  standstill  and  they  can  do  that  because  they  are  classical  particles  so  it  can

simultaneously the positions being independent of time and velocity is being 0. And however

that is not true for quantum gas so what happens is that at absolute 0 the system is in the ground

state and then because the Fermions they obey Pauli’s exclusion principle which means that you

cannot really populate or the 0 momentum state with more than two particles.

So if you have a macroscopic number of particles in your system then you are forced to well you

can at most accommodate two particle in the 0 momentum state and immediately you will have

to  go  to  the  next  higher  state  which  will  bump  up  the  energy  because  if  it  was  strictly  0



momentum state and you know that energy is p2/2m and you can still get total energy is 0 if those

electrons were there in the 0 momentum state.

But then given that only two electrons at most can be accommodate in the 0 momentum state so

we have a macroscopic number of electrons.  So the question is where do you accommodate

them, so we start accommodating them in the higher and higher momenta, so by accommodating

them in higher momentum states we are gradually increasing the energy of the system so when

you reach a when you exhaust all your electrons you would have reached a very high level of

energy and that is called a Fermi level, so the Fermi energy.

So now you can calculate the total energy contained in that system which will be enormous and

that is the reason why pressure is also significant because it is going to be proportional to the

Fermi energy and the Fermi energy is typically huge for a Fermi gas at absolute 0. So this is so

there is a name for this type of pressure it is called the degeneracy pressure and it is so happens

that this degeneracy pressure is actually the reason why white dwarfs the stars you know there

are stars in the sky that are known as white warps.

So white dwarfs are stars where the nuclear fusion has ceased so all the nuclear process is that

for example out own sun is still burning bright because the nuclear fusion process that it is taking

place because it is releasing the huge amounts of energy which is contributing to the pressure

that counteracts the gravity that is trying to shrink the stars into a point. So the gravity is always

present but then the pressure that responsible for counteracting the gravity is not going to be

always present, it is going to be present so long as the those nuclear reactions take place.

But then you know that how nuclear reaction works, lighter elements get converted to heavier

elements and so the so on and hence so forth. So once you start running out of lighter and lighter

elements the nuclear reactions so there is a fusion reaction slows down and the stage is reached

where it is ceases altogether. So the moment nuclear fusion ceases then there is no you know the

pressure that you know contributed by those reaction also becomes 0.

So now when no pressure is available to counteract gravity, so gravity takes over and the star

shrinks and shrinks. So now the big questions is that does it shrink to a point immediately or is

there  some  mechanism  some  other  mechanism  besides  nuclear  fusion  that  takes  over  that



prevents these star from collapsing to a point so it so happens that there is mechanism and that

was a famously discovered by the great Indian astrophysicist S Chandrasekar on his voyage from

India to England on a ship. 

So he thought about what could be those mechanisms and he knew about quantum mechanics

and Fermi gas and that sort of thing and you realize that the mechanics could be precisely that

degeneracy pressure. See once the nuclear reaction ceases then all the matter tries to collapse to a

very small region of space due to gravity and all the atoms get squeezed together so tightly that

the electrons dislodge from the atoms so at this they become part of the collective. 

So they start becoming like a gas so there will be a gas of electrons which propagate through the

entire  star  so that  is  precisely  what  a Chandrasekar  studied is  imagined that  there is  gas  of

electrons which have been dislodged from the atoms which are propagating to the entire star, so

there is going to be a degeneracy pressure. So if you try to compress them any further because

there is this pressure due to the Fermi level, the Fermi energy of those electrons causes them to

resist that shrinking any further.

So there is going to be a stage where the radius of the star reaches an equilibrium value where

the pressure,  the degeneracy pressure which is trying to prevent the star from shrinking any

further is cancelled by the or it is counteracted by the gravitational pressure that is trying to

shrink  the  star,  so  there  is  a  gravitational  force  which  is  trying  to  pull  it  in  and  there  is

counteracting pressure force due to degeneracy the Pauli exclusion principle which is trying to

counteract  that when the two balances and equilibrium and that equilibrium is reached for a

certain radius of the star and in fact more importantly for a certain mass of so Chandrasekar

derived is famous Chandrasekar limit where he shows that there is an interesting upper limit to

the initial mass of the stars.

