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Method of Steepest Descent

Okay, so now I want to describe to you a method which goes by the name generating function

method by which we are going to be able to count how many microstates there are consistent

with the constraints that have been provided namely that the total energy is fixed and the total

number of particles are fixed. So if you recall in the last several slides, I managed to do the same

thing but using a rather wasteful approach namely list all the possible solutions corresponding to

the various microstates and simply count them one by one.

So that is wasteful because it requires a lot of computational resources to list all the solutions, so

it would be far easier if  there were a simpler roundabout way of bypassing the necessity of

having to list all the solutions explicitly and instead simply count how many solutions there are

without knowing what those solutions are, ok. So that is called the generating function method

which I am going to describe to you now.

So before I begin I want to point out that the subject is going to rapidly become quite technical

and it is really important for you to be ready with a pen and some paper in hand to and follow

along when I do the calculations. So it is not like, physics is not like reading a storybook where

you simply you know just listen to you know some video or just read a novel, so you have to

actually follow along with pen and paper.

(Refer Slide Time: 02:22)



So let me start with the generating function method, so it is an analytical method which allows

me to solve or count the number of solutions of these Diophantine equations that I have been

talking about without explicitly listing all the solutions. So in order to do that recall that the

number of solutions that I was talking about that I am interested in is really this so it is  sum over

all the different possibilities where I am constrained by this constraint which says that the total

energy is fixed.

So I  have assumed that  the energies are you know like the steps of a staircase they are all

equidistant so that is why there is a j there and this is called a Kronecker delta. So this forces me

to assert that the total energy of the system of this microstate rather is U all the time. So and this

Kronecker delta forces me to assert that the total number of particles is fixed as N so if you do

not remember what Kronecker delta is it is very important for you to know what this is,

                                                                       
So if I write  δm,0   what I meant by this is 1 if m is 0 and it is 0 if m is not 0 so this is called a

Kronecker delta ,so after a German mathematician Leopold Kronecker ,ok

                                                              δm,0 = 1 if m = 0

                                                                               0 if m ≠ 0

So I am going to repeatedly use this symbol so it is important for you to know what that is. So

now this forces me to conserve energy and forces me to conserve the number of particles. But

once that is forced on me then I am free to sum over all the different possibilities and these

Kronecker deltas will keep track of whether or not energy and number of particles are conserved.



Now I really want to perform this summation so it turns out that an easier way of doing this is to

actually define a more general object called the generating function, so this is called a generating

function and I define a whole bunch of variables called x1 , x2 , x3 all the way up to x∞ and I

multiply this number that I am interested in. So before I sum over the n’s I multiply with x1

raised to n1 , x2 raised to n2 and so on and so forth and then I sum over N. 

So clearly the answer that I am looking for if I set all the x’s to 1 then I get back the thing I have

circled in red here. So it is easy to get the answer that I am looking for which is number of

microstates consistent with the total energy and total number of particles, all I have to do is first

calculate the generating function and set all the x’s to 1. Soon as you know already and I have

told you several times that the total number of microstates is also the exponential of the entropy. 

Because according to Boltzmann the entropy is  nothing but  the logarithm of the number of

microstates so that is exactly what I was talking about that if you set all these x’s that are here to

1 and then I get back the answer that I am looking for that means the answers that I have circled

here in red.

(Refer Slide Time: 05:50)

So this Z[n] is sometimes called the micro-canonical partition function so what does that mean

so micro means taking into account the detailed distribution of the number of individual marbles

for example in the example that I gave you. So the individual marbles on each step and that



would correspond to the micro adjective there and a canonical actually means conforming to a

set of rules canon is just a rule book as it were.

So a partition function the word partition is a way of writing an integer as the sum of other

integer so for example you can write 10 as 2+3+4+1. So this is an example of a partition so

partition function is just is basically tells you how many ways in which you can partition an

integer. So in this case you have constrained also by those requirements that the total energy and

number of particles and so on.

