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Okay let  us  continue,  if  you recall  we left  off  here  where  we prove that  the  entropy is  an

extensive function of its  independent  variables  namely the total  internal  energy,  volume and

number of particles. So we have called this the fundamental relation of thermodynamics ,so what

I want to do now is to see if I can go ahead and calculate this entropy function for specific

examples.

So specifically I am talking about the entropy of ideal quantum gases, so just to point out that

the, if you recall we had studied in quite significant detail the problem of you know marbles on a

staircase. So specifically I have in mind an infinite staircase so imagine that there are N number

of identical marbles on a infinite staircase. So I have already told you that identical particles is a

characteristic feature of quantum mechanics.

So specifically in the case of marbles I have also suggested that there is no restriction on how

many marbles can be placed on a single step. So this is an example of what are called Bosonic

particles, so in quantum mechanics so when there is no restriction on how many particles can

occupy certain energy levels that is called those particles are known as bosons and they are also

non interacting particles in the sense that the energy of a certain level is an intrinsic property of

that step.

It is not related to how many bosons are sitting on that step so this would not be the case for

example if the bosons or the marbles had some kind of energy by virtue of the fact that there are

other marbles next to it. So if that were the case then the energy of the marbles on the step would

not be proportional to the number of marbles on the step so we are going to disregard this aspect

and we are going to assume that if there is one marble per step.



So if so in other words then the energy of a step is just proportional to the number of marbles and

the proportionality  constant  is independent  of how many marbles there are.  So this  example

would  be  called  ideal  Bose  gas,  an  ideal  collection  of  bosons  specifically.  So  suppose  you

wanted to describe fermions, ideal fermions what you have to do is instead of you know saying

that I do not restrict the number of bosons on each step.

You say that there is a severe restriction namely there is a maximum of one particle allowed per

step. So in other words a step can accommodate either no particles at all or exactly one particle

and no more. So in such a case the system that you would be describing is called an ideal Fermi

gas ok. So now let me recall that we had started off I mean we had reached this point where we

had tried to evaluate the entropy using the saddle point method.

(Refer Slide Time: 04:16)

So we had reached this stage where we said that the entropy function is nothing but the saddle

point value of this  function Wq.  So what I want to do in this  lecture is I  want to explicitly

evaluate this for an ideal Bose gas and for an ideal Fermi gas. So I want to explicitly evaluate the

entropy function for an ideal Bose gas and an ideal Fermi gas so let us see how to do that.
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So the way you can do that is that you start with this definition of W and then you just try and

see if you can first solve for the values of φ* and θ* and recall that those values are the ones that

make the W an extremum, so in other words it is the saddle point itself. So θ*,φ*  is precisely the

saddle point and the value of Wq at the saddle point is proportional to the entropy function.

So now if you go ahead and evaluate this and remember that you have to set this equal to 0 in

order to be describing the saddle point and then what you do is that you will be able to convince

yourself that the total internal energy and total number of particles are going to be of this form.

So now recall that we had defined the function that whose saddle point we have to find as Wq

and the entropy function was nothing but the number of particles times this Wq at the saddle

point.

Now in order to find the saddle point what you have to do is take this function and find the

extremum, in other words the first derivative with respect to this parameter called θ has to be set

to 0 and first derivative of this parameter W again, with respect to this with this functions sorry

this is φ = 0. So when you do that you see is that you will be able to derive a formula for this. So

you can eliminate  this  rather  you can express  U and N so notice  that  think of  this  as  your

unknowns and there are two unknowns and two equations and this f was derived earlier. 
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So if you recall f was a way back here and this was my f here and so it is a function of θ and φ.

So I am going to take the logarithm of that and if I take the logarithm of so  

                                                  log(fq) = q ∑j (1+q Exp(-i θ εj -i φ))

 So that is what  log(fq)  is going to be and I am going to use that directly here. So I am going to

assume that I have used that here, so if I do that and if I think of u and N as my unknowns and

recall that u is nothing but the energy density. 