So this mechanism, this equilibrium mechanism is mathematically feasible only if the mass of

the initial star was not too high. So if the mass of the initial star was too high his equations

predicted that there would be some instability and so Chandrasekar famously said that you know

it, so this mechanism cannot support this star so the star would collapse to a point and okay i do



not want to spend too much more time on the Chandrasekar limit right now because I am going

to be discussing probably the detailed derivation of the Chandrasekar limit little later.

So this is just a preamble for you to understand the importance of the equation of state of a ideal

Fermi  gas.  So  it  has  a  huge  implication  to  varies  feels  of  some  feels  lf  physics  such  as

astrophysics and so on. Okay so now let us get to the you know counter part of what we have

been studying namely the Bose gas. So we have studied the ideal Fermi gas now let us go and

see if we can study the ideal Bose gas.

(Refer Slide Time: 12:38)

And that has its own interesting features as you will see, so unlike the Fermi gas where there is a

pressure even at absolute 0 that is not going to be the case in the ideal Bose gas but then, so even

though you know its similar to classical ideal gas in that sense but there are there is a still there is

a difference between the classical ideal Bose gas and the difference in what is known as Bose

Einstein condensation which is peculiar to ideal Bose gas.

So let me go ahead and discuss these issues so if you recall for Boson’s this q which was the

parameter that determined the quantum statistics was actually going to be -1 we had to select it to

be -1. So if you remember if it,if we select q to be +1 we would be describing fermions and then

you know just coincidence q to 0 I would be describing classical Boltzmann gas. So now given

that q is -1 corresponds to bosons and now I am called upon to evaluate such an integral so if you

recall this parameter n has only two interesting use one of them is 0 the other is 1.



So when it is 0 this integral would be corresponding to basically the total number of particles in

the system as a function of z which is the fugacity. So I will be discussing or the density as it

were so density of the particle related to fugacity is obtained by evaluating this integral for n = 0.

So the integral would correspond to the total internal energy of the system or which studying the

energy density of the bosons as a function of z which is fugacity.

But then besides this integral we had something else we had observed namely in this ratio that I

am talking about here there is 

                                                               nj = 1/(eβεj z-1-1)

this ratio this has a physical meaning namely it corresponds to the number of Bosons in energy

level εj and given that this is average number of Bosons in that energy level it has to be greater

than 0 because it cannot be certainly less than you can be 0 but it cannot be less than 0.

So what is should be demanding is that the number of Bosons in energy level εj  had better the

greater than or equal to 0 and given that z = eβμ and β and μ are real numbers then you can see

that log z = βμ which is of course also real. And since β > 0 and ε > 0 and this as to be valid so

you can convince yourself that all this put together means z as to be between 0 and 1, okay.

So it cannot be more than 1 so what does that imply so that implies this is β > 0 that implies that

μ < 0. So in a Bose gas typically the chemical potential is always less than or equal to 0 okay so

that is the same as saying z is between 0 and 1. So now let us consider two extreme limits, one

extreme limit is where z is really close to 0 z is always greater than 0 of course but let us imagine

that it is very close to 0.

So if it is very close to 0, so recall that if z is very close to 0 this number is huge so the leading

contribution that is in the denominator so the leading contribution is going to be proportional to z

and then I can do my you know expansion in powers of z and the term proportional to z will

involves  this  integration  over  this  variable  and  the  term proportional  to  z2 will  involve  an

integration of that sort.



So when I do that so on and hence so forth so when I do this integration I end up with this

answer so you can see that it is proportional to z and this the another term is proportional to z 2

and so on. Alright so this is my gamma function if you recall you know if n was the integer when

it is because n is either 0 or 1. So if n was integer it would (n-1)! but then this is n + 3/2 so you

have  use  an  appropriate  generalization  of  the  factorial  function  which  is  what  is  called  the

gamma function. So I urge you to look it up if you do not know what it is we have encountered

this before by the way alright.

