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Okay, so let us continue with our discussion of what we have been calling second quantized 

formulation of many particle systems. So basically, the first quantized approach in also 

expressing various operators, in terms of operators that we are familiar with from elementary 

quantum mechanics, such as position and momentum whereas the second quantized approach 

basically rewrites these formulas in terms of creation and annihilation operators. 

 

Where those creation and annihilation operators encode the statistics of the underlying 

particles in the system. So if you have a system of many fermions, then the creation and 

annihilation operators obey canonical anti-commutation rules, whereas when the system is 

composed of bosons, they obey canonical commutation rules. 
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So if you recall that I started off with this definition of in the last class, I actually ended with 

this definition of the local density of particles. So if you have a bunch of particles the density 

of particle at position r is naturally defined like this, because you know if you have a discrete 

number of particles from 1 to n, so you know the density is 0 unless you are at the location of 

the particle. 

 



So that is the reason why there is a delta function here and then you sum over all the locations 

of the particle and that gives you the local density. So similarly you can define current which 

is basically defined in terms of the, you know, what current is. It is basically I mean it is just 

the flux per unit time okay. So in other words dimensionally it has the idea of velocity just 

like this. So by then, remember that this would be the current. 

 

And remember that because we want this to be self adjoined we are going to write this in this 

Hermitian form okay. So this is where I had stopped last class, where this is the first 

quantized or you know the traditional way of thinking about these quantities these operators. 

These are operators because in quantum mechanics ri is the position operator for the i-th 

particle and ti is the momentum operator and then you see you know that xi commutator Pxi 

is or Pxj is basically ih bar times Kronecker ij. 

 

So in that sense these are indeed operators and so rho and j will not commute, because you 

know rho does not have a P in it, whereas j has a P in it, whereas rho has an r in it or xyz 

basically and thus px, py, pz and j, so you do not expect rho and j to commute. Alright so 

now, what I am going to do is, I am going to make the following assertion that this is, it is 

possible to write these two formulas in the second quantized language and it turns out that it 

is exceedingly simple to write down, meaning it is a very simple form namely this. 

 

Well this is a vector, so it has an exceedingly simple form. So I am going to first write it 

down and then I am going to prove it okay. So this is how it works. So you see these two are 

identical. I mean these two are absolutely identical okay. So these two ways of doing it would 

be the first quantize or traditional way of doing of expressing the density and current in terms 

of momentum and position, whereas this approach is the creation annihilation way of 

representing the same quantities. 

 

So now I have to prove this and remember how I have been proving this. So these are 

operators that act on many particle wave functions. So I have to first assume that there is such 

a wave function and then I acted on the many particle wave function and all I have to do is 

show that regardless of what this is. So for a general many particle wave function the action 

of rho on this, such a wave function is identical to the action of this rho on the same wave 

function, so similarly for the current j. So I am going to prove this now. 
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So remember that C of r acting on, if it is properly, let us assume is you start off with 

something properly symmetrized or anti-symmetrized as the case may be and then you know 

that I am allowed to do this so square root of n, because then you know you are annihilating. 

So you will be picking up the square root of n and then all you are doing is basically getting 

rid of one particle and the last one has gotten rid of. 

 

In other words, you are forcing that rn to, you are freezing the value of rn to r. So now you 

see having done this, this is still anti-symmetric under the exchange of r1 r2 and so on or r 

symmetric with depending upon the value of this small s here. So this is properly 

symmetrized. So now I am going to create a particle you know on this new state. So I will let 

me call this psi 1s okay. So I am going to create a new particle on this. So this would be 

nothing but c dagger r cr acting on psi s.  

 

So now this is going to be, if I create a particle you see the n - 1 particle, so I have to add one 

more particle, but then when I do that I have to, it will be square root of however many 

particles there are plus 1. So now there are n - 1 particles. So it is going to be n - 1 + 1 and 

square root of that. So that is basically another square root of n. So there was already a square 

root of n here. So those two get multiplied when you get n and then you will have to add a 

particle. 

 

So remember here, there are only n - 1 particles. So adding a particle implies that I have to 

add the n-th particle back again. So I had annihilated the n-th particles. I have to put that back 

in and of course when I do that I will end up messing with the symmetrization. So I will have 



to properly symmetrize it, okay. So I will have to do that. So first I am going to, let me first 

add the particle and n-th particle again at location r. Now I have to kind of do this. 