So energy per particle, so I have defined u as energy per particle so this is my u so I can finally

read off just by thinking of u as my unknown and began as my unknown so effectively u and N

as my unknowns. And you have two unknowns and two equations and when I solve it I end up

getting this using the value of f that I had written down earlier. So I strongly recommend that you

follow along with a notebook and pen and pause this video and try to fill in the gaps yourselves

because it is quite tedious for me to explain all this steps.
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So not only am I interested in knowing a formula for u and N but notice that I have determined u

and N implicitly in terms of the saddle point namely θ* and φ*. So now I am going to see if I

can relate some of the saddle points to other parameters that I am more comfortable with such as

temperature and chemical potential. So given the fact that the entropy function is nothing but

total number of particles times this function W at the saddle point. 

 
Now the reciprocal of the temperature as you very well known in thermodynamics is the slope of

the entropy function as when plotted as a function of internal energy. So when you do this you

will be forced to evaluate such a derivative and when you do that and you evaluate it at the

saddle point and also you use this identity here. So it is a few steps are involved so you should

bear with me so I am just substituting the value of W there and what I am going to do is so this is

basically my you know log(fq) if you recall and there was a q there.

So this q log(fq) is what that is so I am forced to differentiate whatever is in this bracket with

respect to U and you see that there everything depends on U even the saddle point depends on U.

So I should not forget to differentiate the saddle point with respect to U and there is a U also

outside the saddle point right there which of course I have to differentiate and when I do all that I

end up with this.

And now I go ahead and I just recognize this, remember that this is nothing but you know it is

basically the with that εj inside that is nothing but the total energy U and what is this if I pull this



outside whatever remains is total number of particles. So now, so you see as a result this cancels

out with this and I end up with this answer. The θ saddle point is simply related to the absolute

temperature of the system.

So in a similar way you can convince yourself by using this identity or this definition rather of

the chemical potential that the φ saddle point is very easily related to the chemical potential and

of course temperature. So as a result now I do not have to write everything in terms of my saddle

point which is a very mysterious object so instead of thinking of θ* and φ* which we will be hard

pressed to you know attribute any physical meaning to unless we perform this calculation.

Now that we performed this calculation we know that the saddle point is directly related to the

absolute temperature and the chemical potential. So I am going to go ahead and make use of this

and write eiθ as 1 / T and by the way I am measuring in this course as I perhaps told you that I

will be measuring temperature in energy units. So as a result the Boltzmann constant is taken to

be 1.

So in which case 1 / T is a inverse of temperature and there is a notation for this, a standard

notation in thermodynamics and that is called β. So I am going to use this notation and rewrite

these two expressions here in terms of β and μ so you see I am going to be able to do this. So

and q is  that  numerical  constant  that  determines  whether  I  am talking  about  bosons and or

fermions. So if q is 1 I am talking about fermions and q is -1 I am talking about bosons ,so where

did this creep in? You should think about why suddenly a q creeped in it in fact it did not creep

in it was there all along.
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So I’ll just remind you where it kind of started coming in it came all the way here when I was

trying to,  so if  I  decided to sum over all  the particles  up to infinity  that means there is  no

restriction on the number of particles then I am going to get 1 over 1 – some quantity here. So

however if I had decided that there was a restriction that is only up to 0 to 1 then it will be in the

numerator  it  will  become 1  +  this  quantity.  So  in  other  words  if  q  is  +1 it  corresponds  to

fermions, if q is -1 it corresponds to bosons, so that is where that comes from that q.

(Refer Slide Time: 13:31)

So now see recall that the entropy function strictly speaking is a function of in thermodynamics it

is a function of the total internal energy, volume and number of particles. So however in this



example we have been writing the entropy function in terms of the saddle point and of course we

have shown that this saddle point is nothing but chemical potential and temperature.

So what we should do in other words is we should be able to invert these two relations and notice

that here the left hand side are total internal energy and number of particles and the right hand

side involves chemical  potential  and temperature.  So what we should do is  invert these two

relations and rewrite temperature and chemical potential in terms of total internal energy and

number of particles.

