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Okay, let us begin a new topic or new set of topics, which is going to be basically magnetism. So

In other words, the statistical mechanics of magnetic materials. In magnetism as you probably

know,  there  are  many  types  of  magnetism.  For  example,  they  are  called  diamagnets,  para

magnets and feromagnets. So we’ll have to explain what these three different types of magnetism

is and why we have three different types of magnetism. 

So diamagnetism is a phenomenon that is seen in all materials, it is basically comes about as a

result of Faraday's law. So, you know, if you apply a magnetic field to charged particles that are

moving you will be setting up currents, and those currents will themselves produce a magnetic

field which will oppose the applied magnetic field. 
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So in other words, So the phenomenon of diamagnetism is simply the idea that if you apply a

magnetic field to a  material, there is going to be an induced magnetic field.



Created by circulating charges in the material, which will oppose the applied magnetic field. So

in other words, the magnetic moments, If you wish to call it that are not intrinsic to the material,

they are induced by the applied magnetic field. So the stronger the applied magnetic field, the

stronger the induced magnetic moment, and it is going to be in the opposite direction of the

applied field. So this is called diamagnetism. So that is what i am going to be talking now.

But then there is going to be later on we will discuss paramagnetism where the charge carriers

already have an intrinsic magnetic moment. So you do not have to apply a magnetic field to

create a magnetic moment and they already have a magnetic moment for example, it  can be

because of the spin of the electron, which is an intrinsic magnetic moment or it could also be

because of the nature of the orbitals of the atom. 

So, if you have S orbital, then angular momentum is 0, but you can have a P orbital  were L=1.

So that  will  contribute  to  an intrinsic  magnetic  moment.  So with the most electrons  have a

nonzero angular momentum, then it will contribute to a net magnetic moment of the atom. So, so

spin and mag, The Angular and orbital angular momentum put together is responsible for an

intrinsic magnetic moment, which leads to what is called paramagnetism. 

So which will come to later. So let us start off by discussing diamagnetism. So the first correct

theory of diamagnetism in real materials was given by the Russian physicist Landau. So that is

why it is called Landau diamagnetism because it is his theory of diamagnetism in real materials.

So,  so,  like  I  told  you already,  that  magnetism refers  to  the  property  that  charged  particles

namely, electrons in a metal acquire a net magnetic moment.

When subject to uniform magnetic field is due to circulating currents that are set up as a result of

the magnetic field. So that this induced magnetic field is proportional to the applied field is and it

is in, the proportionality consonants diamagnetic susceptibility, and it is negative implying that it

is in the opposite direction. So, actually, in order to study this satisfactorily, We have to use

quantum mechanics, This was realized by Landau long time back.

That the proper description of this phenomena and requires the use of quantum mechanics. So



we’ll  have to understand what happens to charged quantum particles,  there is  matter  waves,

which are also charged particles. That how do they are the wave function of those particles,how

do they change it when you apply a uniform magnetic field? So It so happens that so this is this

is a problem that you have to study, you know, in your quantum mechanics course.

Where you are to ask your teacher who teaches you quantum mechanics to explain to you to

calculate  the  stationary  states  by solving  time  independent  Schrodinger  equation  of  charged

particles in a uniform magnetic field. So when you do that, so i will just tell you the final answer.

So it is like, you know, i will just do fast forward and tell you the final answer. But then, if you

really want to know the details, you will have to consult a quantum mechanics textbook.

Which will tell us because remember, this is a statistical mechanics course and I have assumed

some knowledge of quantum mechanics.  So I  cannot possibly derive the stationary states of

charged particles in a uniform magnetic field. So i will tell you the final answer, which i am

going to use, you please look it up, Just find out how to derive this result. So the idea is that if

you do not have a magnetic field.