 

I have to take the permutation of all these particles you know and sum over all the 

permutation, then I have to put an s raised to this the output n factorial well. That is however 

many particles there are. So that is going to be my density okay. So let us work this out. I 

mean it is little bit tricky to appreciate this when there are so many particles. So let us do this 

assume that you start off with say a 2 particle system, a one particle wave function is a bit too 

simplistic. 

 

So I am going to start off with let us assume capital N as 2 okay. So if it is 2, then it is easy to 

see what is going on. So then C dagger rcr acting on psi s with r1 and r2 only is going to be, 

so remember that if they are only 2 of them, this is going to be just 1. So it is 2 over 2 

factorial which is exactly 1 and then it is just some over the permutation of 2 objects and psi s 

and this is going to be the permutation of, so if n is 2, there is going to be a permutation of 1 

and r and delta of r permutation of the second one minus r. 

 

So how do you permute? So there are only 2 permutations. So you either do this. So if p1 is 1 

and p2 is 2, so that is basically the original unpermutted form. So that mod p is 0 there. So it 

is going to be basically 1 in that case. So in the other case, it is going to be s because if I 

interchange, it is going to be s. So sr2r this is going to be delta of r1 – r. So that is going to be 

my density. This is in the second quantized language. 

 

So now I am going to see if this is the same as what you would get if I had thought of rho as. 

So this was the rho in second quantized language remember. So but then the traditional way 

of thinking of rho is basically this for 2 particles right. So now let us see if this has the same 

effect of by when you acted on a 2 particle system or 2. So you see the answer is s. So it is 

going to be psi of s acting on, for the first term it is going to look like r1 becomes r. 

 

This becomes r2 and then you get a delta of r – r1 and then the other term is r2 becomes r 

where r1 remains as it is okay. So that is the effect of the density operator written in the 

traditional way acting on the 2 particle wave function. Now I have to convince myself that 

this is the same as what I have here. It is indeed the same, because remember that these 2, so 

these 2 differ by a factor of s and s squared is 1, because s is either 1 or -1. 



 

So these 2 differ by a factor of s. So this is also equal to s psi of s r2r delta of r – r1 + psi of s 

r1r delta of r-r2. So you are done, but this is through an example of course, but you could 

prove it for the general case. So I will leave that to you as, you know you can do that by 

induction or any other method that you are comfortable with okay. So I am going to leave 

that to you as an exercise to try at home. 

 

So the point is that the density operator in the second quantized formulation has this form, I 

mean just I want you to appreciate the simplicity of this way of looking at the density. See if 

you look at the density, that is written out in the conventional way. It has a huge number of 

variables, so it starts off with r1 r2 all the way up to rn. So there are n number of variables, 

where n could be macroscopically large. 

 

However, all that complexity is hidden when you decide to write the density in terms of the 

creation and annihilation operators. They are all those the complexity of the information 

about the size of the system is subsumed into the definition of the creation and annihilation 

operators. So that is the simplicity of this approach, which enables you to do that and not only 

that the statistics all the particles that make up the system are also encoded in these operators 

themselves. 

 

Whereas in the conventional way of doing things, the statistics of the particles is not apparent 

in the operators. It comes from the wave functions. It has to be imposed on the wave 

functions, whereas here it is already apparent, because it is encoded in the way in which you 

define your creation and annihilation operators. So you can do the same thing for current. So 

let me do that for current. This is my expression for current here. 

 

So I am going to see if I can do the same thing for current. So let me do that traditional way 

of doing it first. 

(Refer Slide Time: 15:32) 



 

So remember that in the p and r language or the position momentum way of doing things that 

the current operator is defined in this fashion. This is the current density at location r for a 

system of n particles. Well, in the conventional way of doing things, it is not obvious from 

here whether the underlying particles are bosons or fermions and basically I have to specify 

that by examining the statistics of the wave functions that come along with these operators. 

 

So now let me examine. So notice that a pi there is nothing but –ih bar grad i. So this is in 

conventional quantum mechanics, that is how you choose to represent the momentum 

operator. So now let me go ahead and examine the action of, so I am going to restrict myself 

to 2 particles again. So I have 2 particles and then I examine the action of the current density 

operator on a wave function of 2 particles okay. Let me work this out. 