(Refer Slide Time: 06:50)

So now so how do I calculate this generating function so there is a clever trick to do that and that

is  to  invoke what  is  called  the  integral  representation  of  the  Kronecker  delta.  So I  want  to

convince you that this is nothing but the Kronecker delta so if I perform this integration and if k

is an integer here then this is equal to precisely the Kronecker delta and why is that ,so suppose k

was not 0 and you perform this integration.

What is this going to look like so if k was not 0 so imagine that k was not 0 then what does this

look like so this is going to look like eikθ/2πik  and then I have to make theta go from 0 to  2π. So

now because k is an integer and k is not 0 so if k is not 0 this is not 0 and because k is an integer

so I am going to get here I am going to get e2πik . Then I am going to get e0 = 1.

So because k is an integer this is going to be 0 so the numerator is 0, denominator is not 0 so this

whole thing is 0 but what if k is 0 so if k is 0 clearly then this becomes 1. So that when this is 1 I



simply integrate over θ and I get 2π and there is already a 2π there so the answer is 1. So I get

the result that when k ≠ 0 the answer is 0 and when k = 0 the answer is 1 so this is clearly the

Kronecker delta symbol alright.

So now I  am going to  use this  trick  to  rewrite  my constraints,  if  you recall  the constraints

involved the  Kronecker  delta  with  respect  to  the  energy here  and the  Kronecker  delta  with

respect to the number of particles so I am going to rewrite that as an integral representation over

two angles like θ  and φ. So now what is the advantage of doing that? The advantage of doing

this is that I bring all these ends that I have to eventually sum over into the exponent here.

So if you see here so I have successfully managed to bring all the n’s in the exponent and the

reason why that is important and is useful is because the generating function also has n’s in the

exponent because of this x’s. So if all the n’s are sitting in the exponent and then you have to

sum over all the values of the exponent that should immediately ring a bell and that is called a

geometric series. So we are going to use of the fact that we know how to geometric series and

what we have done through this device of writing the Kronecker delta in terms of the integral

form is that we have successfully converted into a geometric series.

(Refer Slide Time: 09:58)

So now you see that this is what going to happen so I am going to rewrite the generating function

and it starts to look like this. So all I have to do is sum over all the n’s and then I take into

account all the different energy levels here. So now of course I have done a clever thing here and



that is I have interchanged the summation in the product sequence. So if you recall here there

was you know the summation was before and the product was came later.

But here I have done the reverse I have put the summation earlier and the product later so the

question obviously is that am I allowed to do that and the answer is yes because of this result

here. So if you stare at this sequence of terms here so you have y1 n1 , y2 n2, y3 n3 and so on. So I

have to sum over all the n’s so if I sum over all the n’s I simply get geometric series etc.,

So now suppose I do the reverse so this is like a product ok so this just nothing but Πj yj nj
  . So

instead of doing the product first and summing later suppose I do the reverse I sum each of those

yj nj first and then I take the product so what do I get? I get precisely the same thing because this is

going to be yj and then if I take the product later I get back the same thing.

So there is nothing lost or gained by doing this of course what is gained is basically that I am

able to now do the geometric series in a nice way. So now having done this so remember that I

am talking about marbles on a staircase where there is no restriction on how many marbles there

are per step, so in which case I am allowing myself to sum from n = 0 all the way up to n = ∞ .

So if you remember that I told you earlier that if these marbles represented fermions for example

or  spinless  fermions  specifically  that  I  will  not  be  allowed to  accommodate  more  than  one

marble  per  step  but  that  we  will  discuss  shortly.  But  now  let  us  imagine  that  there  is  no

restriction on how many marbles I can accommodate per step in which case I sum all the way up

to infinity and I get this result.

So now all I have to do is I take into account all the steps by multiplying with respect to this

index j so for concreteness I had assumed that all the steps are of equal height. But I do not have

to,  I  mean  it  is  very  easy  thing  for  you to  understand  that  I  simply  replace  j  by  εj  which

represents the height of each step. So I won’t, there is no loss of generality in going from here to

there. So if the heights of the steps were all uneven clearly this would be the answer and this

provided there is no restriction on how many marbles I can have per step ok.

