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So let us see what we have covered so far, so we started with the prerequisites for this course. I

really want all of you to take this somewhat seriously because if you do not have prerequisites

you please make an effort  to acquire  them so the other thing we discussed was a historical

timeline of notable event and milestones in the development of the subject. The other thing we

discussed was the zeroth law, we mentioned the zeroth law of first law and we mentioned and

discussed to some extent the Clausius and Kelvin’s form of the second law of thermodynamics.

Then we also made an effort to prove the equivalents of the Clausius and Kelvin forms of the

second law then we went  on to  discuss  or  you know explain  the nature  of  the meaning of

microstates  and  macrostates  of  a  thermodynamic  system.  Then  finally  we  ended  with  the

definition or the Boltzmann definition of the entropy of a thermodynamic system. You see that

the definition of entropy from the point of you of Boltzmann is it is basically a combinatorial

quantity it is all about counting the number of microstates subject to certain constraints.



So now I want to discuss another facet of entropy that is often mentioned in various courses and

other discussions of thermodynamics and statistical mechanics namely that entropy is a measure

of the disorder of the system, so we really want to understand if that is really true or to what

extent is that true. So I am going to show you a sequence of slides somewhat amusing I should

admit  ,you  will  see  that  the  notion  of  disorder  is  actually  somewhat  vague  and  imprecise

compared to the definition that Boltzmann gave okay. So let us get on with it, so the question is

entropy a measure of the disorder in the system.
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So imagine that there is a lecture on entropy which you know this lady wants to attend and then

you see the advertisement for the lecture on entropy is starts off it is meaningfully it starts off by

saying ‘well this lecture aims to illustrate’ and then later on it becomes less and less intelligible

and finally it becomes all sorts of nonsense so the question is you know if I ask yourselves can

you spot phrases that are ordered and phrases that are disordered and to whatever extent and

meaning that you can attribute that to?

You  would  probably  immediately  jump up  and  say  well  the  first  few words  with  the  first

sentence the first line may make sense then after that it makes a little less sense and later on it

makes no sense at all. So you would kind of instinctively probably think of the first line as being

ordered and the later lines as being disordered or the whole paragraph kind of tends towards

chaos.



So however I want to point out that this is a certain bias that we have which is called which you

know I call it as a bias of coarse graining, okay. So let me discuss what I mean by that so let me

give you a slightly different example but a similar one. 

(Refer Slide Time: 04:21)

So it starts of you know this lecture aims to illustrates how entropy is a measure of disorder it is

in perfectly grammatical English. But then the very next sentence has the word entropy but the

rest of it does not seems to make any sense and the third sentence makes no sense at all it does

not have any word that I can relate to and fourth one similarly does not have anything and the

fifth one vaguely has a certain word like entropy.

So you see then if I ask you the same question you would still probably say that well this is also

a paragraph which is mostly chaotic except the first sentence which is in red which is ordered

and it make sense. But then I have to point out to you that this is a bias because actually each of

this sentences say exactly the same thing but in different languages. So I cannot remember which

one is which but I will tell you for example the one the penultimate sentence is in the south

Indian language of Kannada.

And the third sentence is in Arabic it says exactly the same thing mainly this lecture aims to

illustrate how entropy is the measure of disorder so it is someone who knows only Arabic only

and does not know any of the other language would in fact call this a paragraph chaotic but the



ordered sentence would not be the English sentence but rather the Arabic sentence which is the

third one. 

So it is important for you to understand that you know what we call as a ordered collection of

microstates is actually a human bias okay. So let me give you another example.
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So this is a vase which is not broken and on the right you see a vase that is broken so now I can

ask myself and others you know which one is ordered and which one disordered you would

probably instinctively say that well the vase that is not broken is ordered the one that is broken is

disordered and why would you say that. So you would probably say that because the number of

ways  in  which  you  can  take  a  vase  that  is  not  broken  and  break  it  is  infinitely  more  or

enormously more compared to the way in which you can take a broken vase and convert it back

to a real vase.

