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Thermodynamics potentials

Welcome  back!  So  just  to  recapitulate  what  we  have  been  doing.  We  derived  the  one

dimensional  version of  the entropy of a  classical  gas of  molecules  and made sure that  it  is

extensive by taking into account the permutation of the number of particles thereby resolving

what we called the Gibbs paradox.           

(Refer Slide Time: 01:11)

 I also encouraged you later on in this slide to do this or think of this as a homework namely find

the entropy or generalize the one-dimensional example to three dimensions and get the what is

known as the Sackur-Tetrode formula of the entropy of an ideal gas. So the way you do that is

obviously very similar to what we were doing in 1D and that is it involves simply evaluating

such an integral and the way you do this is to rewrite the Dirac Delta function as a Fourier

transform and then you go ahead and do the rest.

(Refer Slide Time: 01:49)



So I am going to leave this to you as an exercise and when you finish with it you end up with this

formula. And this is the famous Sackur-Tetrode formula of the entropy of a classical ideal gas.

So notice that how we derived this in the traditional way namely the way it was done by the

pioneers and that is to divide up the phase space into pixels and populate those pixels with the

molecules and then learn how to count the various microstates subject to various constraints. 

So that is the conventional way of doing it and that gave us Sackur-Tetrode formula. And of

course there is a more sort of sophisticated way of doing the same thing and that is remember

that we took great pains in deriving the entropy of a quantum ideal gas. And we could go ahead

and use that expression and take the classical limit of that expression and also arrive at the same

formula.  So it  is  instructive to do it  both ways so that  you know the whole subject  is  self-

consistent.
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Alright so let us get on with it so how do we do that?  So recall that in the case of classical if you

want to take the classical limit of a quantum system you are compelled to choose the chemical

potential in such a way that this quantity in fact this is called a reciprocal of fugacity, eβμ  is

widely called fugacity. And so this would be reciprocal of fugacity or 1/ fugacity.

So and this is basically chosen to be proportional to h -3 . So that is because when you do this you

are able to successfully handle the classical limit of a quantum system that we have shown this

earlier. So as a result if I select this to be my constant c0 and the energy density in the classical

limit comes out to be this expression. So it is insensitive to whether it is bosons or fermions the

moment you go to the classical limit you see the expressions do not care anymore whether you

are describing bosons or fermions after all we are now entering the classical limit. 

So when you do that you end up having to do this integral and then you get this expression for

the energy per unit  volume of a classical  ideal gas. Now you could do the same thing with

pressure and so you should understand why I  am doing this  first?  Because if  you recall  the

entropy expression really had all these things in it the energy density, energy per unit volume

pressure and so on. 

So  I  had  better  calculate  these  first  so  the  pressure  and  of  course  these  will  be  useful

independently later on. So the pressure of a classical ideal gas is the h  → 0 , Planck’s constant

tends to 0 limit of the quantum version of the same quantity. And when you do this, when you



take this limit you end up with this expression this simple looking expression which of course

now does not involve either q which determines whether it is not bosons or fermions nor does it

involve h which is Planck’s constant. 

All right so lastly we will also be needing something over βμ in our expression for the entropy

has this quantity. And this Planck’s constant finally refuses to go away, you will see that the

expression for the entropy still involves Planck’s constant and that should not come as a surprise.

(Refer Slide Time: 05:44)

Because if you recall in the earlier expression there was this h’ . Which really did not have any

intrinsic meaning other than, what was this h’ if you recall it was the size of the pixel? So that

means I divided up the phase space which is made of x coordinates and p coordinates into small

bits and pieces of small squares and the area of each square small square and the area of each

square small square was h prime.

Now of course that h’ being a square in phase space in one dimensional phase space has the

dimensions  of  momentum times  length.  And that  is  of  course  there  also  the  dimensions  of

Planck’s constant so you should not be surprised if there is some relation between the smallest

pixel size that I have selected notice this is an artificial coarse graining and that it survives in this

expression so it does not go away so we are stuck with it. 