(Refer Slide Time: 13:08)



So this is the generating function that I have to calculate so my main interest of course is not to

get the generating function but to get the entropy of the system and I have told you earlier that

the entropy of the system is simply obtained by setting all the x’s to 1. So in which case I get

back what I was looking for the red circled summation that I started off with. So I set all the x’s

to 1 and there is only one place where there is an x here that is here so I have set it equal to 1

then what I have to do.

So the entropy is here and the logarithm of this quantity is my entropy. So if I am successful in

doing this integration over this  θ and over this  φ and of course I am able to do this product

properly then I am all done. So this is a brilliant way of counting how many microstates there are

consistent with the constraints that the total energy is U and the total number of particles is N,

without having to explicitly list all the possible solutions of those Diophantine equations.

So this is a very clever way of analytically counting how many solutions there are. Alright so

now how do I convince you of the correctness of this it all seems quite abstract and kind of

intimidating but it would be less intimidating if I were successful in proving to you or convincing

you by taking some simpler examples. So instead of looking at infinitely many steps suppose I

look at this specific example of three equidistant steps.

So if you recall that I have told you earlier that if the number of steps are small and the number

of particles involved or the marbles involved are small then it really is not much of an effort to



list all the solutions explicitly you do not have to it is not it does not take a lot of effort. So you

might as well do that so remember that we have already done that once for three marbles and

what I want to do is you know use this general formula for three steps and see if it works out to

be what I told you earlier by explicitly listing all the solutions. 

So now how do I work it out for three equidistant steps so here instead of taking the product over

all the different steps. I only take product up to the third step and then all I have to do after doing

this is that I have to integrate suppose I first decide to integrate over φ. How does that work?, so

I clearly I can do this way that I can pretend that this is some kind of again I revert this back to

the binomial  type of form and I  expand in the powers of this  quantity  or you can use your

computer you can use your favorite software to do this.

Nowadays there is lot of software which does this like Mathematica, MATLAB so there is lot of

these symbolic algebra packages which you can use to do it or if you do not want to do that it is

very easy that just expand this out in powers of this object just because it is sitting there and then

you know how to do it over φ. So I am not going to do this explicitly because it is a little tedious

and it is somewhat unpleasant and but you should do it yourself, so if you do it you get this

answer.

(Refer Slide Time: 16:39) 

So now of course that is all over this variable this angle called φ but I also have to integrate over

θ. So the integral over theta is similar because think of this as some kind of quantity in whose



powers you decide to expand and expand this whole thing in powers of e-iθ for example and then

you integrate over  θ and when you do that you get this rather nasty looking expression here

which involves what is called Heaviside’s step function.

So if you do not really follow all this it really does not matter all that much except that I am just

using it to convince you of the correctness of this general formula here. So if you are already

convinced,  this  specific  example is  not  that  important  but nevertheless it  is  worthwhile  it  is

instructive to go through at least one specific example but as you can see the final answer even

for a three step problem is not easy.

Especially because I have not constrained the number of particles N, so N can be as large as it

wants so and U can also be as large as it wants only the number of steps are three. So that is the

reason why it is little more complicated so this involves what is called Heaviside so it is called

Heaviside’s  step function.  So this  is  the  symbol I  am going to  use this  symbol consistently

throughout and this is called Heaviside’s step function.

So Heaviside was an English mathematician his grandfather apparently was part of a rugby team

and that team was called Heaviside’s and his grandfather decided to take that as his last name so

that is why it is called Heaviside, ok. Now I am going to plot this versus the total energy of the

system versus entropy now I am going to now specifically focus on the three marble examples.

So I have already committed myself to studying three steps so in addition I am going to say that

the three marbles know three steps three marble systems we have explicitly listed the solutions

by hand some time back and at that time we got this plot. So if you rewind and go through the

slide that I had described earlier it was precisely this plot, so the entropy was 0 if the energy was

three in some units.