So you see here we are able to see the bias that we are talking about see what we have labeled as

ordered  is  precisely  one  set  of  microstate  it  is  one  microstate  if  you  like  you  take  all  the

collection of all the pieces as microstate and it is precisely one microstate but the disordered a

state is a vague notion because there are too many different ways in which a vase can be broken

and yet we all have decided to lump all those different ways in which the vase can break. And we

have called all of that disordered so that is the bias that I am talking about.
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So instead what we really should probably do is that instead of calling the broken vase disorder

we should really call it you know ordered of type 1 and this is ordered of type 2 and if you

rearrange the pieces that are broken that would be the ordered of type 3. So there is no such thing

as the disordered phase okay.

(Refer Slide Time: 08:08)

So as I  told you earlier  that it  is  our human bias that makes us think that a broken vase is

disordered whereas a unbroken vase is ordered so I just if you recall I showed you earlier three

pictures and I suggested that rather than calling the broken vase as disordered and the unbroken

vase as ordered we should simply call of them ordered except they are of different types. So you



can in fact a similar bias is seen in the next example ,imagine I have hand of cards that is shown

here so it  starts with ace of spades and then the two of spades and so on and hence so forth.

So it is ace 2, 3, 4, 5, 6 up to king so they are all complete spades so now I ask myself so this is

an un-shuffled then suppose I shuffle this hand what will I get? I will get shuffled hand so let me

ask myself this question which is more likely suppose i have a un-shuffled hand and I shuffle it I

get an shuffled hand or is the reverse more likely ,I start with an un-shuffled hand and I shuffle it

and will I get an ordered hand.

So suppose I ask you that question you will probably not hesitate in answering that it is more

likely for un-shuffled hand to become shuffled rather than the reverse but then if you pause and

think about it there is nothing in fact both are equally improbable. See the reason is because see

just as this sequence of cards is a unique sequence ,see this particular sequence that I have which

is called un-shuffled it is actually also an equally unique sequence see there is a first card 3 the

second card is 6 and the third card is king.

So this is as unique as this so there is nothing you know un-shuffled about this , this is just

another way of ordering a set of cards and so is this. So as a result if I ask myself what are the

chances if I start with this sequence and I shuffle my cards that I get exactly this sequence the

chances are extremely unlikely but then so is the reverse. So I start with this sequence and I

shuffle the cards the chances that I get back this sequence is equally unlikely.

So in that sense so what we are doing in statistical mechanics is we are actually coarse graining

by saying that this is ordered and anything that does not resemble this sequence is disordered or

so basically we classify them all as shuffled but it is shuffled is not one sequence of cards but

rather a whole bunch of sequences of cards which are not resembling this sequence.

So in that coarse grain sense so if you lump a whole bunch of sequences as shuffled then it

becomes fairly obvious that you know it is overwhelmingly more likely for an un-shuffled hand

to become shuffled then it is for the reverse to happen. Because the un-shuffled hand is actually

not one sequence of card with a whole bunch of sequences and so that way the irreversibility

creeps in. 



So that is actually the origin of second law of thermodynamics according to Gibbs. So I hope I

have made it clear that you know the idea that entropy is measure of disorder is only in this sense

that we have decided to coarse grain our notion of what a disordered hand is. So if you lump a

whole bunch of states together and choose not to distinguish between them then it is true that an

ordered state is overwhelmingly likely to become an unordered state then it is further reverse to

happen.

So in fact Gibbs correctly pointed out that it is this bias that makes us believe that entropy of a

system which you know second law of  thermodynamics  which says  that  the entropy of  the

system increases with time, that is another formulation of second law which I did not discuss till

now but that is the second law of thermodynamics which says that if you have an isolated system

where nothing comes in nothing goes out and you look at the entropy of that system it either does

not change with time or it increases with time.

