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Maxwell Boltzmann Distribution 

Ok, so let us continue, so the goal of this hour of lecture is to see if we can understand the

distribution of velocities  of molecules of a classical  gas.  So it  is called Maxwell  Boltzmann

distribution. So historically of course this was derived first and the quantum gases where derived

later. So, but we have actually done the logically correct way of you know using combinatorics

to  arrive  at  what  is  logically  simpler  namely  that  of  quantum  gases  because  it  quantum

mechanics is all about discreteness and counting becomes easier, a combinatorics becomes easier

when you are discussing quantum gases.

So naturally we were quite successful in deriving the formulas for entropy, internal energy and

total number of particles of an ideal quantum gas . So we are talking about say nonrelativistic so

in another words we assume implicitly that the kinetic energy of the molecules or the particles is

p2 /2m. So the E vs p is quadratic and there is also no potential energy. So that is roughly what

we have in mind so that is basically an ideal quantum gas as what we have described. 

So it could be either bosons or fermions, if its bosons, there is no restrictions on how many

particles  can  occupy  at  a  certain  energy  level  if  they  all  identical  fermions  then  there  is  a

maximum of one fermion per energy level. So now what we want to do is make use of this effort

that we have put in and see if we can extract the classical result from the quantum result that we

have painstakingly derived. So in another words what I want to do is I want to take the classical

limit of a quantum gas. 
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So I even described this earlier so I am just repeating myself so the idea is that you can do it in

one or several ways. So you either make Planck’s constant (h) go to 0 and keep everything else

fixed while you do this, so as a result you end up getting the classical limit of a quantum system.

Alternatively, you keep everything else fixed and make the mass of each particle tend to infinity

or third possibility  is again you keep everything else fixed and make the temperature of the

system very large. So in either of these three equivalent ways you can send a what is a quantum

system to a classical system, so let us make use of this idea. 
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So recall that in the quantum case that we had derived the density of particles and expression for

the density of the particles in terms of the temperature and chemical potential in this fashion. So

if you recall we had a formula for c0 which I have described earlier so maybe I can refresh your

memory and go back here so this was my c0.
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I have derived so this is the energy density that I have derived then the number density and the

equation of state was this and this was the entropy. So everything is all linked up in terms of the

chemical potential and temperature and if you do not like that you can always invert these two

relations and you can always express the chemical  potential  and temperature in terms of the

energy and number of particles in the system and you can express the entropy in terms of its

legitimate independent variables namely entropy, number of particles and volume.

So given the that was the c0 and this the density of particles N / V so what I want to do is I want

to take the first point of U that is a I think of the classical system as  ħ → 0 limit of the quantum

system. So in order to that I have to explicitly display all the location where ħ appears. So one of

the places where it appears is here and so you see that it explicitly appears there so as I make ħ

→  0  this  whole thing is going to become infinity  unless well  we know that  the density of

particle is fixed. 



So I do not want it to become infinity, so only way to achieve to make sure that it does not

become infinity is to do the following, so you select this quantity such that it becomes huge. So

as a result when it becomes huge this quantity becomes very small and it is being divided by a

very small quantity so the ratio kind becomes a constant so that is the idea. As ħ → 0  so limit ħ

→ 0 , I select my e-βμ to be this quantity. 

So I am going to make this selection that it is for small ħ I want it to be this. So now I am going

to substitute that here and you will see that by design I recover ρ again. So this choice when ħ is

small so when I am discussing classical system by choice I am only you know I am kind of

getting  an  identity  which  I  should.  Ok so  that  the  density  of  the  particles  is  not  being  un-

physically large. 
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So now we can use this idea to derive Maxwell Boltzmann distribution immediately, so this is

nothing but 

                                                                  nj = 1/(eβεj e-βμ + q)

So this  was the  quantum version  of  the you know occupation  probability  or  the  number of

particles occupying ,average number of particles occupying energy level εj . So this is what we

had derived for the quantum case. 