So if you do that then you can go ahead and substitute those expressions into your saddle point

which is of course temperature, chemical potential and then you will be successful in expressing

the entropy in terms of it  is bonafide or genuine independent  variables namely total  internal

energy and number of particles. So coming back to this point that so we can rewrite we can think

of this U of the total internal energy as the sum of sum over all the energy levels.

Whatever I am summing is the energy level itself times a function called n j, so I can think of this

U and N as being this sort of sum where this nj now has the physical interpretation of the average

number of bosons or fermions in that energy level.  So it  has a interpretation of the average

number of bosons or fermions because that is clear from this that if you sum over all the energy

levels.

You get the total number of particles and you if you first multiply the energy of each level times

the average number of quantum particles in that level and then you sum over all the levels of

course you are going to get the total internal energy. So this is called Fermi-Dirac distribution if

q is +1 and it is called the Bose-Einstein distribution if q is -1. So we have been successful

deriving both the this is very important because you will see that in many statistic books. 

They spend a lot of effort deriving this and but we have done it quite easily so you should, I

should impress upon you that the derivation that I have presented in this series of lectures is

somewhat novel that you would not find easily anywhere else, ok. So now I am going to also

point out that of course the main quantity of interest was actually entropy all along. So remember

I told you that is really the fundamental thermodynamic quantity of interest.



So now entropy function is simply related to this you know the function W whose saddle point

we have decided to  focus on.  So now having found the saddle point  we just  go ahead and

substitute  the values of the saddle points I told you that they are related to temperature and

chemical potential and then you put them back in and you get an expression of this sort. So this

is  my  formula  for  the  entropy  function  and  of  course  you  have  to  keep  in  mind  that  the

independent variables are supposed to be only U and N.

But it appears that here it still involves β which is inverse temperature it still involves μ which is

chemical potential so I also told you that there is a way to get rid of β and μ and rewrite it in

terms of U and N and all you have to do is just invert these two relations here and here.
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So now we can go ahead and derive something called the equation of state. The equation of state

is nothing but a relation between pressure, volume and temperature and number of particles of a

gas typically. So well in this case I won’t be dealing with volume until a little later because I am

still discussing marbles on a staircase so the notion of volume still does not have any concrete

meaning here.

Until I actually commit myself to the describing a gas then only volume comes into the picture

so I will do that a little later but now just use your thermodynamic identities and you know use

your fundamental relation of thermodynamics and I use to compare these two we just derived



this result and this is nothing but the fundamental relation of thermodynamics and you simply

compare the two and you get what is called the equation of the state ok.

So this is the equation of state, so of whatever gas you want, so if q is +1 you are talking about

the equation of state of ideal Fermi gas and if q is -1 you are talking about the equation of state

of an ideal Bose gas alright.

(Refer Slide Time: 18:45)

So now I also want to go ahead and explicitly evaluate some of these in so I want to do this

summation specifically so for a gas so I do not care about marbles anymore. So up till now this

summation was over energy levels and the example was through a staircase with marbles, I still

care about marbles of course they are bosons but I do not care about the staircase anymore.

So I am going to instead think of this as the energy levels of free particle confined to a box

perhaps of a volume L  X  L  X  L so you have a box which have is a cubical box with sides L.

Alright in that case so recall  that  I  am discussing quantum particles so if I have a quantum

particles I have also told you the ideal so ideal quantum particles means they do not interact with

each other.

So they are independent particles so it is sufficient to solve a one body problem which we know

from Griffiths how to do for a single quantum particle trapped in a box of cubical box of side L.

And the wavefunctions are nothing but this so these are this is the wave function or rather this is



the wave function as it is going to be described with by these three quantum numbers nx , ny and

nz and these quantum numbers are forced to be 1, 2, 3 etc., and so on.

Because 0 is excluded because if any one of them is 0 the wave function itself becomes 0 and

then it violates normalization. You want the normal that total probability to be 1 and if it is the

wave function itself is 0 the total probability can never be 1 and finally n’s cannot be none of

these n’s can be negative. Because the if the wave function is you know flip sign it is basically it

is like multiplying by an overall face and you know that two wave functions that differ by an

overall phase is corresponds to basically the same state.