(Refer Slide Time: 17:57)

So now let us I am going to make use of this so remember that I told you if n is 0 ,I will be using

that for evaluating the density of bosons. So the density of the bosons is going to be this and if

you recall c0 is my notation for the thermal wave length which is more commonly denoted by λT

okay so most of the other books would call it  λT. I have started off writing c0 I do not want to

change my notation midway so I am continuing with c0 so that is basically thermal wave length

alright.

So now the density of Bosons is going to be this and I put in my expression for c 0 and I get this

for the density of bosons as a function of chemical potential assuming the chemical potential as

very close to 0 and by the way what is that correspond to sorry the fugacity so this is only this

only correct when the fugacity is very small compared to 1 and greater than 0 in other it is very

close to 0 and positive.



So what does that mean in terms of the chemical potential, so if the fugacity is very small it

means that the chemical potential is large and negative because remember that the fugacity is

nothing but eβμ  so since β is positive and z fugacity as to be really small that means that  μ is

large and negative. So remember that you know all the expressions that we should be handling

should have the number of particles and volume fixed so rather than having a situation where the

fugacity or the chemical potential is fixed.

So even though this method kind of naturally allows you to study a system where the number of

particles is fluctuating that is particles are being exchanged with the environment in addition to

energy so but I want to you know the less usual situation the more usual situation is when only

the energy is  being exchanged with the environment  whether  the number of particles  in the

system is fixed.

So if I want to go back and forth between two pictures it is going to be possible in natural way it

is going to be possible to do that with the same formulas would describe either situation only if,

if you remember there was a condition that is going to be those two pictures are going to be

equivalent only if you are working in the thermodynamic level. So in other words only it only

works for large systems where you can ignore fluctuations we have been we have discussed that

earlier okay.

Given all this caveats I can go ahead and invert this relationship and write down the expression

for the fugacity in terms of density of the particles. So given that fugacity is small that is the

same as if the temperature is fixed that is another way of saying that the density is small so it is a

dilute system. So I am looking at a dilute limit of a Bose gas so it is also it is also the as so if you

fix the density z has to be very small so if z is very small that is two ways of doing  it either may

ρ very small or β very small.

So how do you make β  very small you make β very small by making temperature very large so

z very small has two different interpretations one is the interpretation that z is very small means

ρ is very small because we store related and ρ is very small is the same as studying a dilute limit

so that means the number density is very small means they are very few Bosons in your volume

V.



Alternatively if you do not want to do that you can fix the number of Bosons in your system to

be as many as you want but then you have to pay the price that if you want to make z very small

you have to make β  very small which is the same as studying a very high temperature limit of

the Bose gas. So that is also the classical limit so you can see the dilute limit is the same as the

classical limit.

So you can see that that is also the same as h bar tends to 0 so if you choose not to do either of

these, you fix  ρ, fix  β  and you still want z to be small the only other way is to make ħ → 0

which of course you cannot do in nature but I mean mathematically you can see then that is

equivalent. So z being very small is the same as either thinking of dilute limit where the ρ is very

small or if you do not want to do that you think of  β is very small which is the same as high

temperature or the classical limit or alternatively the other version of the classical limit this ħ →

0 where ρ and β are fixed, alright.

After that long preamble so let me get to the thing which I want to study so I am going to find the

energy per particle so I have to divide the expression between the total energy of the bosons

divided by the total number of particles. So when I do that I get this expression and remember

that z is really small so because of that the leading contribution to the energy particle is precisely

the classical result 3/2 T.

So remember that the energy per particle of a classical ideal gas is 3/2 T because its U = 3/2 NT

but per particle is 3/2 T. So that would be the leading contribution here and there is quantum

correction caused by the fugacity and which can of course be expressed in terms of density. So

this is the classical limit of a quantum Bose gas okay semi classical limit the strictly classical

limit would be this this would be the leading correction to the classical limit.
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Alright so now let us discuss the other extreme so remember I have told you that z the fugacity is

always between 0 and 1 so what I have studied is one extreme limit where z is close to 0. So I

can study the other extreme where z is close to 1 of course you might be wondering why am I

studying various limits why not leave z as it is the answer is that of course the general expression

are already there but the point is they are not illuminating they do not teach you anything it some

ugly looking formula that you have to stare at and believe.