Now in the classical case all we are doing is that taking this quantity and replacing it with our

classical limit namely e-μ as this classical limit and then keep in mind that ħ is very small so in

which case this term is going to dominate a lot. And so as a result this q becomes irrelevant. So

remember that when q was + 1 we were talking about fermions when it was – 1 we were talking

about bosons. So now when ħ is very small this whole thing becomes insensitive to what q is. 

So you end up getting a distribution which is of this form which is what is called the Boltzmann

distribution.  So what  Boltzmann had suggested  and Maxwell  had  derived later  was that  the

number of particles of a classical ideal gas was you know in contact with the thermal reservoir

and so on is proportional to the exponential of the energy at divided by the absolute temperature

which it falls exponentially as you increase energy when the temperature is fixed. 

So this is the famous Maxwell  Boltzmann distribution and you can of course get rid of this

normalization you know that the total number of particle has to be fixed. So you kind of handle

that this way and then you fix it by just dividing up by the number of particles and then you get

this.  This  is  just  the  convenient  normalization  and  then  I  am  able  to  derive  the  Maxwell

Boltzmann distribution like this. 

So this normalization ensures that this is respected, there is a total number of particles as it what

it should be. So you see its quite beautiful we have successfully derived the number of particles

in a classical ideal gas purely using quantum ideas which were motivated by combinatorics. That

was easy for us to do because after all we use the simple counting arguments to directly write

down the partition function and other physical quantities of quantum gases. 

But then doing this same for classical gas is likely to be difficult because that the discreteness is

lost  in a classical  gas and it  is  not  easy to count  you know the number of microstates  of a

classical gas. So it is useful to first do it in a quantum sense where we can count easily and then

take the classical limit so which is what we have done successfully. But now we also want to do

the harder thing which is not start from a quantum gas rather do the hard problems of explicitly

counting the number of states, the number of microstates of a classical gas directly. 

Of course, that is how people did it in the beginning when you know that the subject of statistical

mechanic predates quantum mechanics. So it is people did not know about quantum gases at all.



So they first derive the classical expressions directly by learning how to count microstates of a

classical gas where the discreteness feature is not present. 
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So all right, how do we do that? So that the way to do that is use what is called as a phase space

method. So if you remember that the phase space in classical mechanics we are talking about the

collection of the positions and momenta of the various particles, so that is called the phase space

of the system. But what we have to do is that each molecule has a state which is basically a point

in phase space so in another words if you have a molecule which occupies a certain position in

space.

So as a result it is described by three components of the position vector and then it also has three

components of the momentum vector so put together ther are 6 real numbers which describes as

a coordinates of a particle in phase space. So now what we have to do is we have to populate that

phase space by all the n classical molecules that we have in our position. In such a way that we

force those molecules to occupy a certain restricted volume say we talk about the cubical box of

side L.

So you have a cubical box of side L by L by L and I force my molecules to be present only in

that box. And I also make sure that importantly the other constraint is that I have to make sure

that the total energy of all the molecules put together is some fixed quantity. So notice that when



I talk about energy I only talk about kinetic energy because I am talking about ideal classical gas

so they do not interact with each other expect you know perhaps with the walls of the container

so until they hit the walls of the container no forces act on them. 

So within the walls of the container so it is just kinetic energy of the particles, so just by forcing

myself to only consider particles that live inside the container I can make sure I am not making a

mistake.  So how do I  count  when the  object  that  I  want  to  count  is  not  discrete  but  some

continuous.
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So it is somewhat like you know if somebody asks you to count the number of water droplets in

the ocean you would probably laugh at that person and say that the ocean is just one continuous

body of fluid I cannot really count the number of what does that even mean.  So that is the

problem we are confronted with right now because we are being called upon to count the number

of you know points as it where in the phase space. 

When  in  fact  the  phase  space  itself  is  described  by  the  position  and  momentum  and  the

components of the position in a momentum which are all continuous and so there is no way of

counting a priori. So what we do in order to facilitate this is that we discretize the artificially

divide up the phase space into small pixels. So it is similar to what you have on your computer

screen your computer screen does look granular so it looks rather smooth and continuous by then

if you look under microscope or lens you will see that it is actually made of pixels.