So I mean in the units that the energy of the first step is say the energy of the first step when

there is one marble sitting on it is one so if you use those units in that case so if the energy was 3

the entropy is 0, if it is 4 is still 0 but if it is 5 it starts to become non 0 and 6 is non 0, 7 is non 0

then 8 again it is 0 because there is crowding at the top if you remember that is I explained this to

you. Why entropy starts to fall  and beacause the number of available states men are limited



because the you have reached the top step already so if the number of steps is fixed then and the

the entropy starts to fall so then it becomes 0 again.

So this also has this example that the entropy kind of is non-monotonic that means it kind of goes

up and  then  comes  down so  that  temperature  is  positive  here  negative  there.  So  this  is  an

example where the temperature can be both positive as well as negative but then I repeated this

three step three marble example to convince you of the correctness of this analytical formula, ok.

(Refer Slide Time: 20:31)

So now let  me ask another question and that is,  this  is an important concept it  is called the

concept of extensivity of entropy so if you remember in some of the earlier  slides I tried to

explain to you why we take the logarithm of the number of ways of arranging the microstates

and that is because the number of ways of doing that I told you balloons up exponentially.

But then by implication the logarithm should actually be linear so if I say linear you should ask

linear in what? so linear obviously in the size of the system. So if the entropy is linear in the size

of the system that is a property known as extensivity, so in this small paragraph I have explained

to you that variables such as temperature, I have not properly defined it yet but I am going to do

it shortly.

So assuming you know what that is from your earlier knowledge so temperature or you know the

total energy volume entropy these are the various quantities that we wish to classify as either

being extensive or intensive and the way to classify them is to you know double the size of the



system and ask yourself do these quantities also double or do they remain the same. So if they

double along with the size of the system for example then you say it is extensive if they do not

change at all you call them intensive. 

But then I have pointed out here in small print that the total internal energy is extensive only

when the subsystems do not interact amongst themselves but if they do interact themselves it is

rather hard problem and it is not at all obvious that it is extensive but of course we would not

discussing that those issues in this introductory course.

(Refer Slide Time: 22:29)

So what we can do is that we can decide whether the entropy is extensive or not, so that is the

question that I am going myself so I have told you that the number of ways of arranging the

microsystem balloons up exponentially so by implication the logarithm of that should be linear,

so that by implication therefore that the entropy is extensive. So how do I decide whether the

entropy is extensive? so recall that I have a general formula for counting how many microstates

there are in terms of θ and φ integrations.

So in principle I should be able to plot this ratio for example, so I fix the total energy and total

number of particles then I scale up the energy by factor λ, I scale up the number of particles by

factor  λ and then I divide by the original entropy and if I plot this ratio versus  λ and if the

entropy is indeed extensive this plot should be linear ,it should be a straight line. So the question

is: Is it a straight line?



So obviously the proper answer to this will crucially involve you know how good we are at

explicitly evaluating those integrals over θ and φ. So we probably are not going to be able to do

this in general and in any event we can suspect that if the number of say particles is small or the

number of steps are small etc. The extensivity is not likely because you know there is lot of in

some situation the solution exists some situation the solution does not exist.

So there is a lot of abrupt changes that takes place when the number of steps are small or when

number  of  particles  are  small  so  linearity  is  an  unlikely  possibility.  However  linearity  may

actually be quite likely if you work in what is called the thermodynamic limit.

(Refer Slide Time: 24:26)

So what I mean by that is that I am going to ask myself suppose I you know fix the total energy

per particle and then I scale up the number of particles. So extensivity demands that I scale the

total energy the same way I scale the total number of particles so if that is the case then all I have

to do is fix the ratio of total energy and the number of particles so I denote that by u. Small u is

basically the energy total energy per particle so if I fix this then that is going to be the same as

this, so even if I scale U and N I get back the original u. 

So now I am going to try and see if I can simplify this integration which looks quite formidable

actually in general and see if I can evaluate this integration in what is called the thermodynamic

limit. So the thermodynamic limit is basically a limit where U tends to infinity N tends to infinity



but U/N which is u is fixed ok. So this is called thermodynamic limit so I am going to work in

this  thermodynamic  limit  and  so recall  that  this  S(U,N)  has  this  form and  depending  upon

whether I am talking about fermions or bosons.