So the reason for that according to Gibbs is because we choose to define entropy in this coarse

grain sense. So, we choose to purposely ignore the subtle variations of the microstates between

different possibilities and we lump all of them as a huge classe as a disordered state and we do

not care about anything else. So let me get to this you know calculations of you know let us try

to learn how to get some numbers out actually calculate entropy as a number. So you know that a

Boltzmann explained to us that entropy is nothing but logarithm of the number of microstates

subject to certain constraint. 
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So now here is a deck of hand of playing cards, so now you know that a standard deck has two

colors black and red and there are 26 distinct cards of each color. So imagine I have a hand that

has a N cards and now imagine that hand has N1 black cards and the rest are red cards. So N – N1

red cards and N1 black cards ,so now I can ask myself you know if there is a standard deck sitting

on my table, I pick cards one by one what are the chances that I will end up with the hand that

has N1 black cards and N– N1 red cards?

So the answer is clearly it is a simple combinatorial problem and it is just the you know the

binomial coefficient or the C26
 N1 which is the number of ways in which N1 black cards can end

up in your hand and C26
 N-N1 is the number of ways in which the remaining cards can end up in

your hand. So now the entropy of the system so the number the overall number of ways this can

happen is really the product of these two numbers and now according to Boltzmann the entropy

of the system is the logarithm of this overall number of ways in which you can get this hand

from a standard deck of cards.

So as you can see I have written the formula here the entropy is the logarithm of the product of

these two numbers. So now what I am going to do is i’m going to plot, so before I plot so let me

point out what are the microstates and what are the macrostates actually the microstates have

been subsumed in the combinatorics so that mean I have a huge number of micro states with

which lead to this huge combinatorial number like C26
 N1 so they are hidden there but then what

are the macrostates, the macrostates are these two numbers N and N1.



So the macrostate is described by this collection of two numbers one is the total number of cards

the  other  is  the  number  of  black  cards.  So  by  implication  the  number  if  red  cards  so  the

difference between the two. So now you can see that each macrostate really corresponds to huge

number of microstates. 
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So now let me plot this entropy versus the number of black cards, so you suppose I have 10 cards

in my hand and I can plot number of entropy which I have previously defined and you can see

that it starts of being small, the entropy is not 0 but it is you know it is not 0 but the entropy is 0

it means there should be precisely one way of achieving that hand. So but we know that even if

you know you have no black cards at all ,if all the cards in your hand are red there is still many

ways in which you can get that hand because after all there only 10 cards 10 red cards in your

hand but your deck has 26 red cards.

So obviously there is still many ways in which you get that hand, so even if you start off with no

black cards at all which is the origin of this plot. So you still have a an appreciable entropy and

as you increase the number of black cards then entropy goes up and it reaches a peak and then it

comes down and when you have only black cards in your hand it again becomes the same as

what it was when you have no black cards in your hand.



So this is very characteristics of systems where there is a limit to how many cards there are over

this how many energy levels there are for example later on we will see that if there is an upper

limit to the microstates that you are looking at, then it is always the norm that the entropy in

initially increases then comes down. So in fact one can define later on we will see that there is

something called the temperature of the system that one can define and here also we may define

the temperature as basically the reciprocal of the slope of this plot.

(Refer Slide Time: 18:25)

So if you make this plot and find this slope and plot the reciprocal versus the number of black

cards you can see that the temperature of the system initially is positive then when the number of

black cards is equal to the number of red cards the entropy, the temperature rather goes to 0 and

then it becomes negative. So in fact you should not be alarmed by negative temperature because

a negative temperature is simply a symptom of the system not having enough microstates at the

upper end of the spectrum.

So that means as you increase the number of you know say the black cards in this example, that

you run out of states you do not run out of it fully but then you will run out of it quite rapidly and

which explains the way the reason why a temperature again you know the entropy comes down

and as a result the slope is negative which makes the temperature negative. 
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So now let me get to another example which is also illustrative of the notion of entropy and also

temperature and that is the example of a stair case where imagine there are n1 people standing on

a staircase and imagine that stair case has say M steps capital M steps. So imagine a microstate

where there are n1 people and notice that people are all different individuals so they are all ,they

have different names, different genders they are all different people.