So now we are also similarly  going to  be stuck with Planck’s  constant  even though we are

studying the classical limit of an ideal gas. So we end up with this expression for βμ well in the

classical limit and this what it is. It is just you know obtained by taking logarithm on both sides

of this expression this was a choice we made in order to recover the classical limit. 

(Refer Slide Time: 07:17)

All right so now let me go ahead and substitute all these expressions into the entropy functions.

So notice that the entropy function has energy per unit volume which we have just derived, it has

pressure which we have just derived and βμ which we have selected earlier. So we have derived

the classical limits of the energy density of the pressure and of beta mu which we selected in

order to make all this work. 

And we substitute now all those expressions into this formula for the entropy of a quantum ideal

gas in the classical limit and then we end up with this expression. So now what we are going to

do, so this is the answer for the entropy of a classical ideal gas viewed as the classical limit of

quantum entropy. So now notice that we have also derived the familiar Sackur-Tetrode formula

directly by phase space counting and we got this expression. 

Obviously we want these two expressions to be the same and then when we equate these two we

see that means basically we equate the logarithms here and that effectively tells you that the size

of the pixels or the area of that pixel that I was talking about is really related to Planck’s constant



h the original Planck’s constant not divided by 2π. So it is just proportional to some number

times Planck’s constant.

So try as you might  you will  never  be able  to get  rid  of the effects  of quantum mechanics

completely. and so that is telling you that basically at the subatomic level there is some amount

of quantum mechanics is going to survive no matter how hard you try.               

(Refer Slide Time: 09:18)

So the expressions that we derived for p and energy per unit volume uV is not merely to you

know as an intermediate  step for obtaining the entropy. But it is interesting in its  own right

because after all if you know that ρ is nothing but the number of particles per unit volume and

then you can extract total energy by multiplying both sides by volume and recall that β was just

inverse temperature.

So when you do that you gain an expression which is very familiar to you which is a total energy

is 

                                                                 E = (3/2) NT

 with of course the Boltzmann constant being set to one because I am measuring temperature and

energy units as I have told you repeatedly earlier okay.

                                       (Refer Slide Time: 10:15)



So that is precisely what I am getting here. So when I do that when I multiply both sides by V, I

end up getting this familiar expression. So I had just derived this expression here which is 

P =  ρ/  β. And then I rewrite it in terms of something more familiar namely temperature and

volume and so on and you get this equation of state of a classical ideal gas pV = N kT but k is 1

so pV = NT. 

So you see we have been successful in doing three things one is derive the equation of state of a

classical ideal gas, find the relationship between the total internal energy of a classical ideal gas

in terms of temperature and finally derive an expression for the entropy function of a classical

ideal gas. So all these are extremely important calculations made possible only because we have

understood statistical mechanics sufficiently well. 

We have understood what entropy is and how it is related to counting the number of microstates

subject  to  various  constraints  well  we  still  have  not  fully  understood  what  pressure  and

temperature mean other than the fact that it is you know the derivative of the entropy function

relative to various other independent parameters. But that is a very mathematical and opaque

way  of  thinking  about  it.  So  obviously  there  is  a  more  physical  meaning  for  pressure  and

temperature  which  we  have  not  discussed  yet  and  that  is  something  I  am  going  to  do

subsequently.  



But that apart we have successfully written down the equation of state, total internal energy and

entropy function of classical ideal gas.

(Refer Slide Time: 12:15)

So now let me get on to this question that I just mentioned namely what is temperature? What are

these quantities? Other than the fact that they are simply you know that their derivatives formally

in thermodynamics absolute temperature is defined as the rate of change of entropy with internal

energy and it is the reciprocal of that the slope of the entropy function versus the  internal energy

the reciprocal of that slope.

So pressure is similarly defined as the ratio of these two slopes that means the slope of the

entropy versus volume and a slope of entropy versus internal  energy and similarly chemical

potential is similarly defined in this way. So as a ratio of slopes of the appropriate slopes of the

entropy function. So of course these are mathematical definitions it does not teach you anything

about what it means physically after all we know that temperature has a very concrete physical

meaning which we experience on a daily basis so does pressure maybe not chemical potential.