So, pixels are small squares and each square has a uniform intensity of a certain color. So we are

going to do the same thing here, so we are going to take this phase space out here so I have

purposely  restricted  myself  to  molecules  moving in  one  dimension so  in  another  words  my

molecules are forced to live between x = 0 and x = L. And however, they are not restricted to any

particular  momentum they can have any positive  momentum however  large or any negative

momentum implying that they are moving opposite direction, also however large. 

So I have this rectangularish looking phase space and I want to populate this phase space with

my molecules.  But  before I  do that,  I  have to  in order  to  facilitate  counting  I  am going to

discretize this phase space by imposing a certain grid on it which is basically same as dividing it

up into a whole bunch of pixels. So how do I do that? I say that imagine that the position which

is this axis I should have flipped these two coordinates, so I am talking about the position here.

So the position is this is x, so I am going to call nx I have defined n x = x / a. In another words I

am going to say that x is some kind of a multiple of a small number called a in another word I am

dividing up this interval from x = 0 to x = L into a whole bunch of pieces and each piece has a

size or length a. So and nx would be the number of steps I have to move in this direction in order

to reach x. So similarly, I do the same thing with p except that I want to make sure that my size

of my pixels is some quantity I called ħ. 

So right now, it has no special significance, later you will see that it is indeed very special so we

going to discuss that later. Right now, it is just a you know the area of my pixel which  I have

mandated or by fiat I have chosen it to be ħ it is just a notation for a pixel of a small size. So

because the pixel area ħ I will be forced to express my momentum in terms of discrete multiples

of ħ/ a. 

So that if I take the product of the length and the breadth of the pixel, I get ħ. And np is an integer

which can be as negative or as positive as it wants. And how ever nx because my x’s are all

positive  from  0  to  L  and  force  to  choose  my  nx to  be  between  0  and  a  maximum  value

determined by of course this NL would be nothing but L over a where L is my there is size of my

system a physical size of my system divided by this size of each pixel in a x size of each pixel. 



So of course, I mean you might be wondering what gives me the right to do this because after all

it is a very contrived and artificial thing to do. And of course the implication is that towards the

end I am going to make the pixel size tends to 0, so I am going to make the pixels go away and

everything becomes nice and smooth and hopefully I will be able to extract meaningful physical

quantities even in that limit. 
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So now, so let me go ahead and start re-expressing all my physical quantities in terms of these

number called nx and np. Okay so how do I achieve that? So I simply know that the energy of

each molecule with momentum p is p2 / 2m. So I can rewrite p in terms of np here and so if I do

that I get a quantity here so the energy of the each molecule is proportional to that square of that

integer. So notice that I have to ensure in addition to of course ensuring that the particle does not

exit my system in other words its position is locked between x = 0 to x = L.

I have to make sure that it also, all the molecules put together should not have any energy other

than U. So in other word its total energy of all the molecules put together is forced to be U. So

notice that this index i are refer to the index which tells you which molecule I am looking at. So

if i = 1 I am looking at the first molecule if I am looking at i = 2 it is the second molecule and so

on and so an N is the total number of molecules. 

So when I do this ,if I fix U so as usual I have a kind of Diaphantine type of system here so

where I am being forced to find out all the different u’s possible which ensure that the total



energy is U. So naturally I attempted to rescale or redefine my U in terms of this dimensional

less energy called  ω. So it happens to be integers because so after all it is just the sum of the

squares of the integers so this also be better be an integers not only that it is the sum of squares

of certain class certain set of integers ok. 

I had to recall this U not U but ω I called it ω because notice that I have reserved the symbol u

for U / N and because of that I was forced to call U / V as using a different name. So I was

forced to call U / V as uV . So I do not want to confuse my listener so I am going to make these

conventions standard right now. So this small case u is nothing but total energy per particle and

this small case uV is the energy density that means total energy per unit volume.

However, this ω is some integer which happens to be related to the total energy. So as usual the

constraint is going to be this that I am forced to make sure that sum of the squares of this integer

is ω. Then there this is nasty looking constrain which just tells me that only one molecule can

occupy given pixel. So that means remember that the phase space so I you know it is not like the

fermions anything. 