So they are all standing on different steps and there is not restriction let us assume that how

many people can stand on a step. So imagine that is a very wide staircase there is no, there’s

plenty of room or anyone you know as many people as you want can stand on a step. So now

imagine that the n1 people standing on a first step n2 people standing on the second step until you

reach the last step.

So now the total number of people on the stair case therefore is the sum of n1, n2 and n3 and so on

up to nM and that is constrained to be equal to N so let us assume that the total number of people

is fixed nobody enter an or exits that hall where the stair case is present so the you only have a

fixed number of people they are all standing on the staircase. So now you can ask yourself what

is the potential energy of this microstates so imagine that all the steps are of equal height and all

the people of the persons have the same weight.

So this is just for simplicity so as a result each person contributes wh to the potential energy you

know if they are standing on the first step for example. So now the total potential energy of the



system is the number of people standing on the first step which is n1 times the potential energy of

the first step which is w into h. So again then you have to add that to the number of people

standing on the second step which is n2 and you have to multiple that with the potential energy of

the second step which is twice wh and so on and so forth until you reach the last step.

So notice that we are assumed that there is a last step that means that the total number of steps is

fixed so in fact this is this is going to lead to a behavior similar to the behavior we saw earlier in

this example, with the deck of cards so you will see that the entropy increases and then comes

down. So we expects similar behavior in this stair case example simply because the total number

of steps is fixed. 

So later on we will see an example where this is not the case and infinitely many steps, right now

let us assume that there are finitely many steps which is M and let me ask myself how many

ways are there of redistributing these N different people on this M steps such that their total

potential  energy  is  U.  So  now  what  we  have  to  do  really  is  solve  this  mathematical  this

mathematical question namely solve this equation. 

So we should be able to solve the equation n1+ n2 + ….+ nM = N ,okay so now let us get to the

next example which is that of a staircase. So imagine that there is a staircase on which there are

several people standing ,so I am going to assume that the people are all different individuals so

each person is different, they are you know different genders ,they have different names and so

on but let us assume they all weigh the same for this example.

So let us assume that there are M number of steps and each step has the same height ,so now I

am going to ask myself you know I am going to describe a microstate where there are n1 people

standing on the first step and n2 people standing on the second step and so on until the M-step

until the last Mth step. So of course by implication we will assume that there is no plenty of

room on each step so there is no restriction on how many people can stand on each step.

So now however the restriction that finally emerges is that because the total number of people is

fixed which is capital N. So I have to make sure that the microstate that I am looking at which is

described by these number n1+ n2 + n3 up to nM. So they have to have the property that if I add

them all up I should get the total number of people on all the steps put together. Now I can ask



myself I have a further constraint rather ,that is I am going to demand that not only should the

number of people be fixed.

I also demand that their potential energy put together should be U which is fixed ,so now you see

let me count the potential energy of this combined system of people standing on the stair case. So

now you see n1 is the number of people standing in the first step and on the first step the potential

energy is w times h and w is the weight of each person and h is the height of the each step which

will assume is common to all the steps, so all steps are of the same height h.

So now n1 times wh is the potential energy of people standing on the first step and the potential

energy of people standing on the second step is n2 times 2 wh because the potential energy of the

second step is  2wh.  And potential  energy of  the last  step is  Mwh in the  number of  people

standing on the last step is nM. So that is this this equation that I am talking about so you see I

have now 2 equations  and several  unknowns and these are  all  my unknowns and I  have to

obviously there are too many unknowns and too few equations.

So obviously I will get a huge number of solutions but then the only restriction now is that n1,

n2, n3 and so on are all integers and they are greater than or equal to 0. So now in principle I

have to list all the possible solutions of these two equations and then I count how many solutions

there are and that will be the total number of microstates and according to Boltzmann if I take the

logarithm of that quantity of that number what I get is basically the entropy of the system.