So that means if you have marbles where there is no restriction on how many marbles per step

are allowed then that would correspond to bosons and if there is only a maximum of one marble

per step that is allowed that is called a fermion. So that is how it works out and I have explained

to you why this formula comes out the way it does and now I am going to rewrite this f in this

fashion. So I am going to rather define a new quantity called h which is the log(f) multiplied by

some prefactor like this. So as a result then I am going to be able to write this f as an exponential

with the extensive N sitting right there.

So now I  am going to  be  able  to  factor  out  this  integration  like  this  so  there  is  an  N and

something in the bracket which I am going to called w. So eventually I will be forced to reckon

with this integration over this two angles of course they were still there earlier and they are still

there now. But  then the simplification  that  I  have achieved is  that I  have pulled out this  N

outside, say so long as I convince myself that this quantity is now intensive.

In other words if I you know scale the total number of particles by λ and I scale the total energy

by the same amount then if this does not change at all then it is called intensive. So if I am

successful later on in convincing myself that this is intensive then you see that all the extensivity

is lumped into this N which is the number of particles in the system. So now I am kind of forced

to reckon with this type of an integration where z is some you know so think of θ and φ as some

components of a complex variable may be the real part this is the imaginary part.

So in other words this is z so I am going to be forced to think about this as an integral in the

complex plane where this is a function of z is described by the real part θ and imaginary part φ

so the point is that eventually I am forced to reckon with this type of an integration but crucially

where this N is really huge. So now the question is that do mathematics textbooks tell me how to

solve this easily, so the answer is yes.

So in complex analysis or complex variables there is a method called the method of steepest

descent, I am going to skip that technical details for now because firstly it is not part of this



course and I have listed that as a prerequisite, maybe if I get time later I might get back to it. But

if you do not know what that is please read your book on complex variables and go to the chapter

where they discuss the method of steepest descent.

(Refer Slide Time: 28:56)

But to cut a long story short the steepest descent method says that suppose you want to do this

integration and then N is really really large. So if this N is really large then the answer to this

integration is simply this, so this I was trying to do this integration and this integration is ,sorry

N. So this integration is nothing but it is just this it is proportional to that and where this z* is

basically the 0s of the, it is called the saddle point.

So it is the location of z where the first derivative of g becomes 0 so it is actually a saddle point

because it is minimum in one direction and maximum in the other direction so resembling a

saddle. So now those details I am going to skip why that is the case and so on and so please look

that up from your book on complex variables. So roughly speaking so in the thermodynamic

limits this kind of can be approximated using method of steepest descent or the saddle point

method to this expression.

So this looks very simple so I have to figure out what does θ* and φ* are by simply equating the

first derivatives to 0 at the values of  θ* and  φ* so and also if you ignore this proportionality

factor here then I can just read off take the logarithm on both sides here and I can read off the



expression for the entropy of the system which is basically the total number of particles times

this w evaluated at this saddle point.

So obviously if  I want to convince myself  that  entropy is extensive all  I  have to do is  first

evaluate  this  θ* ,  φ* and then insert  it  into  this  w and then convince  myself  that  this  w is

intensive, in other word say that if I scale the system it is not going to change at all.

(Refer Slide Time: 31:06)

So the question is  can I  do that?  but  before that  let  me point  out  to  you that  what  are  the

important implications suppose I were able to convince myself that entropy is indeed extensive.

So  what  would  be  the  profound  implication  why  am  I  so  concerned  about  you  know  the

extensivity of entropy. The reason is because it really leads to some remarkable identities that

you should probably know from thermodynamics but I am going to refresh your memory so one

of them is called the fundamental relation in thermodynamics.

So suppose so imagine a gas, I will get to the gas later I have been talking about marbles on the

staircase but that is not really a classical ideal gas we will get to that later. But suppose you know

just for a moment I will appeal to your knowledge from your earlier course work, so if I am

talking about an ideal classical ideal gas you know that the entropy really depends on the total

internal  energy and there is  something called  the volume of  the system which we have not

encountered yet.



