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Okay, let us continue so if you recall this is how we started, we imagined that we have a system

that is in contact with a reservoir so there is a small system, well it is small compared to the

reservoir but it is still you know huge in terms of the number of particle is much larger than 1. So

we are going to assume that all the time, so this system is in contact with a reservoir and I am

just going to you know fast forward because I have already told you that we have imagined a

situation where the system is allowed to exchange energy with a reservoir or the surroundings

but not anything else.

So in other words its volume and number of particles are fixed so when you do that you can

count the number of ways in which you can rearrange the microstates of the system and the

reservoir such that the total internal energy of the system is U1 and because we do not really care

about U1 because that keeps fluctuating. 
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So what we have to do is find the total overall number of ways of doing it and that is the sum

over all the U1’s. Because they are all independent ways of rearranging the microstates so now

you can ask yourself like we did earlier what is the most probable value of U1? and then that is

found by maximizing this entropy, I mean rather this product which tells you the number of joint

number of ways in which you can rearrange the microstates of both the system as well as the

surroundings.

When you do that you are able to ascertain or you are able to convince yourself that there is a

physical meaning to the slope of the entropy versus internal energy it is not merely formally

defined as the reciprocal of the absolute temperature rather the physical meaning is that it is the

temperature  is  what  equalizes  when you allow two  systems  in  thermal  contact  to  approach

equilibrium.

So temperature has a very concrete physical meaning which is exemplified by this relation and

this is something we rigorously derived by looking for the most probable configuration or the

most probable energy which accomplishes this and so I told you that if you now start allowing

for the walls of the container to be flexible so that it can compress and expand then naturally

because work gets done.

So energy also gets exchanged so we are compelled to also imagine that not only the volume but

also the energy fluctuates but then the total energy of the combined system of the reservoir and



the system of interest  remains fixed and so does the volume. So now you can ask the same

question about the most probable volume of the system and what is the most probable energy of

the system and so you get  two different  equilibrium conditions  one is  the usual  equilibrium

condition which forces us to equate the temperatures and the because the well the other condition

forces us to equate this slope of the entropy versus volume on the reservoir side equal to the

system side.

Now the slope of the entropy versus volume according to thermodynamics is the ratio of the

pressure  in  the  temperature.  So  recall  we  have  just  noticed  that  we just  equated  these  two

because energy gets exchanged and they reach thermal equilibrium so temperatures are anyway

equal so because the ratio of p and T have to be equal and the temperatures are already equal that

also implies that the pressures are equal.

(Refer Slide Time: 04:38)

So this is where we left off last time so now I am going to go ahead and see if I can do this the

similar thing to what I did well okay even this also we did earlier. So in order to study the overall

number of ways in which you can rearrange the system what you do is you look at the entropy of

the reservoir and then you realize that U is much larger than U1 so you can do a Taylor series like

this and then recall that this is nothing but the temperature the common temperature between the

system and the reservoir and then you can write it like this.



So I am going to show you later that it is legitimate to completely ignore the fluctuations around

the most probable state so what I have done here I have simply equated U1 to its most probable

value so the question is what gives me the right to do that after all there is a summation there

over U1. So if the implication is that the contributions from U1 different from the most probable

value is overwhelmingly suppressed compared to the most probable value and that is for systems

which are large in size which we will establish this a little later.

But for now let us assume that this is legitimate that I am going to legitimate on my part to

simply replace the summation and drop the summation and replace U1 by its  most probable

value. So in which case I end up getting an expression of this sort and so this eS2 goes outside

because that is the reservoir which I do not care about. So if I look at only the system so I end up

being able to write something like this.

So the net way of rearranging the microstates of course the net way of doing that for the reservoir

times the system because it is in contact with the reservoir it is no longer eS . So the influence of

the reservoir has to be now taken into account. So it is taken into account through what is known

as the free energy of the system. So the free energy is defined as the difference between the

internal energy minus the temperature times the entropy at its most when evaluated at the most

probable value of the energy.