But  unless  you  are  you  know a  chemist  or  somebody  who  does  laboratory  experiments  in

chemistry  well  we do not  experience  that  on a  daily  basis  but  pressure and temperature  we

always experience on a daily basis, all of us. So we had better be able to relate these formal

mathematical definitions to something more tangible, okay.

(Refer Slide Time: 13:53)



Let me try and do that so in order to do this what we should be doing  is imagining a system

which say for arguments say let us assume that it contains energy U1 and it has volume V1 and a

number of molecules in that system is N1 . I am going to distinguish this system from what I call

surroundings or reservoir so imagine that there is a system which is surrounded by some huge

reservoir. 

And that reservoir could be for example the atmosphere itself so you can have a system which

could be a gas which is you know trapped in a container and its place in the Earth’s atmosphere

and the atmosphere itself is the reservoir and that gas that is trapped in your container is your

system. So now what we are going to do is that we are going to allow the energy to be exchanged

so we assume that the containers have rigid walls for example the containers of the gas that we

have called the system has rigid walls. 

So let us imagine they have rigid walls and we are going to also assume that it is not isolated in

other words the system is not isolated it can exchange energy with surroundings so how do you

accomplish that, with rigid walls it is very easy so all you do is you assume that your wall of

your container that contain the gas are not thermally insulating so they are kind of thermally

conducting walls.

So as a result heat can flow in and escape from the system so as a result energy gets exchanged

the system and the reservoir so you allow that so as a result what is really fixed is not the total

internal energy of the system which is which I have called U1 but rather it is the sum of the total

internal energy of the system plus the reservoir. So in other words that is going to be U1 +U2



which is fixed. So I am going to call that U, I am going to call U1 +U2 as U and so as a result U2

is going to be U – U1 .

So imagine that  Ω1 is the number of ways in which you can rearrange the microstates of the

system such that its total internal energy is U1 and of course because the other ones are fixed so

notice that my walls are rigid the walls of my system are rigid. So as a result the volume of the

system is always fixed at V1 and I do not allow particles to escape in or out of the system. So the

number of particles is fixed as N1 so same with the reservoir so the volume of the reservoir is

fixed as V2 which is enormous compared to V1 and N2 is the number of particles which is also

fixed but it is also enormous compared to the number of particles in the system. 

So now the only thing that is the other thing which is remaining is the internal energy which is

not fixed so in other words U1 is not fixed and U2 is not fixed but their sum is fixed so in other

words put together it is fixed but individually they are not fixed. So as a result I can suppress the

volume label V1 and the number of particles label N1 because they are fixed so I am going to

suppress that and I am going to refer to  Ω1 (U1) as the number of ways in which I can rearrange

my microstates of my system which is a gas.

So the number of ways I can rearrange my microstate such that the total internal energy is U1 and

of course the other parameters are what I just told you. So similarly I label Ω2 (U2) to be the total

number of ways in which I can rearrange the microstates of my huge reservoir such that it is total

internal energy is U2 .
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So notice that because U1 and U2 are not fixed and their sum is fixed that the net number of ways

in which I can rearrange the microstates of the combined system such that the total  internal

energy of both put together as U is this sum, so it is this the first product will tell me that if the

system has U1 energy there is the reservoir as U – U1 energy then of course the overall number of

ways of rearranging the microstates  of both the systems in the reservoir  put  together  is  this

product of Ω1 Ω2 .

But then I have to ask myself you know I have to repeat this calculation for various different

U1’s  and then because you know for each U1 there is going to be a certain way of doing it and

for a different U1 there is a certain other number of ways of rearranging the microstate and these

are independent re-arrangements. So because there are independent I will have to add them all up

in this fashion and get a net number of ways in which I can rearrange the number of microstates

of both the system and the reservoir and rewritten in terms of entropy it is going to look like this.