It is just that the phase space I am going to divide by phase space into smaller and smaller pieces

in such a way that I will end up with a situation where precisely one molecule is sitting in a given

pixel or no molecules at all. So in other words , suppose  two molecules are sitting in a given

pixel I divided up in grid even finer. So I will make the grid even finer until I reach a state where

precisely one molecule is sitting there or no molecule is sitting there at all. 

So if I mean there is no molecule to begin with no matter how fine I divided molecule would not

appear of nowhere. So if it was if two molecule sitting I’ll divide into two further pieces so as a

result I will end up with a grid with either no molecules or one molecule. So that is basically

what this is but this is kind of looks very scary this whole expression looks very scary and it is,

this  is  how you would actually  count  if  you are serious about counting something which is

intrinsically smooth and continuous and you wanted to discretize it and count anyway. 
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But fortunately, we are saved by this limit that we are going to employ which I have already

mentioned earlier and that is called as thermodynamic limit. See in the thermodynamic limit the

idea is that the total energy of the system is enormous, in fact its scales with the size of the

system. So idea is that the total energy tends to infinity, volumes tends to infinity in such a way

that the ratio is fixed. So I am going to imagine a situation where the total energy of my system

is enormous. 

So as a result the implication then is that the ω which is an integer is an enormous huge integer.

So when it is a huge integer you can see that there will be a huge number of solutions of this, so

if a certain set of integer np1 , np2 , …., npn is an integer then you know there will be a whole

bunch of possible solution very close to that selected sequence of number. So there will be a

whole bunch of closely clustered solutions which are also acceptable because of the hugeness of

ω. 

So as a result there is no penalty to be paid in the thermodynamic limit by replacing summation

the discrete summation over these integers by an integration. So I am not going to be rigorous

here and try and prove this rigorously. I did something similar earlier if you recall when I was

trying to explain to you how to convert a discrete sum into a integration in the context of a

thermodynamic limit but here well this is similar not quite the same. 



But as a result, I will either differ the proof to may be an exercise or may be those of who are

interested can ask me later. In anyway also the restriction that no two molecules should occupy

the same pixel is also superfluous here. Because in the thermodynamic limit the number of ways

in which that can happen is miniscule compared to the number of way which, the total number of

ways in which you can arrange your molecules in these pixels. 

So it is kind of hugely suppressed, the number of ways in which you can populate pixel with two

or  more  molecules  is  significantly  less  compared  to  the  number  of  ways  in  which  you can

populate molecules in general, that is if ω is huge ok. So that is also something that I will leave

you to think about and you know to come to an agreement with. 

So as I said now I am in this happy situation of having  replaced my summation over this np ’s by

integrations and notice that here what I have here is that it is simply sum over all these discrete

number of n’s in  nx’s which is it just counts how many steps there are in the x direction. So

because I have divided up my length of the box from 0 to L into NL steps. So of course, you

know for each particle the answer is NL and because I have N particles it is (NL)2 .

Remember that I am counting a number of ways which I can do things, so the number of ways is

product of number of ways doing it for 1, 2, 3 ,…., N particles its instead of one particle raise to

the number of particles. And of course according to Boltzmann that is precisely  the exponential

of the entropy of the system. 
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So now I am going to use my usual trick which is to rewrite my Dirac delta function of course it

is notice that it is not the Kronecker delta function. If it was Kronecker delta I remember I had

used angle between 0 and 2 π. But because the Dirac delta I have to use a Fourier transform so

where the limits are -∞ to ∞. So I am just going to go ahead and substitute this way of writing a

Dirac delta function here and then I am going to do the same integral over the p’s, np’s .

So when I do this I end up  with this expression and so I can extract so you see I am now called

up to do this integration. But I really do not care about this integration in its entirety all I want to

know is how this depends on ω which is my you know if you recall ω is just that energy divided

by some constant, the total energy of the system is huge. So I just care about how this whole

thing depends on total energy which is related to ω. 