 

So if you work this out, how does this come about? So you see on the one hand, it is this. So 

if I look at the first term, it is 1 to 2. So if you expand this out, how does this look like? So if 

its i is 1, that means 1 is being forced to be r. So it is –ih power by 2 m del i acting on, but it 

also acts on well I am going to start with 1 okay. So that is how it looks like and the other 

terms are exactly the same, except that the momentum is to the extreme right okay. 

 

So let us work this out and you see this term forces r1 to become r. So I am going to delete 

that r1 there and then this term forces r2 to become r. So I am going to delete r2 there and so 

you see this has a derivative on r2. Okay I am going to liberate this because it is not clear if 

further simplification is warranted, because remember that all I only show is that this is the 



same as, you know, if I choose to define. So this is the second quantized version would be –ih 

bar by 2m, you know, c dagger r cr + ih bar. 

 

So it is without the m there. So the question is, is this the same as this I mean. I am just going 

to give you some a sketch of the proof, you can fill in the details later yourself. So you see 

just stare at this term, how does this look like? If you look at c dagger r grad cr, so if you act 

this on psi r1 r2, what is that going to look like. This is going to annihilate a particle. It is 

already properly symmetrized, so it could annihilate one or the other. So it is going to be del 

r. 

 

So I am going to annihilate the last one as is the custom. So then you see once I do this, then I 

will be forced to add a particle, but then firstly I will have to put a square root of 2 because 

that is what it is and when I add a particle, there is another square root of 2. So the whole 

thing goes twice and I am going to add a particle. So that is going to be grad r psi s r1 r. So I 

am going to add a particle r2 – r, but then I have to permute. 

 

So if it is r1 r2, but then if it is the other way around well the permutation would be with an s 

r psi sr r2 r del of r1 – r. So remember that you know, I can always rewrite this as twice this 

plus just the density. It is more like this. It comes from this. So this term is similar to that 

okay. So the reason is because r1 is forced to be r, so this is going to become r, so we follow 

this r1 becomes forced to be r and so I can do this. So this term is r2 is forced to be r. 

 

So I can just get rid of this, put r there okay. So now you stare at this that apart from this 

factor of 2, so if I take a –ih bar by two, I will get the 2 is cancelled, but then you see the 

similar term comes from here also, because I can take this grad, act it on this or I can choose 

to act it on this. So when the grad acts on this okay, well I should keep this as 1, then you will 

see that it gets added up. So that 2 cancels out basically. 

 

So I will allow you to work out the current part yourself. It is a little bit tedious, but you will 

see that it works out. So finally this term is going to look like this and so that is going to 

effectively verify the claim that these 2 formulas are absolutely identical okay, well perhaps 

without this m okay. So think of this as without the m because see dimensionally what is this. 

This is density times h bar K, so which is momentum. So yeah it is without the m okay. 

 



So now it is going to work out. So without the m these 2 are equal okay. So once you 

convinced yourself of this, then you can also show that the densities and currents obey a 

certain, just like. 
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So remember that the creation annihilation operators obeyed this type of commutation rules, s 

commutation rules depending upon whether s is +1 or -1. So remember that A commutator B 

with subscript small s is basically AB – s times BA. So if s is +1, you are talking about 

bosons. If s is -1 you are talking about fermions. So s is +1, it is bosons, if s is -1, it is 

fermions okay. So you see it so happens that once you construct currents and densities in 

terms of the cs and c daggers, you will be able to convince yourself, allow you to do that as 

an exercise as well. 

 

Keep in mind that I am not going to test you in the examinations or any of the tests or 

tutorials on any of these topics which have classified as advanced topics, because strictly 

speaking it is not part of statistical mechanics, but I am just teaching it to you because it is a 

natural continuation of you know where we are going to actually leave the course. So the 

natural next step is exactly what I have been teaching you. 

 

So it is a natural continuation and it is something that you should pick up on your own. So it 

so happens that you can also convince yourself, that these rhos and j's you know obey certain 

commutation rules, the conventional commutation. So if I do not have a subscript, it means if 

I do not write anything below here, it really always means this AB – BA. So in other words if 

I do not write anything, I necessarily mean AB with a +1 there. 