So now of course the very term free energy implies that it has some physical meaning and indeed

it does, so the answer I mean the physical meaning is that free energy is that energy which is

available for you to utilize to do work. So it is something that is left over after you know all the

entropy exchange I mean the energy exchanges are done and then there is some of that energy

gets irretrievably lost in entropy and whatever remains is basically what you can use to do work.

So free energy therefore is the energy that remains for you utilize to do work you know useful

work. So this  is what is known as Helmholtz  free energy so now I am going to repeat  this

calculation when I allow the walls of container to not be rigid. So in other words I allow of the

walls of the container to move around.
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So as a result I told you already that not only the volume can fluctuate but also because if I allow

the walls of the container to move around work gets done. As a result the internal energy also

fluctuates so as a result I have to take into account both these processes and when I do that i can

do something similar to what I was doing earlier namely this was this is the system so rather this

is the reservoir and the reservoir entropy is now a function of U2 and recall that 

                                                                U2 = U-U1

So it also depends on the volume of the reservoir which is V2 and V2 is the difference between

the total  volume of the combined system and the reservoir which is fixed and the difference

between that and the volume of the system V1 which fluctuates. So now as usual as it was in the

earlier case we may Taylor expand in powers of U1 and V1 and we end up with this expression

because now the coefficient are nothing but the slopes of the entropy versus energy which is

reciprocal temperature and slope of the entropy versus volume which is pressure by temperature.

So now as usual we are entitled or we take the liberty of replacing the energy of the energy and

volume I should have ,sorry there is a volume summation as well, so the energy and volume of

the system by it is most probable value and its most probable values are determined by equating

the temperatures on either side of the system and reservoir and the pressures as well. So you have

two equations and two unknowns which get fixed the two unknowns being the most probable

energy and most probable volume of the system.



So as usual as before rather we will be able to identify this difference this plus this so in other

words this plus this has a special name and that goes by the name of -βG. So the Gibbs free

energy is therefore defined as 

                                                                    G = U + pV – TS 

so remember that Helmholtz free energy where you only allow energy to get exchanged between

system and reservoir was U – TS.

Now because you are also allowing volume to fluctuate you have an additional term called pV1
*

that is the most probable value. So this is called Gibbs free energy and this term here as a special

name it is called enthalpy and it is sometimes denoted by H. So it is a so in other words Gibbs

free energy is enthalpy minus TS just as Helmholtz free energy was internal energy minus TS, so

here it is enthalpy minus TS.

So you can imagine that enthalpy is basically it takes on the role of internal energy when you

allow volume to fluctuate. So it is the counter part of internal energy when you allow volume to

fluctuate in that is called enthalpy. So now just as I told you that that Helmholtz free energy so it

is called free energy precisely because you can use it to do work here too this is called Gibbs free

energy precisely for the same reason.

But notice that the here when I say work I mean work other than the work that gets done because

of the volume fluctuations so that is discounted because that is already taken into account that is

not useful work that the system kind of tries to adjust itself. So you cannot do much about this so

you cannot extract any further energy and do additional work. So that is taken away so when you

take that away what remains is the energy that you can utilize actually to do work and that is

called Gibbs free energy.
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So now well  that  was  a  nice  physical  description  of  free  energy  and  also  temperature  and

pressure so I have told you what they mean physically in terms of you know quantites becoming

equal on either side under various condition of the equilibrium so that is a physical description

which is very useful and important. But now I am going to switch gears and also tell you about a

geometrical or mathematical geometrical description of Helmholtz free energy. 

So it is interesting to note that not only does the Helmholtz free energy and therefore also Gibbs

free energy, I have a physical meaning which is easy to follow but it  also has an important

geometrical meaning which is also easy to follow. So in order to understand the geometrical

significance of Helmholtz free energy so imagine there is a plot suppose I plot the entropy versus

internal energy.