So by studying limits what you are doing basically is that you are trying to get a feel for the

subject you are trying to see what happens if I you know increase this parameter keeping the

others fixed what type of physics am I recovering from that or it does the system go to this

situation or that situation so that is what you are trying to get a deeper understanding of those

formulas themselves so it is not physics it is not fixed it not just about deriving formulas it is

about getting a feel for what those formulas mean practically.

Alright so in order to do that I just finished studying the limit where z was close to 0 now I am

going to study the other limit where z is close to 1 so that is same as saying you know this 1  - z

is close to 0. z is close to 1 as same as saying 1 – z is close to 0 and remember 1 – z is positive

because z is less than 1 okay so now if I go ahead and naive expand in powers of 1 – z you know

I just remember that I have to evaluate this and if I just decided to think of 1 – z as a small

quantity and try to expand in powers of that as we disappointed because of course I am going to

get this which makes some sense.



But I am going to also get start something bigger in the denominator and that is going to cause

divergence for small values of R. So all the higher terms are going to diverge so implying that

there is some kind of an singularity at z = 1 is a some kind of singular point that I cannot really

expand and I mean it is a false assumption to say that you can expand in power of 1 – z so that

would be possible only if your answer and analytic function of 1 – z.

So what this is telling you is that it is not which is by all this coefficient are diverging. So now

the reason why it does not work is because so this is trying to tell you something that when R is

small so when the z is close to 1 the R = 0 is going to be problematic.

(Refer Slide Time: 27:38)

And in  fact  what  you  can  do  is  you  can  start  off  with  remember  that  this  was  really  the

expression for the total number of particles so I am kind of deliberately separating out a term

which corresponds to εj = 0 so why am I doing that? I am always allowed to do the mathematical

identity I can always do this because put together sum over all εj and the reason why I am doing

this is because you see when z is close to 1 this is going to be divergent see if z is not close to 1

this is some number of the order of unity.

So if z is between 0 and 1 so suppose z is half this some uninteresting number of order unity but

however this is proportional to the size of the system because this is if the rest of the energy level

this is sum over the rest of the energy levels. So if z is not anywhere close to 1 then I might as



well you know ignore this in favor of this, separating without this term does not really give me

anything I mean there is no mistake or benefit to doing this.

So if Z is not close to 1 but the point is that as Z starts approaching 1 see there is going to be a

stage which is reached where this quantity is going to be as important as this quantity. So as you

approach z tends to 1 this was huge because it was proportional to the size of the system there is

a sum over all the energy levels except one of them. So it is still proportional to the size of the

system and this was going to be of order unity for the most part except when z tends to 1 it is

also going to start increasing until the stage is reached when these two becomes comparable.

And that is the situation I am interested in when z is incredibly close to 1 so much so that this is

of the same order the first term which I have separated it out is this the same order is the rest

which is proportional to the size of the system. So in other words when εj is not 0 there is no

singularity  in  the  denominator  now  I  can  impunity  replies  the  summation  with  integration

because with the confidence that  it  is not going to be mathematically  ill-defined there is  no

divergent because now R is not 0 so it is safe to do this thing ,this correspondence.

So now it is so happens that this has a particular name that we can assign it to our notation we

denote this by N0. N0 is what is known as the number of Bosons in the condensate so remember

that is some kind of a number because if this is the total number of particles and this is that total

number of particles you know not including  εj = 0 and this by implication as to be number of

particles with εj = 0.

So that is called the condensate so that means the if there are macroscopic number of particles

with  εj = 0 that  is  what known as the condensate or in that  phenomenon is known as Bose

Einstein condensation.
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So now let us see what we can do with these formulas and so it is so happens that now I can

evaluate this integral by expanding of course not in integer powers of 1 – z but then I have to you

know in appeal to my knowledge of this poly log function, so I am gonna skip this derivation so

you can just do it yourself on some you know some symbolic algebra package like mathematica

and you get your I mean if you do it without any further assumptions it becomes the poly log

function.