Now what I am going to do is I am going to ask myself what is the most probable value of this

U1? So notice that you won is not fixed so it can fluctuate wildly because U1 is being exchanged

with the surroundings. But then I can still legitimately ask the question what is the most probable

value of U1. So clearly the most probable value of U1 is that U1 which makes this quantity a

maximum so in other words we have to anticipate that if I plot this product as a function of U1 it

is going to peak at some U1 * it is going to peak at this  U1 * and that is something that I refer to as

the most probable value of the internal energy of my system.



So  how  do  you  determine  that  and  the  way  you  determine  that  is  to  simply  you  know

differentiate this quantity and set it equal to 0 at  U1 * as you very well know that is how you find

the extremum of a function and given that these omegas can be expressed in terms of the entropy

that eventually amounts to doing this. So it amounts to equating the so notice that if I do it this

way I can do it with the entropy for after all it is extremizing Ω products of  Ω is the same as

extremizing the log of the product of Ω s.

And then the derivative of the log is the suggest the entropies the sum of the entropies and the

derivatives would then correspond to this sort of an expression equals 0. And when you do that

you get this expression which is dS1 / dU1 so this is plus so here this is plus because if you take

the log you get the sum of the entropies it is the Ω that is the product that is why if I take the

derivative with respect to U1 I get this plus and then notice that differentiating with respect to U1

is same as differentiating with respect to U2 which is U – U1 and flapping this sign so the so in

other words this going to be –dS2 / d U2 = 0.

So the extremum is  achieved when you equate  the  slope of  the entropy with respect  to the

internal energy of the system and the surroundings. So recall that this slope is nothing but the

thermodynamic temperature and that is how we have defined thermodynamic temperature. So

now you have a physical meaning for thermodynamic temperature so now you can also choose to

alternatively define thermodynamic temperature as that quantity which equalizes when a system

is allowed to be in contact with a reservoir and allowed to exchange energy.

So  in  other  words  the  quantity  that  is  common to  the  system and  the  reservoir  in  thermal

equilibrium is precisely temperature or something related to it so in particular it depends on how

you define it so we have chosen to define this as a reciprocal of temperature. So the temperature

concept is basically a concept which just tells  you that it  is that attribute of a system which

becomes the same as that corresponding attribute of the reservoir when the two are in thermal

contact  with  each  other  and  sufficient  time  is  allowed  to  elapse  so  that  they  come  to  an

equilibrium.

Alright  so  that  is  what  temperature  means  intuitively  also  and  so  it  is  nice  that  we  have

successfully related a mathematical definition namely at the inverse of temperature being the



slope of the entropy versus internal energy rather abstract and sort of opaque definition. And we

have linked it to thermal equilibrium and how when two system and reservoir come into contact

and the attribute that is common to the two is exactly what is known as temperature.

(Refer Slide Time: 24:01)

So you can go ahead and do the same thing with pressure, so with pressure of course what you

have to do is that you have to make sure that you your walls the walls of your container are not

rigid. So in other words the gas that is in the container is free to expand and contract. So you

repeat  this  exercise  where  the  total  volume of  the  combined  system of  the  system and  the

reservoir is fixed. So in other words V1 + V2 is constant which I call V so but V1 and V2 can

change by themselves. 

So of course you know if you allow for gases to expand and contract and naturally you know the

work gets done and as a result the internal energy also gets exchanged whether you like it or not.

So the mere fact that you allow for gases to expand the walls of the container to be not rigid

implies that work gets done or is done on the system. So as a result that work gets transmitted to

the internal energy of the system sometimes and as a result you cannot really have it is not easy

to you know have a mechanism by which only volume changes but internal energy does not

change. 

So typically we end up allowing for both to get exchanged. And so that is why I have allowed for

the internal energy to be exchanged and volume to be also exchanged. But however it is very

easy to prevent  molecules themselves from being exchanged. Because all you have to do is you



know have an impenetrable wall where molecules cannot diffuse into the reservoir or molecules

from the reservoir cannot diffuse into the system. 