So now these two equations actually a special case of what are called Diophantine equations

which is named after a Greek mathematician who lived in antiquity.
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But then I have to point that well before Diophantius a special  case of this equation with 2

unknowns n1 and n2 where  ε1 ,ε2 and U being integers, so all these are integers all these are

integers and positive and this there is a method for solving this in terms of unknowns n1 and n2

given  ε1 ,ε2 and U  and this was invented by Aryabhata in the forth to fifth century and this

method was later explained properly by his successor Bhaskaracharya  who lived in 600 AD and

680 AD.

So this is just I just want to point out because the algorithm were actually first invented long

before Diophantus himself wrote down his equation in a general way. And this special case of

Diophantine  namely  the  one  that  I  am  staring  at  right  now  these  they  are  actually  called

Frobenious equations so they are a special  case of Diophantine equation and you should not

confuse that  with the Frobenious method of solving ordinary differential  equation with non-

constant coefficients okay.

So a not so good way of solving these Diophantine equations of Frobenious equations is to list

all the solutions of these equations and then count how many they are and you know take the

logarithm and you get  the entropy and if  you really  want  to  do it  this  way there are  codes

available in languages such as python Mathematica and so on that can do this. But later on we

will see in this course that it is not really necessary to list all the solutions rather you can count

the number of solutions without actually listing them and that there is an analytical method for



doing this which I am going to describe subsequently and that is called the generating function

method.

But however coming back to the wasteful way of doing it ,so if the number of people on the steps

are small and the number of steps are also small. So as a result the potential energy is small so

we  can  actually  without  much  effort  list  all  the  possible  solutions  of  these  two  Frobenius

equations and then take the logarithm and get the entropy and so that can be done by hand and

that is something probably in some of exercises I will be encouraging you to do that by asking

you to do repeat this calculation for you know 5 steps in 6 people and that sort of thing okay.
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So now let us take an specific example with two steps and 3 people so now you see the constraint

that I have is that the number of people is three and the number steps is two which is described

by the index there so that two steps and 3 people. So what are the ways in which I can manage

this, so you see all three people can be on the first step or one person can be on the first step and

two can be on the second or two can be on the first step and one can be on the second step or all

three can be on the second step.

So these are the only possibilities, but notice that the people are all different so it is going to also

effect the way in which we count. So in the first case the potential energy is when all people

stand all the people means they are only three people they are all standing on the first step the



potential energy is 3wh. Now in the second case the potential energy is wh because there is only

one person standing on the first step and that two people standing on the second step so that

means two people two times potential energy of the second step which is 2wh which is 5 wh.

So similarly if you look at the third case, in the third case there are two people standing on the

first step and one person standing on the second step so it is two times wh for the first step and

one times 2wh for the second step and that makes it 4wh for the third case. As the final case is

when the potential energy is such that all the people are or all the people means all the three

people there they are all standing on the second step.

So in which case the potential energy is 3 people times the potential energy of the second step

which is 2wh. So you can write a list plot or you know point plot of the entropy because the

entropy is now every discrete object because so few people and so few steps so you see.

(Refer Slide Time: 32:28)

So if the energy of the system is you know wh so I am just thinking of you know a simple

example, so if I have taken wh to be 1 actually so if when wh is 1 so what are the possibilities for

the energies, you can see that the smallest possible energy is really 3. So and the largest possible

energy is 6 so it is the values of U on the x axis is going to be 3, 5, 4 and 6 are rather 3, 4, 5 and

6 ,so on the x axis you have only these possibilities 3, 4, 5 and 6 and on the y axis you have the

entropy which is the logarithm of the number of ways in which the energy can be 3, 4, 5 and 6. 