Of course I have purposely plotted it as not a straight line but in fact you should be wondering

why it  is  not  a  straight  line  because  that  appears  to  violate  extensivity.  So  we are  actually

purposely considering situations where extensivity is mildly violated because we are going to not

operate  in the thermodynamic  limit.  So I  have told you extensivity  is  mandated  only in  the

thermodynamic limit.

So if I relax that a little bit then it is the entropy function need not be completely extensive so it

can only be approximately extensive.  So if  you remember that I told you that this I mean I

claimed without proof that this goes through a maximum but that is actually a contradiction if



you really assume that S1 and S2 are truly extensive. So if they are truly extensive then you see

these  are  just  linear  functions  of  U1 and  V1 and  there  is  no  chance  that  it  goes  through  a

maximum.

So linear function never goes through a maximum it just keeps increasing or decreasing so it

never goes to maximum. So obviously already here when I say this what I have in mind already

is  you know I have something in  mind namely  that  I  am eventually  going to  accommodate

deviations  from thermodynamic  limit  which  leads  to  deviations  from extensivity,  so  that  I

already had in mind when I made these assertions because this would never reach a maximum or

the most probable value would not even exist if that were not the case.

So if I strictly assume extensivity I would never be able to convince you that this product goes

through a maximum. So I have to accommodate non extensive entropy and it is not scary I mean

it sounds scary now but you will see that it is not that difficult to incorporate non extensivity in a

systematic  way  around  the  basic  result  namely  the  extensive.  So  small  fluctuation  small

deviations around extensivity can be accommodated easily.

So that is what we have in mind here so when we plot the entropy function versus internal energy

and we purposely assume it is not extensive,so it is not a straight line in other words so there is a

kind of  curve here.  So now you see you could  either  choose to  describe  this  curve so you

traditional way of describing any curve is to just mark out points on the curve and what are

points? Points are just ordered collections of two number one number is corresponds to the x axis

and the other is called ordinate and abscissa for those of you who are familiar to those terms.

But  otherwise it  is  just  a  x  axis  and the y axis  labels  I  mean the  components  rather  so by

specifying the you know the x coordinate of that point and the y coordinate of that point and

whole bunch of such points and you should join them all by a smooth curve and that is how you

describe a curve typically by listing all the points on the curve. But it so happens that there is a

alternative way of describing a curve which does not involve listing all the points that lie on the

curve.

So the alternative way of doing that is to instead list a whole bunch of straight lines such that a

unique curve can be drawn which is tangent to all of them at the same time. So in other words so



what you do is you draw a whole bunch of straight lines like this and then you ask yourselves

which curve is tangent to all these lines means of course at different points.

So they are all tangent to the curve at different point so the different straight lines are tangent to

the same curve at different points but then the curve itself is unique and a whole bunch of such

straight lines. So it is so happens that you can instead of listing all the points that lie on the curve

so the alternative way of thinking about the curve is to list all the possible straight lines, the

family of tangents to the curve.

So that is the that is what we are going to do now so let us do that mathematically, so suppose S 1

vs U1 is given now just focus on a particular value of U1 called U1
* and so remember that we

have been calling the most probable value. So now suppose I draw a straight line tangent to this

curve S(U) so what is the equation of that straight line it  is going to have a slope which is

corresponds to S’(U1
*) and it also has the value of S(U1

*) at U1. So in other words if U = U1
* then

U1
* = S(U1) because I mean they should touch I mean the straight line should touch the curve.

So the y coordinates of the curve and the straight line have to be the same at the place where it

touches and the place where it touches is U = U1
* . But then not only should it touch it should

also touch in a tangential manner so in other words so how does one ensure that the straight line

in the curve touch in a tangential manner, the way you ensure that it is by equating the slope of

the straight line with this slope of the curve and which is why I have written it in this manner and

that this way of doing it accomplishes that. 