And so it is  Li3/2(z) and then you expand that poly log in powers of 1 – z and you will see that

mathematica or any of those symbolic packages will tell you that the leading term is this the next

leading term is non-analytic in 1 – z which is why you are getting all those things you will have

it is when you try to do a name Taylor series. So the name Taylor series does not work in this

case because the dependence is actually non-analytic in 1 – z so because they are no, it is not just

integer powers half integer powers as well okay.

But so happens that you can write down the series, now when z is close to 1 what this is telling

you is that you can regardless of whether analytic or not you can simply throw away all these

term. So when z approaches 1 so remember that z approaches 1 is the interesting limit because  z

is breathtakingly close to 1 it is only then when this is microscopic I mean even is z this slightly

far away from 1 abruptly drops to some quantity of order unity so it has to be extraordinarily

close to 1 otherwise what we are saying will be uninteresting.



So if z is extraordinary close to 1 we can certainly drop all this in which case we end up with this

result that the total number of particles is the total number of particles in the condensate which is

remember now microscopic times the volume of the system times the universal constant and of

course it involves the thermal wave length here. So it so happens that this is now we can write

down an expression for this ratio N0/N which is the fraction of Bosons in the condensate you

know as a ratio of total number of Bosons in the system.
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So you can see by definition that fraction has to be between 0 and 1 and then you can derive a

formula for that condensate fraction as it were and you can express it in terms of that temperature

because remember that this was thermal wavelength which was dependent on temperature in this

fashion and you can go ahead and re-express the condensate fraction in terms of temperature and

then  you can  write  it  in  this  compact  and appealing  form where  it  the  condensate  fraction

becomes 1 minus that temperature in units of some characteristic temperature called Tc
3/2 .

So this is a very classic standard result in Bose Einstein condensation and this characteristic

temperature scale it depends on the density of Bosons in your system and this is known as the

Bose Einstein condensation temperature. And if you are wondering about this so funny symbols

this is nothing but a ζ function having you do not have to strictly know what it is because after all

I got it from simply using my symbolic package to you know expand it is in power of 1 – z in it

just gives me this funny looking numbers and they are not funny to a mathematician they know

very well they called zeta functions.



And but then you know if you want to know numerically what it  is 2.612 etc.,  I  mean it is

approximately 2.612. So as a result the Bose Einstein condensation temperature is the density of

Bosons raise to two thirds times of whole bunch of constants. So you can see that I can also

express my z in terms of the temperature and this is very clear that z is 1 unless T starts to

approach Tc so far so long as T < Tc so this only works at low temperatures so low compared to

Tc small formalism.

So when temperature is less than Tc immediately remember that this N is huge, because N is

huge this thing less important so immediately this becomes 1. So it only this is going to break

down only when you really close to Tc . So for the most part z is 1 so I am just a consistency

cross check so you do not pay too much attention to this important thing is this one. This is the

condensate fraction as a function of temperature.’

So you can even plot this so it is going to look like this I forgot to plot it, so I can plot it out right

now so it is going to look like this. So this is my Tc and this is 1 so when at absolute 0 it looks

like this then it drops and then at Tc it becomes 0. 
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So now you can just repeat this activity for, so remember we just did this for that total number of

particles so the density, number density so the particle now you can do the same thing for the

energy density of the particles, the similar Taylor series, then here too you get a non-analytical



coming to first term appears analytic in 1 – z where the very next term is not so even here you

cannot really do a naïve Taylor’s series.

So now you can rewrite this in terms of remember that z is breathtakingly close to 1 so that is

amplified by this correspondence which is just 1 – z = 1/(N0+1)  where N0 is the number of

Bosons in the condensate which is enormous and because of that 1 – z is incredibly timing which

is why I am a entitled to ignore them. So I am entitled to ignore this term and etc., so as a result I

am able to write down my energy in the system and related to temperature.

So long as temperature is small compared to TC, so when temperature is small compared to TC

the enormous number of Bosons in the condensate and I am able to do this so if I know the

relation between the total internal energy and temperature I can write down the specific heat at

constant volume remember that volume is fixed in my analysis till now. So by definition I am

calculating the specific heat at constant volume.

So when I do that I get a result which says that it is a this specific heat at constant volume is a

proportional 3/2 T . T3/2   because remember that there is a  β3/2 there and there is a beta so the

energy density is actually proportional to temperature raise to 5 halves, okay. So and   dU/dT

 is proportional to T3/2 so that is how it works okay.