You know that the energy of the charged particles is going to be this and then the kx,kx,kz that are

the good quantum numbers. So the way functions are labeled by k vector. So however, if you

have a magnetic field, this is no longer true. So If you are supposed to apply magnetic field in the

z direction, so the only k survives as a good quantum number is kz. See, the other two will no

longer be good quantum numbers. 
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Rather, they get replaced by an integer called nL. So, so instead of having a  ħ2kz
2/2m , it gets

replaced by harmonic oscillator  energy levels,  that is understandable,  because you see, the z

direction, that is a parallel to the applied magnetic field, The charged particle is free to move. So

its energy continues to be free particle energy visualize first part is a ħ2kz
2/2m. 

But then in the x y plane, you see that is when they see the magnetic field, they start going

around in circles, basically, they will be circulating currents. So the circulating currents implies

that there is a bound state. So bound state, you see that there is an analogy you can make with

harmonic oscillators or harmonic oscillators are also bound states. I am not saying that that that

is a proof, but you can get a sense that this is the reason why the energy level looks like that of a

harmonic oscillator.

Because the in the xy direction,  they start  going around in circles,  they cannot  run away to

infinity, they have to keep going round and round in circles, because of the magnetic field and as

a result, their energies become quantized and they happen to have this harmonic oscillator form

and the frequency with which they go round and round is basically the classical frequency that

you can calculate using classical mechanics and that is called a cyclotron frequency.

 That is the frequency of the path of the classical particle, But the point is, these are the energy

levels. So kz it is continuous, it can be –infinity +infinity. Alright, so like I was saying, the, the



energy levels of the charged particles are described by these quantum numbers, called kz, and nL ,

and so the kz ,  it  can be anything it wants from minus infinity to plus infinity,  because that

corresponds to three particles moving in the z direction. 

But nL is basically the quantum numbers that correspond to the bone states in the xy plane. So I

have told you already that the charged particles are forced to go round and round in circles,

Because of the magnetic field in the xy plane. So basically, it is a bound state, so it resembles

that of a harmonic oscillator. So, so you can rigorously prove also that it is actually the energy

levels of a harmonic oscillator, and and nL are given by the integers 0,1,2,3 etc. 

And  the  energy  of  the  the  quantized energies  are  ħωc,  but  ωc is  basically,  the  cyclotron

frequency, which is the classical frequency of the electron, of the charged particle. So if you treat

the charged particles classically, you know, what is the frequency with which they go round and

round.  So that  is  basically  the  result  of  a  detailed  derivation  that  you will  find in  quantum

mechanics textbooks also. 

But then this is the story of the energy levels. But you have to ask yourself, what is the other half

of the story, which is the story of the wave function? So what do the wave functions look like? I

am not  going  to  write  them  down.  But  I’ll  tell  you  that  there  is  a  humongous  amount  of

degeneracy. In other words, see, normally what happens is that for a given energy, for example,

for free particles if you think about it, that for a given energy, there is, of course, degeneracy. But

if you decide to label the states, in terms of these kx,ky,kz, and if you ignore spin, then there is no

degeneracy, depends on what you use to label the states. So suppose you decide to label the stage

not in terms of the energy, If you decide to label it in terms of the energy, then there is of course,

a huge degeneracy. 

Because  for  a  given energy,  You can have  different  orientations  of  k  which  have the  same

energy. But suppose, I decided instead to label the states in terms of k itself, Then of course,

there is no degeneracy assuming the charged particles do not have spin. But then here, you see,

that  is  the  point  that  even  though I’ve  decided  to  label  the  states  in  terms  of  the  quantum

numbers, kz and nL, See here.



If I decide to label the states in terms of kx,ky,kz, which are the quantum numbers, then there is no

degeneracy. there is for the free particles. But however here, Even if I decide to label the states in

terms of the quantum numbers that are contained in the energy, namely kz said and nL, I will find

that there is in fact, still a huge amount of degeneracy that is left over. And of course, do not ask

me where this comes from.

This is as I told you, a result of a detailed analysis, a proper analysis of the quantum mechanics

of charged particle and a uniform magnetic field. So these are called Landau levels, by the way,

these are called Landau levels. And this these were first there are by Landau. So these are called

Landau levels. But then, so now you are to see what is the degeneracy of this. So even if you

decide to label the states by kz,and nL So What is the degeneracy? 