So now that I have got a straight line notice that this straight line is the unique the moment I pin

down what is U1
* and nature of the function S(U) this straight line becomes unique. Now because

it is unique I can ask myself what is the value of the y intercepts so in other words if U is 0 so

what is the value of y? So that is precisely what is known as Helmholtz free energy so that is the

geometrical meaning of Helmholtz free energy, it is the y intercept so of course there is -β there

but other than that it is proportional to Helmholtz free energy.

So Helmholtz free energy is proportional to the y intercept of the tangent to the entropy versus

the energy curve okay. So that is the geometrical meaning of Helmholtz free energy.
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You can see this happening for example by this animation that I just created, so this is the family

of tangents. So you see that each point on the curve I can draw one tangent another tangent so the

collection of all those tangents is specifying a collection of all those tangents is the same as

specifying points on the curve. So notice that in order to specify a straight line which is basically

what a tangent is you need two numbers, one is the slope and the other is the y intercept. So you

have learnt that probably in your primary school already.

So by specifying the slope and the y intercept uniquely pin down a straight line but what is the

physical meaning of the slope here. So this slope is just the inverse temperature and now the y

intercept I have just given you a new interpretation and that is -βF. So what you are doing in a

sense is specifying a straight line by a pair of numbers so the first entry in that pair is the inverse

temperature of the second entry is Helmholtz free energy divided by –T which is temperature

with a negative sign.

So by providing these two by providing these two numbers it is the equivalent of providing so

there is alternative rather to providing U and S(U). So in other words you do not have to provide

point that lie on the curve you can alternatively provide the details about the tangent to the curve.

So this way of thinking about a curve so in physics the S vs U curve is called a micro-canonical

description of the system.



Canonical I already told you what it means, canon means you know some rule book, so micro

canonical because it kind of talks about combinotorics and counting and that sort of things it is

very  microscopic  which  is  called  micro-canonical.  So  the  tangent  way  of  doing  things  to

describing  that  curve alternatively  as  a tangent  rather  than a  collection  of points  is  called  a

canonical description.

So that is the physics terminology,  mathematics  people call  this  transformation between you

know thinking of the curve as a collection of points versus thinking of the curve as the collection

of tangents so that is called in mathematic language it is called as Legendre transformation okay.

So that is the name, so the free energy is sometimes called as Legendre transform of the entropy

function.
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So that is so much for the geometrical description of Helmholtz free energy so similarly also for

Gibb’s free energy. So let us get to the important thing which we have kind of glossed over

which is something I told you already, so I told you that if you I kind of pretended that for

instance this goes through a maximum as a function of U1 and I did not actually prove it and that

seems untenable if you assume extensivity.

So I already told you this is proportional to U1, this proportional to U – U1 which is U2 there is no

chance that this whole thing goes from through maximum because it is linear in U1. So obviously

there is something missing and what is missing is what is referred to as fluctuations and that is



something we will have to get into right now okay. So what does that mean so the idea is that we

of course do not stop here.

So what we do is we do a Taylor’s series around U1
* so remember that U1

* is the most probable

value of the internal energy of the system. So what I do is that I expand in powers of U1 – U1
* so

that is my small quantity so I am close to the most probable value of the internal energy. So I go

ahead and expand but then instead of stopping here and I am mandated to stop here if my entropy

function is truly extensive and then but then it is not because it is not I am allowed to or I take

the liberty of going one step further.

So if I have a small deviation from extensivity I have to go one step further and I end up with

this  mixed term here.  So recall  that  the slope is  of course continues  to be the reciprocal  of

temperature  so in  order  for  S1 to  reach a  maximum it  is  imperative  that  this  S,  the  second

derivative being negative. So we going to assert that this is negative and we are going to give a

name to second derivative of the entropy versus internal energy at the most probable value and

that is in terms of what is called the specific heat per particle.

So CV is V stands for constant volume so we will get to that later but right now is just a name so

it is a whole bunch of things the important thing is there is a minus sign there and of course there

is an implication that the second derivative of the entropy function with the internal energy is its

reciprocal is extensive. So which is why I pulled out N1 which is the number of particle so the

implication is temperature which is already intensive and CV means specific heat at  constant

volume per particle.