So now I am going to rewrite this so the energy of this wave function is really the energy of the

free particle which is 

                                                             E = P2/2m 

                                                             P = ħ k

 P is nothing but h bar times the magnitude of the wave vector which is k and the wave vector

itself have three components kx , ky , kz and kx can be written in terms of the quantum number nx

and similarly ky and kz .
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So now the sum over the index j has to be now reinterpreted as the sum over the three quantum

numbers nx , ny and nz . Also I am going to finally rewrite this quantity βεj which appears all over

the place, well it appears everywhere I am going to be able to I am going to use this idea to



rewrite this in a more manageable way later on. So recall that I can rewrite εj in this fashion so

when I substitute that here it is going to look like this.

So keep in mind that I want to study what is called the thermodynamic limit so I have a bunch of

quantum particles that are trapped in a box, a cubical box of side L. But then I do not want my

box to really have boundaries in the end, that I want it to be a you know uniform quantum gas.

So how do I  achieve  that  is  to  not  have  boundaries  or  first  have  boundaries  and make the

boundaries go so far away that any finite region of the box can be thought of as being especially

uniform.

So that is the idea of thermodynamic limit, so what we are going to do is we are going to assume

that the box is huge and the number of particles scales with the volume of the box so that the

density of particles that is number of particles per unit volume remains fixed. So that is called

the thermodynamic limit and we are going to work in the thermodynamic limit. So now it so

happens that in the thermodynamic limit these summations which are really annoying because

they are very hard to do can actually be converted to integrations which are easier to do.

So you do not have to do discrete sums in the thermodynamic limit because you can always

convert them to integrations. So in order to do that I am going to prove the following theorem, so

you will have to bear with me because again it seems rather technical but it is very important for

you  to  follow  along.  Because  I  have  noticed  that  especially  this  crucial  idea  that  in  the

thermodynamic limit you can replace a discrete sum by integration is rarely explained in any of

the books.

So typically you first encounter it in, you should encounter it typically for the first time in a

statistical mechanics course but you also encounter it in solid state physics course and none of

those books I feel do proper justice to this idea. So it is worthwhile to spend some time trying to

prove this rigorously so that we will be fully convinced about its validity. So in order to do this

consider an even function of this integer n.

So imagine that there is an integer n and this is an even function, well of course 0 is not really

needed so in even function is 1 where you flip the argument you get back the same thing and



now I am going to think of λn because I am going to think of this λ as a small quantity and that is

because you see the n’s, n2 always come with an L2 associated with it but in the denominator.

So in the thermodynamic limit what will happen is that my λ is really proportional to 1 / L where

when in as L tends to infinity in the thermodynamic limit  λ is a small quantity. So that is the

whole idea of thinking about a function of a λn so now imagine that I perform this summation so

I am going to define a  quantity called j(λ) where j(λ) is nothing but this sum as defined.

So recall that I should not, I should exclude that n = 0 because then wave function itself becomes

0 so I start from one all the way upto infinity. Now I am going to ask myself is there a way I can

avoid doing this summation or can I somehow replace this with something more manageable. So

the answer is yes it so happens that you can prove or we are going to prove it right now that

when λ → 0 this the summation rather this discrete sum can be replaced by this integration. So it

is quite remarkable and this is a rigorous result that we can prove right now.
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Well we are going to prove it subsequently, so but let us use it right now instead of well we will

postpone the proof for a little while later but I am going to use this now. So remember that in the

equation of state I am forced to sum over all the j’s and then sum over all the j’s is  nothing but

summing over the n’s. Now so as a result in the equation of state I will be forced to do this so I

have put the V.



So remember there was a V there and V is nothing but L3 and I have written L3 as  when it comes

to this side to the right side becomes (1 / L)3  and I have written (1 / L)3  as 1 / L  x  1 / L  x  1 /L.

