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Ok, so now before we start a new topic.  So remember that we finished off with the Landau

diamagnetism, where we derived the diamagnetic susceptibility.
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To be given by this formula. 
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So before I jump into a new topic, I thought it is important for me to explain very explicitly how

to shuttle between the micro canonical canonical and grand canonical partition functions? So

notice that in this course, I have purposely focused on the micro canonical ensemble. That means

I have always gravitated towards calculated entropy first.

That  is  typically  not  what  many  other  people  other  authors  and  speakers  do,  they  kind  of

depending upon the situation, they directly use the canonical ensemble or the grand canonical

ensemble. So I wanted to purposely not do that, because I wanted to emphasize the central role

played by entropy in the subject of statistical mechanics. But it is also important to understand,

you know, in order to minimize the amount of effort you are going to put in.

In practical calculations, how to start with the canonical ensemble directly if you wish to. So the

way  you  do  that  is,  you  start  off  recall  that  the  entropy  function,  basically  the  number  of

microstates is exponential of entropy. And that is given by just this combinatorial formula, which

tells us just the number of ways in which you can arrange your micro states such that the total

energy which is Σi εεini , is constrained to be U.

And also you constrain the number of particles to be N but otherwise there is no constraint, well,

depends upon whether nature is described by in the particles in question are bosons or fermions.

So classical particles, but otherwise, there is no further constraint. So, this is how you count the



number of microstates. So it is a very combinatorial, discreet way of counting. And that is the

essence of that goes to the heart of the notion of entropy. 

The fact that it is a combinatorial quantity. Now that we know what combinatorial is, I mean,

how to define entropy from a combinatorial  perspective.  And so this  is known as the micro

canonical perspective. So, it is possible to think of the canonical perspective. Which you if you

recall that I had described the canonical ensemble by saying that you have a system where the

system is allowed to exchange energy with the surroundings, which was a huge reservoir. 

And that is how I defined canonical ensemble they come to an equilibrium and the temperature

equalizes. So, it so happens that you can also think of it more mathematically. You can think of

the  canonical  partition  function  more  mathematically  as  the  Laplace  transform of  the  micro

canonical partition function. So this is the number of microstates. And you just multiply by e

raised to β by U and you some over all of U’s.

And what  you  get  is  directly  the  canonical  partition  function.  So you  trade  the  energy  for

temperature. So basically, you do a Laplace transform of the energy and replace it. Basically

would trade it for temperature. And again, so this would be a valid description of the canonical

ensemble of the system. Now, you can do a further Laplace transformation, where you exchange

the number of particles for quantity known as chemical potential. 

So when you do that, when you do this further Laplace transform, what you end up doing is you

get  a  quantity  known as  the  grand canonical,  or  the  grand  potential,  or  the  grand partition

function specifically. So the grand partition function is easy to calculate, as you can see from this

formula, there are no kronecker deltas anymore, it is just a bunch of exponential and sum over all

ends. So you can expect this to be a simple geometric series, for the most part.

It  is  easy  to  calculate.  So  that  is  the  reason  why  most  people  directly  calculate  the  grand

canonical partition function, they work with a grand canonical picture. And that is how we did it

for the fermi, and Bose gases if you recall, so we work with chemical potential and temperature.

That  is  because it  is  easy to do.  Then,  for large systems, we have convinced ourselves that



fluctuations are suppressed, and that they are equivalent, In the sense that they are, they contain

the same amount of information.

And you can shuttle back and forth between the various pictures. alright, 
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so now that is out of the way. Let us get on with describing paramagnetism. So if you recall, we

stopped with Landau diamagnetism. Here the induce the magnetic moment opposes the applied

field. But here, what happens is that there is no induced magnetic moment, there is already a

magnetic moment even before the field is applied, it is just that they do not all point in the same

direction. 

So in  other  words,  every  molecule  has  its  own intrinsic  magnetic  moment,  but  they are all

pointing in random directions. So what a field does is basically tries to align all the moments

along the direction of the field. Well,  then there is a competition to that from what is called

temperature. So basically, there is a temperature which tries to randomize the spins, which tries

to misalign the spins and make it isotropic. 

So temperature tries to make the spins, isotropic, whereas the magnetic field tries to align them,

and  there  is  a  competition.  So  the  end  result  is  some  kind  of  a  compromise  between  full

alignment and full isotropy and you get what is called Pauli’s paramagnetic susceptibility. Which



tells you how strong the magnetization is, as a function of temperature and as a function of the

applied field and so on. 

So the goal is to calculate this Pauli's paramagnetic susceptibility. Alright, so in order to do this,

I am going to start with an obvious starting point, which is that if you have molecules or atoms

with the intrinsic magnetic moment, So we are at liberty to denote it with a symbol for μi, which

is a vector for the i’th item. So this i’th item experiences a magnetic field called edge and energy

that the magnetic moment interacts with the magnetic field and there is interaction energy of this

form. 