So that is the meaning of that and because it is per particle it is an intensive quantity so why do I

have the right to claim that the reciprocal of this is extensive because if it is extensive and it is

negative I have a right to say something like this, otherwise no. So how, what gives me the right

to assume all this, negative I already told you because otherwise this would not go through a

maximum but extensive is easy to see because after all what is S’’ I mean two derivatives that

means you take one derivative this becomes intensive and then you take one more derivative

which is so this is intensive quantity one by temperature and then this is U in the denominator so

it is 1 by extensive quantity so that is why I have written this as 1 / N1.
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So now let us rewrite my you know the net way of doing things so what is this given as new

symbol to this I do not want to confuse people so let me write down what this is this, this is

nothing but

                                                            ωnet(U1) = Ω2(U-U1)Ω1(U1)

 so that is what that is so I am just given it as a different name. So notice that is still a function of

U1 because I am taking into account fluctuations i have not replaced U1  by U1
*. 

So U1 is still available so if I choose to replace U1  by U1
* I get back my old result which is this.

So in other words this product is nothing but the number of ways of rearranging the microstates

of the reservoir times the e-βF we did this already but what is the ingredient is this one and this is

because of fluctuation so I am now taking into account the possibility that the entropy function

may not be fully extensive.

So as a result I get a distribution of this sort and of course I have skipped some steps here and I

encourage you to go ahead and fill in some of those steps yourself because it is very hard for,

you know it does not look nice for me to include all the steps in a presentation of this sort and in

any event you will be lost if you do not do it yourself. So this subject I already told you several

times that physics is not learnt it is not like watching a movie on your you know Laptop screen

or it is actually you know taking a piece of paper and pen and working out following along

working out the details as a instructor explains things to you.



So we end up with this expression which tells me that the overall ways of doing things where the

internal energy is U1 is the most probable times value of fluctuation, so now I can go ahead and

add up all the U1’s and unlike the other time when I you know took the easy way out instead of

summing over all the U1’s. I just choose to replace it by its most probable value so now I am

going to do something less lazy which is actually you know some over all the U1’s.

But notice that I am doing a classical physics type of analysis so the energies are not discrete so

in other words summation here summing over all U1’s is the same as integrating over all U1’s. So

even if U1’s are positive of course I mean I have at the back of my mind some kind of ideal gas

where its energy is mostly kinetic energy and it is positive and well as a result the lower limit is

U1 but then you know I have the liberty of replacing the lower limit by -∞ if I can convince

myself that the contributions from U1 all the way from -∞ to 0 can be neglected so it is like I have

just added a whole bunch of zero’s.

Because i have included a new range I have to strictly start from 0 and go to ∞ but by making this

approximation the claim is that you can go all the way from -∞ to  ∞ because -∞ to 0 hardly

contributes anything and that is going to be the case only if I can convince myself that you know

if, I mean what is the maximum value of this integrand in that region of U1 being -∞ to 0.

So the maximum value is when U1 is actually 0 so I mean when it is anything bigger than 0 is

even when it is not bigger than so notice that U1 is on the negative side. So it is a so you either

have 0 or something slightly negative or even more negative. So if U1 is very very negative

notice that it is U1 – U1
* so that is already a very negative and very negative makes this highly

suppressed it of e raise to minus very negative squared.

So that is a large quantity and it suppressed but however the way to minimize this is to make U1

as less as possible from the negative side. So in other words makes its magnitude as less as

possible which is basically make it approach 0. So in other words all I have to make sure is that

even if U1 is 0 this is still negligible so if it is negligible when U1 is 0 its certainly going to be

negligible when U1 is more negative than 0.



So how do I convince myself that it is negligible when U1 is 0 you just have to realize that U1 is

extensive and it is just a number of particles times some intensive quantity so long as that is

much larger than this quantity so in other words I am just convincing myself that U1’s is much

larger than 2T2 NCV and that is certainly going to be the case because U1 is extensive which is

proportional to the number of particles.