So now  I have this kind of a combination 1 / L times a summation. So now I am going to rewrite

this

                                                              βεj = (λnx)2 + (λny)2  + (λnz)2

So then where λ is of course this we can just read it off because we know what this is and from

there we can read of this λ and then I am going to define this c0 in this fashion so as a result this

is nothing but c0 / 2L. So now if I multiply both sides by (c0)3 right so c0 is nothing but so from

here we can see that 

                                                             c0 = 2Lλ

So what I am going to do is if I multiply by c0  x  c0  x  c0 which is (c0)3 and  c0 = 2Lλ and L

cancels with 1 / L so I end up with (2λ)3. So now remember that 

                                                           j(λ) = λ Ʃn=1
∞ f(λn)

we just proved that this that is this quantity j. So λ Ʃn=1
∞ is nothing but one half of the integration,

right with respect to this whole thing called X. 

So now we relabel  λnx as X,  λny as Y and λnz as Z. so it is like integrating over X, Y, Z and

remember that there was a one half there and the three one halves and then there are 2 times 2

times 2 n all that cancels out and you end up with this result. So basically this is nothing but the

volume integral of over this dimensionless vector whose components are X, Y and Z. So as a

result I will  be successful in rewriting the equation of state in this rather nice dimensionless

form.
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You will have to excuse my misuse of notation here earlier I had used small u to be a number of

total energy per particle now I have defined it as total energy per volume so maybe I should put

as a subscript there.   uV implying that is the total  energy per unit  volume that is the energy

density and the number of particles per unit volume is nothing but N / V. And as just as we were

able  to  rewrite  the  equation  of  state  in  terms  of  this  dimensionless  integration  over  the

dimensionless vector.

So  all  the  summation  over  j  have  now  in  the  thermodynamic  limit  been  replaced  by  this

integration  over  R which  is  a  dimensionless  vector.  So we have expressions  for  the energy

density,  number of  particles  and the  equation  of  state,  all  in  terms  of  simple dimensionless

quantities. And we can now go ahead and use this in our fundamental relation and we will be

able to rewrite the entropy in terms of, suppose if I am successful in performing this integration

which is likely to be far easier than doing a discrete sum over integers and not just one integer

but three different integers and that is likely to be far more difficult than this. 

So notice this here we can make use of spherical symmetry and even though technically there are

three components but then there are no angles in the integrand and we can make explicitly use of

that we are going to make explicitly use of that later on. Alright so now using that we can go

ahead and substitute these intensive quantities, remember that these are intensive quantities in the

sense that if I scale the number of particles by λ, scale the volume by λ because these two are

extensive I end up getting a ρ which is  independent of λ. 



So as a result all these small case alphabets Latin and Greek they are intensive quantities and the

uppercase alphabets are extensive quantities. So the entropy function is therefore the extensive

volume times a whole bunch of intensive quantities where you have so this is the fundamental

relation of thermodynamics and I am going to just plug in these p’s, u’s and ρ’s ,ok so then I get

this entropy function so if q is 1,
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I  describe  I  am describing  fermions  you  know  non  interacting  fermions  and  q  is  -1  I  am

describing non interacting bosons ok, now let us come to the technical part. So even though this

seems a little technical it is really nice to know this proof once and for all. So remember that I

am trying to prove that this j which is nothing but λ Ʃn=1
∞ f(λn). So that is my that is what j is so if

I take λ →  0 this summation is I will be able to replace it by the integration.

So how do you prove this? It seems rather hard to prove except that if  you realize that any

function f can always be written in terms of simpler functions. So this can be as complicated as

you want but however you can always according to Fourier, the mathematician Fourier, you can

always write any function f(x) in terms of really simple functions e ikx. So what is the beauty of

this really simple function eikx is that as a function of x it is a very simple function because it is

infinitely many times differentiable, it does not blow up anywhere ,it has no singularities, you

can do whatever you want to do it pretty much whatever you do to it. It remains as it is it is like

neutrino you know it just passes through so you can differentiate it once but e ikx, apart from



innocent pre factor like ik it remains the same function so you can integrate it again we get back

the same function so that is the beauty of the exponential of x,  so it remains you can do calculus

very easily with it. So now it is very comforting to know that any complicated function that does

not have those properties can still be rewritten you know not just of course as one of these but

you know as a whole bunch of these.