So that is easily accomplished so as a result I can ask similar questions about when is the most

probable volume and when is the most probable internal energy achieved? And that is when this

combined entropy get extremized. So in this case maximized so what I have to do is I have to

find the so I am not going to repeat this calculation it is very similar to what we did earlier so if I

do it for the volume I end up asserting that the slope of the internal energy with volume has to be

equated in equilibrium to the slope of the internal energy of the volume of the reservoir. 

So the system slope is equal to the reservoir slope. And notice that the slope of the entropy with

the volume is nothing but the ratio of pressure and temperature. And it involves so as a result in

at equilibrium you end up equating the ratio of the pressure and temperature of the system with

the ratio of pressure and temperature of the reservoir. But notice that I have also allowed for

energy to be exchanged so as a result the temperatures were anyway equal to begin with so

because the temperatures were equal to begin with that implies the pressures are also equal. 

So if in a situation where I allow both the volume and the internal energy to exchange then you

see that there are two aspects or attributes of the system that become equal to the corresponding

attributes of the reservoir and those two attributes are pressure and temperature ,well okay.
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There is further concept that is useful I really want to go back and ask myself what is this net

way of rearranging the microstates of the combined system look like how does that look like? So

all you have to do is go ahead and replace the entropy so notice that we have taken pains to point

out the energy that maximizes this product that is eS1 eS2 is maximized at or close to U = U1 *.

So the most probable value of the energy is the place at which this product gets maximized so it

stands to reason that to a crude first approximation we may easily replace this summation we

may ignore that we have to sum over all the energies rather we just make do with the energy

which corresponds to the most probable value or the one that maximizes this. Of course at this

stage it is not very convincing because I have to convince you that by doing this I would not be

making a  huge mistake  by ignoring  other  energies  that  may be  close  to  this  most  probable

energy. So I will do that subsequently so we’ll have to actually what is called compute are called

fluctuations around the most probable state and then we have to convince ourselves that under

suitable circumstances those fluctuations around the most probable state and then we have to

convince ourselves that under suitable circumstances those fluctuations are suppressed and as a

result we are justified in ignoring them in the first place. So you will have to take my word for it

right now so I am going to ignore those fluctuations and assert that the most probable value for

the energy is the only energy that matters and I am going to simply replace U1 by U1 * .So

because U1 ’s are anyway very small compared to the total energy U, I can do a Taylor series of

S2 around U1 = 0 and then I get this Taylor series. 

So notice that this is same as asserting that this S2(U2) which is the reservoir’s entropy is same as

the reservoirs entropy then the system has no internal energy at all minus the internal energy of

the reservoir divided by the common absolute temperature this is just Taylor expansion Taylor

series to first order in U1. So now I am going to go ahead and substitute this expression here I

have already done that here this is S2. And then I end up getting this product which is S1 S2(U2)

which I have written like the now of course I can pull this S2(U2) outside and if I just focus on the

most probable energy contributions. 

So I end up with this difference that is the entropy of the system at its most probable energy

minus the most probable energy divided by absolute temperature. So this is related to what is

known as Helmholtz free energy. So we denote this by - F / T which is, β is remember it is 1 / T.



So we call this difference as - β F and F is sometimes it’s also denoted by A it is some German

word for work that starts with A.

So but anyway F and A are common letters that denote what we call Helmholtz free energy , so

Helmhotlz free energy can be thought of as this difference of the most probable internal energy

of the system minus the absolute temperature times the entropy of the system at its most probable

internal energy. So I am going to stop here and in the next hour I am going to just continue with

this and see if I can explain to you how to define other types similar to Helmholtz’s free energy,

other type of free energy which is related to allowing the gas to also expand and contract. 

So here I have just allowed the internal energy to be exchange I did it did not allow volume to be

exchanged or change at all. So you can do that and you get a different type of free energy and

that is a topic for the next session and then we will continue from there ok thank you. Hope to

join you next time.