So now I can rewrite it in terms of I mean I can get rid of all this horrible looking constants and

re-express it in terms of this nice thing which we have called a condensation temperature and

there is this interesting looking formula that emerges which says that specific heat of an ideal

Bose gas at low temperatures is proportional to temperature raise to 3 halves measured in unit of

the condensation temperature.
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So as a result I can do the same thing with my total internal energy, I can re express it in terms of

TC rather than those ugly looking constants which now you know total internal energy it allows

me to express or write down my equation of state. So my equation of state is this pV =(2/3)U

regardless of whether I am studying classical gas or Bose gas or Fermi gas so long as ideal and

as a result the energy versus momentum dispersion is p2 / 2m in all three of them, all three cases

and lastly I am working in 3 dimensions that means my gases occupy 3 dimensions of space.

So if somehow they occupy only two dimensions this is not going to be valid anymore this was

specific heat at constant volume. But then if I want to get specific heat at constant pressure what

I should be doing is calculating what is known as enthalpy so if you remember I have explained

to you earlier there is a formula for that which is used as pV and that is going to be five thirds U

and then the rate of change of enthalpy with temperature will give me specific heat at constant

pressure that is five thirds the specific heat at constant volume.
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So now just  for  sake  of  completeness  I  am going to  study the  case,  so  this  was  when the

temperature  was  less  than  TC when  there  are  was  a  macroscopic  number  of  Bosons  in  the

condensate, now imagine that temperature is larger than TC but not so large that that the system

approaches the classical limit where if it approaches the classical limit then of course it is we

already studied. 

So now imagine that the temperature is slightly more than TC in which then all of the sudden

there are absolutely no Bosons in the are there will be only you know of order unity Bosons in

the condensate so the number of bosons in the condensate is no longer macroscopic is only a few

so now I can go ahead and study, I want to study what happens when the temperature is slightly

above TC.

So in order to do that, if you remember the general formula where these so that density was

related to z in this general fashion and the energy per particle was related to z also in this general

fashion. So now what I should be doing formally is getting rid of this z and expressing it in terms

of ρ and T and putting that back in here and the energy is going to be function of temperature

and density of Bosons.

So as a result I am being called upon to invert this relation which tells me that z is related to so it

is called w times this whole bunch of numbers I mean rho times the density of Bosons times the

whole of things like this I have given it as new name I’ve called it w so the. So now I am being



called upon to invert this so write z as a function of w because then I can go ahead and substitute

that here and there then I will be getting because w is ρ and temperature so I will be expressing

energy per particle in terms of density and temperature rather than this unusual looking object

called fugacity, okay.

So question is how would I invert this so this looks formidable because this poly log function is a

little bit unfamiliar to me inverting this is going to be even more unfamiliar. 
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But  fortunately  there  is  a  general  method  for  doing  that  and  so  that  is  go  by  the  name of

Lagrange’s inversion theorem. So it is nice to know this things because you never know when

you will use them because may be in this example is not that important but there will be stage

where you know you might be we might require it if you do not know where it is you would not

be able to use it.

So the Lagrange inversion theorem is very interesting what it says is that so imagine that there is

a equation like this which I want to invert so that means w = f(z) and I want to write z in terms of

w so I want to inverse so I want to write z = f -1(w). But imagine this is possible to do only if so

this is going to be possible only if f is analytic in z at some value of so let us assume that z is

equal to 0 that you are talking about.



So imagine that f is analytic around 0 so what that mean is that I can do a Taylor series around z.

So this so in other words the implication is f can always be written like this so if cannot be

written like this method does not work, so if imagine that f can be written like this. So if f can be

written like this then it is so happens that Lagrange inversion theorem guarantees that z can be

written in terms of w in this fashion.

So you can write z explicitly as 

                                                            z = Σn=1
∞gn (w-f(0))n/n!

which can be calculated, so Lagrange inversion theorem gives a formula for that coefficient as

something like this, it is the limit as z → 0 is n – 1 th derivative versus ratio. So now I can go

ahead and applied to poly log function so remember that I wanted to invert this w = Li3/2(z) and

question is how do I invert that? I use the Lagrange inversion theorem.