So the magnetic moment, as you very well know, is given by this formula, which is kind of easy

to  convince  yourself  of  its  validity.  So  we  know  that  the  magnetic  moment  is  basically

proportional to the angular momentum of the supposed electrons in the outermost shell. So the

magnetic moment is going to be proportionate to the angular momentum. So the proportionality

is going to be e / 2mc. So this is derived in various  atomic physics or source quantum mechanics

courses. But then for spin, because the magnetic moment due to spin basically, spin itself is not

as  a  result  of  something  going  round  and  round.  So  it  is  not  orbital  see,  orbital  angular

momentum is because the charged particles going round and round. And if it is going round and

round, you can actually derive this using classical arguments. And the magnetic moment comes

out as e / 2mc times the angular momentum.

But then the spin is an intrinsic property of the electron, for example, which is not because it is

going around and around or anything. So it is like charge and mass, it is intrinsic to the particle.

And so special  relativity  gives  this  additional  factor  of  two,  which is  not  explainable  using

Newtonian ideas. And you have to just live with it.  So that is how it is. So so the magnetic

moment of an electron in an atom is given by this formula

                                                       μi = (e/2mc)(li+2 si)  
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Now, because of quantum mechanics, you know that the square of the orbital angular momentum

is in orbital quantum number is l(l +1), and the spin is being it is 1/2. So its 1/2×(1/2+1). So now

before we jump into the classical quantum picture, rather, so this was the quantum description, i

am going to start with something simpler, which is the classical picture. So now imagine there is

a classical molecule with an intrinsic magnetic moment. 

Well, ji is rather, your (e /mc ) ji is my intrinsic magnetic moment and jz is a classical vector, it is

not a quantum object, not an operator, it is just a normal vector and assume that the magnetic

field is in the z direction. So in which case, the Hamiltonian so I have to apologize for this being

both the magnetic field and the Hamiltonian. So I am going to put a subscript m there signifying

is the magnetic field is the Hamiltonian okay. That is the magnetic field alright.

So now notice that because J and Jz are all classical quantities that basically and the magnetic

field is in the same direction, The only component that is relevant, as Jz, and Jz,i =   j cos(θi),

were  θ is angle made by the magnetic moment with the z axis. Now in order to calculate the

grand partition, I mean, the canonical partition function allowed to integrate over all the angles.

So the way to integrate all the angles is this way.

So I am going to integrate over the angles by using this solid angle as the so basically the density

of states is one if you use the solid angle as your measure of integration, And this is how it



works. 

So this is how the canonical partition function is this 2π is because of integration or the angle Φ,

and the integral over θ is from  0 to θ=π this remember what that is. So This is your θ, this is

your φ, the φ goes all the way from 0 to 2π. 

And θ goes from 0 to  π  like, you will be covering the entire sphere. So 0 to 2π  over whole

sphere. So, so that is what you are going to be integrating. And when you do that integration, you

get this answer. Now you can go ahead and calculate the average magnetic moment.  So the

average  magnetic  moment  is  the  so  remember  that  if  you want  to  calculate  the  average  of

anything, 
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It is basically this one H  times whatever average you want to calculate, divided by. So this is the

average of that  whatever you wanted to calculate.  So the average of something is  the phase

space. So you put the Boltzmann weight, it is called here is called the Boltzmann weight and

multiply with that thing, yours was average you want to calculate and then you divide by the

total, weight. So that is what I have done here. 

So, this happens to be also equal to the surface you can easily verify because So the log of so if I

take the log (z) and I differentiate with respect to  βH means magnetic,  okay. So, this is the



Hamiltonian, this is the magnetic moment. This is magnetic field rather not magnetic moment.

So this is magnetic field. magnetic field magnetic field magnetic field. So If I differentiate with

respect to magnetic field.

Take the log (z) differentiate with respect to magnetic field and multiply by temperature, which

is 1/β, I get the average magnetization of the system, okay, as you can easily convince yourself

because, because of this alright, so now, because I know what z is, now, I have just calculated it.

I substitute that here and do the relevant differentiation. And I end up with this result, which tells

me that the average magnetization is related to temperature and magnetic field in this fashion.

And the magnetic susceptibility is basically defined as the linear. So if I Taylor expand this in

powers of H, so I  will  get something into H+H2 over ...  This something is  called the linear

magnetic susceptibility. So this is limit as x →  0 or the linear term, basically the linear term. So

there  will  be  other  terms  squared.  So  the  linear  term  has  this  feature  that  it  is  inversely

proportional to temperature, the proportionality constant is this. 

So this is called Curie's law. So after Pierre Curie theory, so it just basically tells you that the

paramagnetic  susceptibility  falls  off  inversely  with  temperature.  So  that  is  the  linear

paramagnetic  susceptibility.  So now, that  was the  classical  description.  So if  your  magnetic

moments are classical, that is how it is going to look like. But now the question is, what if the

magnetic moments are quantum so that I remember, that is how we started off.