So let us see how many ways there are in which the energy can be 3 ,so when can you get 3wh as

the energy that is when all the people are standing on the first step, all 3 people are standing on

the first step. So there is only one way in which you can do that you just simply make all 3

people stand on the first step. But however in the second case you know there is one person

standing on the first step and two people standing on the second step and there are three ways of

doing this because you know notice that people are all different.

So you can make George stand on the first step you know Aditya stand on the second step and

Sourav stand on the second step so you have three people but then you can interchange you can

Sourav stand  on the  first  step  and George  stand on the  second step  you get  a  different  of

configuration so because the people are all different, so you get different ways of doing that,

different ways of achieving the potential energy 5 wh and how many there are of doing this

clearly there are 3 ways of doing it because you know you just have to decide whose stands on

the first step and then other two are forced to stand on the second step.

So same in the case of the third example where you force one person to stand on the second step

and the other two are force to stand on the first step so that three ways in which you can select

the person you want to make stand on the second step. So as a result when the potential energy is

4 or 5 the number of ways of doing it is 3 so when the entropy is log 3 in these two examples.

So as a result you see whether entropy is 0 because there is only one way of doing it when the

energy is 3 and there is only one way of doing it when the energy is 6 but there are 3 ways of

doing it when the energy is 4 or 5, so as a result the entropy is log (3), log (3) there and 0 here

and 0 there. So you see as a result even here the entropy increases then flattens out then again

decreases and becomes 0 so this is reminiscent of what we saw earlier namely in this example,

the playing cards example it has a similar feature.
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So now let me give you a slightly different stair case example, instead of people imagine there

are identical marbles, in other words the people where all different you know you had George,

Aditya, Sourav they are different people but then imagine there are identical marbles. So when

there are marbles you know the countings are going to be different because they are all identical.

So here is a typical microstate that I am looking at so you have one marble on the first step and

then two marbles absolutely identical on the second step and one marble on the third step and

three marbles on the fourth step and so on.
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So in this example for the sake of being concrete let me take three marbles and three steps so

what are the constraints that I am looking at, I am looking at this constraint that the total number



of people, the number of persons should be 3. So the number of persons is 3 so n 1 + n2 + n3

should be 3 but I also want the total potential energy of a system to be fixed which is U. So how

do I achieve that you know I have three steps so you know the first step has potential energy wh

so and then n1 people there which is my microstate n1, n2, n3 is my microstate.

So you have wh into n1 is the potential energy of the first step then 2wh is the potential energy of

the second step and then two people there and 3 wh is the potential energy on the third step and

in 3 number of persons on the third step and here too I can count and here too you can find that

when the energy is you know either 3 or 4 that the number of ways in which you can do you

know just precisely one in which case the entropy is actually 0.

So however when it is 5, 6 or 7 you can figure out what it is ,its going to substantial but certainly

not, see notice that it  is different from the, so this plot is not exactly the same as the people

example, so there here the more energy is where the entropy is actually 0 but here too you see

that even though it is slightly different because the marbles are all identical unlike the other

example where the people are all different but here too we have a common feature namely the

entropy is actually increases ,flattens out then again decreases.

So here you see that here too the temperature is actually positive for some of the values of U and

then again negative for some other values of U and this is a symptom as I said of a system where

you know the number of steps or number of energy levels or whatever you want to call it when

that is fixed. So when you have some restriction you know when there is no room at the top as it

where when it becomes crowded at the top ,then the entropy goes down because you cannot

really that the number of ways in which you can do things starts to diminish.

And you do not  have many options left  and as a  result  the entropy shrinks to 0 finally.  So

however if you do not like the situation and you do not want the entropy to shrink to 0 there is a

way of doing this and that is you do not restrict the number of steps. So what you say is that you

know I have a endless staircase, of course I have a fixed number of marbles or fixed number of

people but I do not restrict on how high they can stand. So I have an endless staircase, so now I

am asking myself that imagine that I have 10 people on the endless staircase.
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But in this example I have chosen marbles rather than the people because it is easier to do it with

marbles because I do not have to distinguish between them. So I am talking about marbles now,

so you have 10 marbles on endless staircase and as by now you should know how to write down

these constraint equations ,the Frobenius equations as it where and the first Frobenius equations

is the total number of particles which is forced to be 10.