And I am able to write when f is 0 poly log is 0 because remember poly log is 

                                                        Li3/2 (z) = z+z2/23/2+z3/33/2+...

So z is 0 this whole thing is 0. So as a result this f(0) is 0 so I can write z in terms of w in this

fashion  where  these  coefficients  can  be  computed  explicitly  but  unfortunately  you  cannot

compute this nth term.

You can just list them just one by one n = 1, this is for n = 1 this for n = 2 so called g n = 1 is 1, gn

= 2 is – 1 /21/2 like that. So I have listed whole bunch of them I mean I did not do by hand of

course I  use my favorite  package this  is  called  mathematica  it  is  just  turns how the all  this

numbers. So clearly this method works certainly well for dilute systems.
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So in which case w becomes this and so for dilute systems we already know how it works. But

what is more interesting is this, so if z is close to unity then how does it works so the general

relation is that so when z is close to unity I can always write like this okay so that is what this

says. So even though it works well for dilute system it doesn’t mean that it does not work at all

when w is close to 1. So it kind of works even otherwise so when w is this and Li 3/2 is w I can go

ahead and write this relation.

So now if I expand close to 1 so I write as z as 1 + z’ and T as close to TC so remember T is

larger than TC but close to TC and because z is always less than 1, z’ has to be negative okay so it

is negative and small compared to 1 because then 1 – z is close to 1 and less than 1. Alright so

now if I expand in powers of z’ and also in powers of p’ so then I get this expression okay so and

z becomes so I can rewrite as z in terms of T – TC and that allows me to cut a long story short I

end up getting relation for the number of so the total energy per particle to be this.

So why do i do all this that means seems like a lot of work for what reason I have not told you

yet. The reason is the following, now that I have spent so much of effort and got an expression

for  the  total  energy  per  particle  for  temperature  slightly  more  right  than  the  condensation

temperature.  Now I can go ahead and ask myself  what is the specific  heat of this  Bose gas

slightly more than the condensate temperature and that comes out by just differentiating this with

respect to temperature and get this answer.



And this answer is actually the same as what it is for T slightly less than TC, T close to TC but

less  than  TC so  it  is  so  happens  that  the  specific  heat  across  the  condensation  boundary  is

continuous so the specific heat does not change abruptly okay. So only the total internal energies

changes abruptly the specific heat does not change okay. 
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So now we can go ahead and write down you just let me consolidate my formulas here so one

can use this U that I have derived so remember that pV=2/3 U in general so I can use that to

write down my pV the equation of state for a Bose gas and Fermi gases follows. So when T is

less than TC my pV is related to temperature in this fashion, when T >TC is related to temperature

and this fashion and when T >>TC it is just the classical ideal gas okay.

So for an ideal Fermi gas we can write the equation of state in this fashion and for T << μF if this

and for T >> μF it is again the classical ideal gas. So this is a nice consolidated table of formulas

for the equation of state of an ideal Bose gas and an ideal Fermi gas okay. So I am going to make

use of this in next I am stop here now. So in the next class I am going to make use of these two

ideas and you now persuade you to believe what is known as the virial expansion of the equation

of the state which is by useful because in situations.

Remember we have studied only ideal gases so if you go ahead and study a gas where there are

interaction  between  molecules  then  it  is  no longer  clear  because  that  is  a  very  complicated

problem in general. So if the molecules interact with each other then it is a hard problem and but



however you can make some head way into analyzing that through what is known as the virial

expansion of the equation of state which is motivated by starring at this ideal results we obtained

so far you know by consolidating them which is the classical ideal gas and the quantum Bose gas

and quantum Fermi gas.

So by studying these three equations of state we can kind of guess what the form of the equation

of the state might be in general so that I called the virial expansion I am going to use that later on

and to motivate you know study of the non-ideal classical fluid which is known as the Van der

waals fluid. So I am going to come to that gradual thing okay I am going to stop here now and

hope you will join me for the next class this is going to be all over real expansion Van der waals

fluid and so on, okay thank you.