 

So that means the bosonic commutator. It is just the commutator the traditional not anti-

commutator. So it is either a commutator or an anti-commutator. So if I do not specify, it 

always means a commutator. So you see it is going to obey these types of rules. So it is going 

to, you can convince yourself that it obeys. So the rho and j, they are commutators. They are 

conventional commutators, not anti-communicators just commutators. 

 

Regardless of whether the underlying particles are bosons or fermions the simple commutator 

is expressible also in terms of rhos and js. So this is what is known as current algebra okay. 

So this is called current algebra and this is very important you know for the study of many 

topics in many body theory, specifically what is called bosonization, which I am not going to 

discuss at all in this course. Somewhere I tell you what all these symbols means, so just 

please be patient. 

 

I am going to tell you what this means shortly okay. So what does all this mean? Firstly this 

is obvious what it means this is just the density, you take the density regardless of whether 

they are bosons or fermions, you just take the density at some other point. They commute. So 

in other words what does that mean physically? It just means that you can measure the 

densities of particles simultaneously at 2 different points and you know the measurements 

commute. 

 

That means if you measure the density at a point first and measure the density of the system 

at another location but at the same time, you would not get a different state if you interchange 

the order in which you make the measurements. However, that s not true, when you are 

dealing with density and current. So when you are dealing with density and current, density 

and current do not commute, but however, their commutator is expressible in terms of 

densities and currents. 

 

Specifically, in terms of this density here and here ja refers to the a-th component of the unit 

vector in the a direction, whatever that is. So that is what does the symbol? So if I take you 

know, if I write this I really mean this, you know in some b direction. So whatever it is that 

these types of commutators are going to come out in this fashion, the a-th AF component of 

the current density at location r, when you find the commutator of that with the b-th 

component of the current density at location r dash. 



 

The commutator is going to be also expressible in terms of in this case only currents. So in 

this case it was density, it is going to be currents. So this is what is known as current algebra. 

So this is called current algebra, of course it should be called a density current algebra 

specifically, but it is called current algebra, because density can be thought of as the time 

component of a fore vector. So it is like a fore current rho and j together is like a fore current 

and so in that sense, it is called current algebra. 
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So I am going to stop this course right here. So what are the conclusions, what have we 

learned from this course? So what we have learned basically in this course is we have learnt 

that statistical mechanics is a study of systems with large number of particles, whether the 

underlying particles of a quantum mechanics or classical mechanics, it is possible to take into 

account the detailed dynamics of the underlying particles and predict the properties of 

macroscopic systems. 

 

So in other words the macroscopic properties of large systems can be linked to the 

microscopic properties through these ideas. So also we do that by, not by necessarily solving 

the detailed dynamical equations for large number of particles, since that is not practical. We 

do that in a clever way in this course in statistical mechanics by side stepping those ideas by 

averaging over a whole number of microstates and as a result we will be able to compute the 

average macroscopic behavior of systems with large number of particles or subsystems. 

 



So we were also successful in showing that the average is the whole story, so long as the 

system sizes are huge. So the fluctuations are suppressed and that is one of the important 

conclusions of this course and so as a result, we were able to apply such ideas to a whole 

bunch of you know a vast diversity of systems that are found in nature you know right from 

Fermi gases, Bose gases and classical you know ideal gas and Van Der Waal’s fluid and even 

you know magnets like ferromagnets and paramagnets. 

 

You were able to discuss you know Landau diamagnetism. We were also able to apply it to 

the other extreme namely astrophysical bodies like black holes and white dwarfs and so on. 

So we have done wonders in this course. We have studied you know subatomic structures 

using statistical mechanics like you know electrons in a metal all the way up to you know the 

degenerate Fermi gas in a white dwarf or we have studied the thermodynamics of black holes. 

 

We have talked about polymers in the examples. So we have done lots in this course and I 

hope you enjoyed this course and you found it informative and it is, so if you take this course 

seriously do all the problems and you know attempt the examination seriously, you will be 

well equipped to be or to have a successful career in physics at an advanced level. So I thank 

you for registering for this course and listening to all my lectures. I hope you found them 

enjoyable thank you and bye-bye. 

 