So you will have to multiply this by an appropriate prefactor and then you have to add up a

whole bunch of them, so adding in this context means integrating over that parameter k because

you will be forced to take into account all the different k’s there. If you want to mimic a general

function f(x). Now it so happens that I well this is completely devoid of any meaning unless I am

also able to tell you a prescription for how to get g(k).

So the idea is that you can get g(k) if somebody tells you what f(x) is then you can go ahead and

perform this integral so this is the content of Fourier’s theorem which says that these two put

together  are  mathematically  consistent.  So that  is  another  way of  saying so if  you take this

expression you put this here because you change x to x’ and you substitute here you should get

an identity and the reverse is also true you take this put that there.

You are going to get an identity, so I am not going to do all that because of Fourier analysis is

not part of this course so I am going to assume you already know this and if you do not please

learn it yourself by reading the appropriate maths books.
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So now I am going to use this, so remember that this is what I have to find as sum off now I am

going to rewrite this f in terms of this Fourier coefficients. So I am going to write this as a

Fourier transform, so now I am going to sum over all the n’s and when I do I get this, this is a

simple geometric series notice that this is nothing but something raised to n, well that something

happens to eikλ.

So now when I sum over all the n’s, well not all the n’s from n = 1 to M but finally you know

remember that I have to the infinite sum is formally defined like this where you sum from 1 to a

certain value M and then you take the limit as M →  ∞. So remember that I have committed

myself to an even function so that also makes the Fourier components even, that you can easily

convince yourself of.

So now I am going to have to take this limit as M → ∞ and so there is M sitting right there, so the

idea is that if you take λ really really small this is kind of going to be bounded between 1 and -1.

But however it is this quantity so I have rewritten it here and I have multiplied and divided so I

put this outside there and I have multiplied and divided by this quantity and so now this is the

singular thing that I have to worry about.

So when M → ∞  if k is not 0 this thing oscillates and becomes 0 but if k is 0 so this thing only

survives when k is 0 so when k is not 0 it becomes 0, so when k is 0 this Cos becomes 1 so I

have been a little blase’ here and kind of ignored altogether. I strictly should not have done that



but it is kind of there it is lurking out here but the point is that you know if I stare at this ratio

then I convince myself that this is nothing but the Dirac delta function.

And because of that this Cos becomes 1 and this becomes 1 half of g(0) and then I get back this

result and g(0) is nothing but what is g(0)? g(0) is if I put k, k’ = 0 I get this becomes 1 so g(0) is

nothing but the integral of f. So it is (1/2) g(0) and I get this result ok, so as a result so this is the

proof of this theorem of course it is not going to be fully convincing to a mathematics audience.,

because I’ve been rather sloppy in places  but you get the idea that  you can fill  in the gaps

yourself perhaps you can make it more rigorous if you wish. But this is the general sketch of the

proof ok. So now I am in a position to derive the Maxwell Boltzmann distribution of a ideal

classical gas. The reason is because we have taken a lot of trouble in deriving the Fermi Dirac

and Bose Einstein distributions. Let us go to that and so remember that this is what that is so if q

was +1, I am talking about the Fermi-Dirac distribution and q is -1, I am talking about the Bose-

Einstein distribution.
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So the idea is that you know can I make use of this derivation that I have spent so much effort

and deriving which is applicable to a quantum gas and see if I can take the sum appropriate limit

and get a classical expression for it is classical counterpart and the reason why you can do that is

because you all know that classical mechanics is just can be just thought of as a appropriate

limiting case of quantum mechanics.



So how do you obtain  classical  physics  from quantum physics?  You can think  of  Planck’s

constant as a variable and send it to 0. So that is one way of thinking of  obtaining classical

physics  from quantum physics  and  alternatively  you can  imagine  the  mass  of  a  particle  as

variable and send it  to infinity and lastly you can think of the temperature of the system as

variable and send it to infinity even then you will be describing classical system even though you

have started off with a quantum system.

So  I will end here for this hour and I will get back to doing this namely I want to be able to

derive the Maxwell Boltzmann distribution of a classical gas using the Fermi-Dirac and Bose-

Einstein distribution that you have so painstakingly derived, alright thank you and hope you see

you for the next hour.