And the square of that is going to be huge compared to this quantity which is proportional to the

number of particles so the left hand side is proportional to the square of the number of particles

the right hand side is proportional to the number of particles. So that is certainly justifying so

given that is justified now we can also form a probabilistic interpretation of this expression that I

just wrote down and the probabilistic description is like this.

So suppose I ask myself suppose I have a collection of system plus a reservoir suppose I have

many copies of that okay so I have copies of system plus reservoir I have a huge number of

copies so I randomly you know put my finger on one of those systems and I ask myself what are

the chances that the energy of that system is between U1 and U1 + dU1. 

So the answer is that is of course going to be proportional to dU1 because it is so I mean so I am

asking what are the chances that the energy of the system is between U1 and U1 + dU1 is certainly

proportional to dU1 but then it is also proportional to this quantity because after all this is the

number of ways in which you can rearrange the micro states of the system and of course the

reservoir such that the system’s energy is U1.

So it is going to be proportional to this because this is the number of ways in which you can do

that, so as a result I am entitled to make this claim that the probability. So if you have and this

called an ensemble so this imaginary collection of system plus reservoir, so many Xerox copies

of system plus reservoir so these are mental copies that you make and this is called an ensemble

symbol. So this ensemble you can ask yourself what is the probability that in this ensemble the

energy of the system is between U1 and dU1.

So it is like so the answer is that you count how many systems fall in that window that means

with energy between U1 and U1 + dU1 and you divide by the total  number of systems in U

ensemble so that is your number of system which fall in that window and that happens to be by



definition  P dU1 and P is  the now the probability  distribution of finding that  system in that

window.  So  now  from  this  expression  it  is  clear  that  I  can  write  like  this  and  this  is  by

construction properly normalized well if I integrate all over U1 and I get 1.

(Refer Slide Time: 37:01)

So now I can go ahead and ask myself so remember that when I started off I kind of totally

ignored the fluctuations altogether but that was conceptually wrong because then you know if it

is  extensive  it  does  not  go  through  a  maximum  so  I  would  not  have  any  right  to  replace

summation over its most probable value. So obviously that is only valid if it goes most probable

value and it goes through a most probable value because there are fluctuations.

So it appears now that the it is a worrying situation because now it appears that I have to after all

take into account fluctuations because they appear to play such a central role. But then happily

we  are  not  in  such  a  difficult  situation  because  we  can  go  ahead  and  evaluate  the  precise

magnitude of that fluctuation. So what we can do is estimate what is known as the root mean

squared  deviation  of  the  energy  of  that  system  in  that  ensemble  so  using  this  probability

distribution.

So when you do that so recall that the root mean squared is defined in this way if you look at the

deviation  you square  it  and you take  the  mean.  So this  is  the  taking  the  mean is  basically

averaging over the probability distribution which is what I have done here, so when I do this I

end with this result but then notice this is the square of the deviation. So when I take the ratio so



now I look at  the deviation and I look at the ratio of the deviation of the fluctuation of the

internal energy the estimate rather.

So in that ensemble and I look at the ratio of that fluctuation with the most probable energy and

that comes to be inversely proportional to the square root of the size of the system. So this is the

very important result central result in statistical mechanics which says that when the system sizes

are large that even though conceptually fluctuations are important in order to ensure that you

know the number of ways in which you can rearrange the microstates actually goes through a

maximum.

So if  you ignore fluctuations  it  does not go through a maximum it  just  keeps increasing so

conceptually it is important for fluctuations to be there but fortunately the precise magnitude of

the fluctuations are not that important it is just the fact that they exist is important because when

you evaluate the fluctuations themselves they come out to be heavily suppressed by the number

of particles in your system.
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So that was mostly a classical description but then I can go ahead and also repeat this activity for

a quantum system. So recall that in a quantum system I had done something very similar to what

i did earlier for a classical system where I had you know energy, volume energy was continuous

that sort of thing that is what we have been doing till now. But now for a quantum system if you



recall  there were this funny angles called  θ and  φ over which I had to integrate  and then I

invoked something called as saddle point method.