Because  I  am  talking  about  marbles  on  a  staircase  till  now  so  well  eventually  I  will  be

encountering volume as well so if I decided to scale the total internal energy of the system the

volume of the system and the number of particles in this fashion. Then extensivity simply means

that the entropy is just scales the same way, in other words it is also λS.

If this is really the case if entropy is indeed extensive then all you have to do is realize that to get

the original entropy its the same as differentiating this with respect to λ so if I differentiate with

respect to λ this becomes S and so S becomes the derivative of the scaled entropy with respect to

the scale itself. So it is really peculiar but this is an important observation because I can use the

chain rule of multivariable calculus and rewrite this as you know there are three independent

variables here.

U’, V’ so each of them depend on this λ so there is an implicit dependence on λ so I can partially

differentiate S with respect to U’ and then differentiate U’ with respect to λ and I do the same

with V’ and with N’ and then finally I set λ to 1, so if I do that I get this nice relation but now I

have  to  appeal  to  your  knowledge  of  thermodynamics  and  then  you  will  recall  that  in

thermodynamics the absolute temperature is defined as the reciprocal of derivative of the entropy

with respect to internal energy.

Why this is a meaningful definition of temperature is something I will get to a little later so it is

not some arbitrary definition there is a deeper physical reason for why temperature is defined

like this in thermodynamics. So we will get to that a little later but for now let us assume that you

know this from your knowledge of thermodynamics. So similarly a pressure is defined as that

this temperature times the rate of change of entropy with volume of course.

 
When I am differentiating with respect to volume I have to keep the total energy and the total

number of particles fixed so if I differentiate it with respect to total energy I have to keep the

volume and number of particles fixed and lastly there is something called chemical potential. So

the chemical potential is similarly defined as temperature times the rate of change of entropy

with the number of particles so there is a sign conversion that you define it with a negative sign.

So these are all from your earlier knowledge of thermodynamics that I am not going to presently

derive but I will be deriving them may be in few slides down the role. So if you allow me to do



this if you allow me to write this then I am going to be able to insert this into these relations and

derive a nice formula but note this in small  print I have written here that we are measuring

temperature  in  this  course  in  energy units  so which  is  the same as  setting  this  Boltzmann's

constant to unity.

So normally the kind of entropy is defined as kB times the number of ways of doing this. In fact

this  formula is  you know engraved on the tombstone of Mr. Boltzmann himself  and this  of

course it would be ridiculous if this kB was set equal to 1 on his tomb stone in which case you

would not be paying a tribute to him at all by setting his famous constant to 1 so it is a good

thing they did not do that in his tomb stone on his tombstone.

But I am going to do this in this course am going to set kB to 1 because it is annoying, I would

much rather measure temperature in energy units and get rid of this altogether. Alright so now

am going to insert all these identities into this relation which is obtained from you know chain

rule of multivariable calculus.

(Refer Slide Time: 36:32)

And I get this result this beautiful result that says that the entropy of thermodynamics system

specifically a gas in this example. So it does not have to be ideal gas by the way I made no

commitments about whether the gas is ideal or van der Waals or any other type of gas but it is

just a gas. Because there is a volume associated with this and there is number of particles and

there is total energy. 



So the entropy of this gas is nothing but the total energy divided by absolute temperature plus

pressure times volume divided by absolute temperature minus chemical potential times number

of  particles  divided  by  absolute  temperature.  So  from here  it  is  obvious  that  the  extensive

quantities are entropy ,the total internal energy, the total volume and total number of particles

and the rest are intensive so the other three pressure, temperature and chemical potential  are

intensive.

(Refer Slide Time: 37:35)

 So I am going to stop here and just to give you a heads up so in the from the next slide onwards

am going to discuss the I am going to explicitly derive formulas for the entropy of a Bose gas

and a  Fermi  gas  but  then  in  the  thermodynamic  limit.  So  I  am going  to  work  only  in  the

thermodynamic limit and I am going to use my saddle point or the method of steepest descent

approximation to get hold of a nice closed formula for the entropy of a Bose gas and a Fermi gas

so hope you will join me for the next hour, thank you.