So in order  to do this  what  I  am going to  do is  I  am just  going to rename this  variable  as

something else may be τ’. So in which case I am going to rewrite this as τω and then τ itself will

become  τ’/ω. So when I substitute that here and also there and then I do my integrations so

actually I will get τ’ all over the place so I have been lazy and called the τ again but you know

what I mean. 

So basically I end up extracting  ω out of my integrations which is all I care about. So I care

about  the  omega  dependence  only and this  is  just  some constant  and of  course  this  also is

interesting because it depends on the number of particle which is also of interest in some sense.



So but nevertheless this is the answer and I can now go ahead and use my tables or you know

some software. My preferred software is called Mathematica well I am not a spokesperson for

this company Wolfram Mathematica. I just happened to use it you know I do not have shares in

this company so I am not advertising it there are other products that I used also that equally

useful MATLAB and so many other similar software symbolic algebra packages. 
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So you can go ahead and use that and perform this integration and you end up getting something

like this and the end result is this. So now I am going to go ahead and bring back the quantities

that I was started off with, namely the length of the system and also the total  energy of the

system. So let me bring that back, so when I bring that back the exponential of the entropy is

going to start looking familiar. So it involves total internal energy, number of particles and the

size of the system L, ok. 

So now I take the logarithm of this and I end up getting this. So now the important question that I

ask myself is , is this entropy function that I have derived which is that function of the total

energy U, the length of the system L and the number of particle N ,is it extensive? So recall that

N extensive function is one which has this property namely if you take S(U, L, N) and I balloon

each of these quantities by a factor λ. 

So as a result my U is replaced by  λ U, L is replaced by λL and N is replaced by  λ N and if S

were extensive it should become  λ S(U, L, N). So if that if S were extensive but now let me stare



at this answer and ask myself does this obey at this property of extensivity. The answer is no

because of this reason that of course this  λ comes outside here and there but then it goes away

here because if I scale U by  λ, if I scale N by  λ then  λ cancels out as it should. But however

there is nothing here to cancel the  λ so there is a  λ that remains in the log.
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Ok so this is annoying because I want entropy to be extensive. So that the question now is why

should the entropy be extensive? So let me try an answer that question so this is important. So

the  reason  why entropy  should  be  extensive  is  if  it  is  not  extensive  it  kind  of  leads  to  an

uncomfortable paradox. So imagine that there is a huge system of say let us talk about a gas right

now so which has a total internal energy of U and total volume of V and total number of particles

N. 

So imagine I kind of mentally partition this into two pieces, one piece has a U1, N1 number of

particles and V1 volume and other has a remaining energy, volume and number of particles. So

clearly the number of ways I can rearrange the microstates of the combined system is simply the

product of the number of ways in which I can rearrange the microstates so of this mentally

partition subsystem and the way in which I can rearrange the microstates of the second partition.

So that is what I have written here. So I expect this to be the case.
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Now I can show you that this is nothing but the statement of extensivity of entropy because I can

remember that Ω is nothing but the exponential of the entropy of the system so as I said I take

logarithm on both sides and end up with this equation, ok. So now you can show will probably

relegate this to some tutorial or some other exercises so you can show that the only answer that is

consistent with this equation, remember that I can partition this there is no restriction on U1 V1

and N1. 

Of course the only restriction is that these U’s and V’s have to be very huge otherwise I cannot

really, strictly speaking if U and V and N or not huge then I do not have any right to kind of

mentally partition in it some random arbitrary way because you know then I would not be able to

have the solution of those Diophantine equation you know willingly. So I have  only certain kind

of partitioning will allow solution and certain other kind of partitioning will give me no solution

at all.

However, if these U’s and V’s are huge then I am kind of at liberty to partition it anyway I want.