We started off this way, when we started off discussing electrons. But then we said, let us do the

classical case first. And we got this result which is Curie’s law. 
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Now let us go ahead and do the quantum case where basically the electrons are now because they

have both orbital angular momentum and spin angular momentum. Their states are now labeled

by the total net angular momentum. 

So  which  is  l+s.  So  then,  you  have  both  jz,  and  J,  which  is  the  the  quantum  number

corresponding to j², as being the good quantum numbers. Now, it so happens that you can kind of

use what is called Wigner Eckart theorem, which guarantees that l plus two s is basically points

in the direction of j, so long as you are interested in matrix elements between eigenstates of j

square and jz. So this proportionality constant is called Lande g factor. 

And this can be computed in the following sense. That to take the dot product with respect to j on

both sides, And then you work out s, sj is this lj is this an ls. Remember that l + s is J. So

basically, j2 = l2 +s2 +2l.s. So j2 =j(j+1). And l2 =l(l+1), and s2 =1/2×(1/2+1). And that is basically

your 2l.s. So 2l.s is just a number. So I am going to use that and then I derive this formula this

formula for the Lande g factor.

The proportionality  constant,  it  so happens  that  see,  the  thing  is  that  all  my good quantum

numbers are related to j, l+2s is neither L nor s nor j. So I want to be able to write it in terms of j.

So fortunately, Wigner Eckart theorem allows me to do this. And it says that l+2s is guaranteed

to find the long j, so long as you are only interested in the matrix elements with respect to the



eigenstates of j square and jz. Alright, so and that proportionality is going to be this so this is

called Lande g factor.
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So I am going to use this Lande g factor and then substitute instead of l+2 instead of l+2 i am

going to write g× j vector then j vector dotted with H is basically Jz. which is, you know, M, the

magnetic quantum mj  ħ. So that is the reason why there is an ħ here. So it is a e /2 mc times h

bar, which is already put into this, this becomes the Bohr magneton. And so I am gonna have this

nj because jz, then I will be forced to some over all mj N.

Remember what what the values of Mj are restricted to be, they are restricted to go from - j to +j.

So I am going to be summing over all  the values of MJ from - j to j.  And then in order to

facilitate this, i am going to make a re definition of this quantity as x. So when I do that, I can do

the  summation,  just  a  simple,  you  know,  geometric  progression,  geometric  series,  a  finite

geometric series, which you can do yourself. So I had this answer in terms of this x. 

Now as usual, I am going to go ahead and differentiate log z at  with respect to β times the

magnetic field, And I get my average magnetization, the z direction. And that is related to this

function, which is known as the Brillouin function. So this is called function Brillouin function.

So now it is worthwhile to understand how this thing behaves for small and large values of x.

Because after all small values of x correspond to, on the one hand, small magnetic field,on the



other hand, large temperature, so you can either look at small values of x as being because of

large temperature, or because of small magnetic fields. So that is the linear, classical regime. But

then, conversely, if x is very large, it could be either because the temperature is very small, or

your magnetic field is large. So, so you can suspect that if the magnetic field is large all the

moments are going to be aligned.

So it is nice to know that that is synonymous with low temperature. So that is telling you that

when the is temperature is low, also, it is similar to the magnetic field being large.
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Alright, so so let us work out the first case, where the temperature is large, or the magnetic field

is small,  in which case, the average magnetization, is going to be proportional to the applied

magnetic field. And the proportionality constant is called the magnetic susceptibility. So In this

case,  this  is  paramagnetism.  So  we  have  a  susceptibility  that  is  inversely  proportional  to

temperature and proportionality constant is derivable in this fashion.

So however, at for low temperatures, or high magnetic field, x, very large, and when x is very

large. What is going to happen is that this cotangent hyperbolic, basically becomes unity. And

because it is, like, you know, cosh / sinh, and they are both equal, arguments are large. And then

this becomes approximately 1+1/2j-1/2j=1. So then when x is very large, this Brillouin function

is one. And because this one.



The average magnetization is, just independent of temperature at low temperatures, and it kind of

saturates to the maximum value, which is given by the maximum magnetization, that is possible

when all the magnetic moments are aligned with the magnetic field. So that is the story of para

magnetism and Landau diamagnetism.  So The next topic we are going to discuss is  what is

known as Ferromagnetism naturally. 

And the prototype or the simplest model that exhibit ferromagnetism is known as Ising model.

So i  am going to first describe Ising model in one dimension,  mainly because it  is solvable

Exactly.  But  downside,  unfortunately,  is  that  it  does  not  exhibit  ferromagnetism,  except  at

absolute 0. So that is really puts a damper on things. So fortunately, things brighten up in higher

dimensions,  like  two  dimensional  Ising  model  has  non  trivial  ferromagnetism  at  finite

temperature.

But of course, is much harder to solve. So let us see if I get around to it. I will discuss it, but I am

certainly  going to  discuss  one  dimensional  Ising model.  And some approximate  methods  to

handle Ising model in two and three dimensions. Alright, so I am going to stop here. In the next

lecture, I am going to discuss the Ising model. 