Of course without proving it but when I said that it is legitimate to replace this by some star you

know some quantities called θ* , φ* these are the analogs for the most probable values that I was

taking about till now. So the quantum analogs of the most probable value but here too this makes

no sense at all if this w does not have a feature which is known as a saddle point. So it so

happens that it is only when this w was goes through a saddle point then you can do this.

So I am not I am not going to go through the technical details we can kind of postpone the details

to a later date or maybe you can look at up in any of the math’s books. But from a physics point

of view all it means is that just like in the earlier few slides I was compelled to take into account

quadratic terms which correspond to fluctuations here too that is all  I do the linear terms of

course vanish identically precisely because that is the definition that yields by setting the linear

terms in this Taylor series to 0 yields the definitions of.

So in other words these are obtained by setting the linear terms to 0 so you have 0th term then

immediately  I  jump to  the  quadratic  term so the  linear  terms  are  0  and which  leads  to  the

expression. So this is how I am going to stop so if I mean stop means stop the Taylor series. So I

have stopped the Taylor series at the quadratic term so let me evaluate these coefficients so these

coefficients are nothing but the second derivative of w with respect to θ and φ and then there is

mixed derivative with θ and  φ.
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So now w is defined in this fashion and then if I go ahead and evaluate this I get these nice

expressions. So for wθφ what does this mean? This means 

                                                wθφ = ∂θ∂φ|(θ,φ)=θ* , φ* wq(θ,φ)

so that is what that means. So similarly here it means you differentiate with respect to φ twice

and you put φ = φ* and θ = θ* . 

So when you do all that it is little bit tedious but it can be done notice if I differentiate twice

these thing go away. So only this survives and then I rearrange my terms and what is n j so

remember what nj was this is the number of the average number of ways in which I mean the

average number of Bosons or Fermions depending upon the value of q that occupies energy level

εj.

So nj is the average number of quantum particles in energy level εj and that happens to have a

mathematical expression of this sort so that is what that is. I am just recollecting, so bottom line

is that this wθφ has this expression wφφ has this expression and wθθ has this expression but what

is common to all this because they are very simple looking but what is also common is the fact

that they are intensive quantities because recall that this is a this is kind of a of the size of the

system.



So summing over all the j’s effectively counts the number of energy levels and each levels are

populated by particles so in some sense that becomes extensive so it becomes scales with the size

of the system. So that divided by n is basically an intensive quantity. So these coefficients here

they are intensive quantities so we have to keep that in mind as we proceed.
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So now we go ahead and proceed and we see that we can evaluate this integral and we end up

with this so when you take into account fluctuations the bottom line is the answer for the entropy

including fluctuations is related to the answer for the entropy by ignoring fluctuation which is

why I have called it  with the subscript extn meaning extensive entropy. So this  is extensive

entropy  and  then  there  is  a  contribution  due  to  fluctuation  which  leads  to  deviations  from

extensivity.

If you take the log on both sides you will see that it tells you the precise way in which entropy

deviates from exensivity. So of course you know this is not at all important if N is huge so keep

in mind that if n is the order of 1023 this is going to be proportional to 1023 this is so this is going

to be proportional to 23 because it is log of that. So 1 1023 is huge compared to 23 so it makes no

difference whether I subtract this or not.

So  for  huge  systems  fluctuations  just  like  conceptual  role  in  the  analysis  they  do  not  play

practical role so that is something to keep in mind okay. So I am going to stop here in the next

hour I am going to tell you what is an important notion known as specific heat so we are going to



study the specific heat of ideal gas, classical ideal gas, classical Fermi gas and Classical Bose gas

alright so hopefully you will join me for the next hour. Thank you.