So you can convince yourself in the exercises that the only solution consistent with this equation

is the solution which makes S extensive so that means it is linear in U, linear in V and linear in

N. So now the uncomfortable paradox that we have in front of us is that we seem to have done

this correctly we have counted the number of microstates by partitioning the phase space into

small  grains,  small  pixels  and  yet  we  are  unable  to  come  up  with  an  expression  which  is

extensive. 
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So this is known as Gibbs’ paradox. So Gibbs not only stated the paradox but also gave us

solution. So instinctively what we have done basically is we have thought of all the molecules as

being different. So strictly speaking what we should do is that if I take say suppose that there is a

one molecule occupying this pixel and then there is a empty pixel and empty pixel then there is

another molecule occupying this pixel so I called this what I have done instinctively is that I

have called this molecule 1 and molecule 2 and I have I have considered these two states as

being different. 

Ok what I have done is so I have considered these two to be different while counting. So just

think about it so that is what I have done. But what this paradox is suggesting is that I really

should not have done this. So in other words its telling me that I had better not considered these

two configuration has been different so if the molecules are all  identical  I am compelled by

thermodynamic necessity to divide by certain factor of N ! which is basically the number of ways

in which I can permute all the molecules which are occupying these pixels.

So this is the only interpretation that is consistent with the thermodynamic notion of entropy that

is an extensive quantity. So I won’t really try and you know derive this in any more convincing

way. Because I do not think there is such a derivation it is just so happens that if you do this you

get an entropy that is extensive. 
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So now how do I show that is because you use Stirling’s approximation so recall that when N is

huge 

                                                                     N! ≈ NNe-N

Again you suppose to know all  this from some maths course may be.  So just  go ahead and

substitute that here and low and behold you get an expression of this sort. Where L gets divided

by N which is an intensive quantity and this is anyway it was already an intensive quantity raise

to N / 2. 

So now if I take the Log(Ω) which is my entropy I get a happy result which is proportional to N

and proportionality factors are intensive quantities. So now this will certainly obey extensivity

and this  is  what  I  was looking for.  So notice that  I  have restricted  myself  till  now just  for

simplicity  you  know I  just  wanted  to  learn  how to  count  phase  space  when  you  know by

discretizing it into pixels. 

So I as a result restricted it to one dimension because I already have two quantities which is

momentum and position and I cannot afford to draw a picture on a flat sheet of paper if I go

beyond one dimension because I already have two there so I mean position and momentum and

then  I  have  if  I  have  more  than  one  position  then  I  will  have  to  immediately  go  to  four

dimensions because I will have two position and two momentum components.  So that is the

reason why I was restricted to look at one dimensional, molecules in one dimension. 
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So now let  me use my mathematical  imagination and see if  I can generalize this  to what is

physically the case which is a three-dimensional classical ideal gas. So in that case I have three

components corresponding to x, y and z, so for a given molecule already there going to be three

integers npx , npy and npz . Well this is less important, this is clear what is happening here so it is

just the volume so clearly there are three directions. 

So what is really interesting is this one so I am going to have to do this carefully this is obvious

so you have so in the x direction raise to N, y direction raise to N and z direction raise to N. And

of course, this is my Gibb’s factor which prevents the paradox from happening and of course

even here if I do not put his I get a paradox which in other words the entropy is not going to be

extensive. But what is really important is that I have to learn how to do it in three dimensions. 

Well I do not have to learn because I have already done it so all I have to do is repeat this thrice

ones, twice, thrice similar thing for nx , ny . So I will end up getting you know three copies of the

same thing. Ok well slightly more complicated than that there is roughly that ok so I mean it may

not be exactly that, that is why written it as left as an exercise to the student so let me leave that

instead of trying to explain to you then I will end up doing the whole thing myself, so now I am

not going to do that. So its left as an exercise to the students to show that in the end this is what

you going to get ,ok. 
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So when I take the log on both sides I get an expression which is the famous result, it is called

Sackur Tetrode formula for the entropy of a classical ideal gas. Ok so I think I stop here so in the

next class I  am going to see if  I can derive this Sackur Tetrode formula also by you know

reverting to my original idea of starting with a quantum gas and trying to take the classical limit

and see if I can get the same thing. 

Because remember we have taken great pains to derive the entropy function also of a quantum

ideal gas in addition to pressure and you know various other quantities like energy density and

number density and so on. So I am going to relegate this to the next hour so hope you will join

me, thank you. 