And the total potential energy and I won’t repeat the arguments here and it is going to be U so

again you can write a code for this I think you should do it yourself because I do not want to be

biased towards any particular any particular language I prefer a language called Mathematica

which is very nice for this sort of thing but I am you know I am not recommending any particular

programming language you could work in Python or MATLAB, they are all equally good.
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But whatever it is you could simply go ahead and try and solve these equations and when you do

you get this plot so you can plot the number of the energy of the system versus the entropy of the

system so you see the entropy actually increases monotonically, it never goes down ,it increases

with energy okay.
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So now you can plot the temperature which is defined as the reciprocal of this slope of the earlier

plot so it is going to look like this and notice that it is always positive. So the temperature is

increasing and positive always so indicating that the entropy is a,  you know non decreasing

function of energy. So that is a symptomatic of a system where the there is no upper bound to the

total number of energy levels or there is no upper bound to the energy of the system itself.



So if there is no upper bound to that energy there is no crowding at the top and there is lot of

room at the top so entropy can, you can rearrange the microstates to get a entropy which is a non-

decreasing function of the energy.

(Refer Slide Time: 42:32)

So let me now give a name to the objects that I have been calling marbles so notice that the

marbles are actually indistinguishable objects and indistinguishability is a hallmark of quantum

mechanics so you do not have indistinguishability in classical physics because it is ,you can

always, so if you have a you have a particle a classical particle moving you can always tell it

apart from the others because you can you can know the position and momentum of each particle

separately in principle you can know what it is.

And you can follow each particle around and so there is no way in which you can confuse that

particle with some other particle because no two particles can be not only in the same position

but have the same momentum. If two different classical particles have the same momentum and

same position they had better be the same particles. So, however in quantum mechanics you

cannot really do that you can either track the position or you can track the momentum.

So if you decide to track the position then you cannot be sure that you are looking at the same

particle  because you can have the another  particle  with the same position with the different

momentum but then you will  confuse that for the same particle  because they have the same



position.  So the point is that indistinguishability is the hallmark of quantum mechanics,  now

indistinguishable  particles  in  quantum mechanics  come in  two types  one of  them are  called

Fermions the other called Bosons. 

So the example of identical marbles that I gave you earlier where there is no restriction on how

many particles there can be on each step of the staircase is an example of Bosons. So you can

have another example of Fermions where there is restriction namely you say that I only allow a

maximum of 1 marble on each staircase. So either I will leave that step empty or I allow only one

marble to occupy that step of the stair case.

So in which case you have a total number of, so now your frobenius equations become this is

which is of course the constraint that the total number of marbles is 10 and the second one is as

usual the total potential energy is U and the important constraint which tells you that these are

fermions is that the number of marbles on each step is either 0 or 1. So that is a lot to swallow so

in this hour we have learnt a lot hopefully but one common thread among all the ideas that you

have learned in the last one hour is that you know you have this Frobenious equations that you

are forced to solve by hand and you are forced to enumerate all the solutions rather wastefully

just to count how many there are so Boltzmann tells you that if you somehow by hook or crook

know the number of solutions of these Frobenious equations the logarithm of that number is the

entropy. So if you are only interested in entropy it is wasteful to list all the solutions but in this

last  one  hour  we have  done just  that,  we have  used simple  example  with  small  number  of

particles small number of you know steps and then we have decided to explicitly enumerate all

the solutions and count them explicitly.

So in the next lecture I am going to tell you a very clever analytical way of side stepping or

avoiding having to list all the solutions of this Frobenious equations. So there is an analytical

way, a  clever  one of  counting now many solutions  there  are  without  actually  listing  all  the

solutions. Let us call the generating function method and that will be subject of the next hour of

lectures.