That  degeneracy  is  given  by  this  ratio,  which  you will  take  my word  for  it?  namely,  it  is

proportional  to  the magnetic  field  and is  proportional  to  the  area of  the  sample.  So This  is

something like a flux magnetic flux, magnetic field into area, the quantum of the magnetic flux.

So it is, so it is as if you know, the degeneracy is basically counting the number of flux quanta

that are penetrating your sample. Right? So the fundamental flux quantum is hc/2e.

And applied flux, which is magnetic field, which is applied times the area of the sample. So that

divided by the flux quantum is a number of flux quanta that are penetrating the sample. So that is

basically the degeneracy of these energies. So that huge number of very linearly independent

wave functions corresponding to the same energy,  εkz,nL .  So have you followed what I was

saying. So that is what degeneracy means. 

So  basically,  for  one  kz and  one nL,  you have  one  energy,  and you do not  have  one wave

functions, you have this many wave functions and different wave functions, they have the same

energy. So that is what degeneracy means. And this is basically a picture of how the classical

trajectory would look like if you decided to treat the particle classically, it would go around and

around in a helix like this. So as you very well know. 
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So now I am going to use this, these final answers that I am going to assume this, and then I am

going to go ahead and use my machinery of statistical mechanics, and try to calculate the entropy

of a gas of fermions, subject to a uniform magnetic field. So now, how do I do that? So this is

how I do it, And I have to conserve energy. So this is my energy. So notice that this is the total

energy of the system. And that can also be calculated in this fashion. This is the energy of each

particle. 

And this is the number of particles having this energy. And there is this j label, which is basically

a label, which tells you the degeneracy. So it is 1,2, up to that ration, so that is what I was saying

here. So basically, this is the number of electrons or whatever electrons having energy kz, nL and

being in that jth level of degeneracy, Okay. So this is how you label the states. Actually, if you

want to completely specify a state of a set of charged particles in a uniform magnetic field, this is

complete set of quantum numbers. 

It is not just kz and nL, but also if you include this j, which goes from 123, up to this ratio N the

script N and so that constitutes the complete set of quantum numbers. So because you have

specified the quantum numbers completely, So the number of particles in a given quantum state

can be either 0 or 1, Because they are fermions. So they are either 0 or 1. So This is either 0, or 1

okay. So that is why I decided to sum over only 0 or 1. 



And I can go ahead and calculate the entropy. As usual, I am going to use my trick that I can

write this as, you know, a Kronecker delta in terms of integral over some angles. And I do the

summation, 
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and I do the usual things here. So you should follow along with a piece of paper and a pen and

try to work out all the steps. And you know why, or why I went from here to there. So that is

basically the side of the point approximation.

Where I feel entitled to replace θ by θ* because that is the most probable value. So in the most

probable  value  ,  as  before,  so  there  is  a  proper  temperature  and  chemical  potential  by

temperature and so on. So finally, I do all that and I get this answer for the total energy of the

system. And the total number of particles at a temperature T and chemical potential  μ and the

entropy is derivable in this fashion. 

So notice that there is a notice the sum, the sum is over kz and nL, which are the quantum

numbers of the energy of this particles, but it is also a sum over j, which are these additional

quantum numbers, which tell you the degeneracy of the various energy levels. 
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Okay, so now I have to go ahead and see if I can calculate the helmholtz free energy. So I am

purposely trying to, you know, give emphasis in this course, on the micro canonical approach.

where in all  the examples,  I first  tried to calculate  entropy, And so that i  am doing that on

purpose, because most of the other textbooks and other lectures, they kind of quickly migrate

from  micro  canonical  ensemble,  which  is  focused  on  entropy.  And  they  directly  jump  to

canonical ensemble, which is basically based on helmholtz free energy. And of course, that is

justifiable, because, finally, those are the quantities that are of interest. 

You know, from a practical standpoint, but then I felt that in order to have a different flavor to

the subject, different from what is readily available. I felt that it is nice to, you know, impress

upon the audience that it is possible to do all this from, you know, from really fundamental first

principles like micro canonical ensemble, but it is, it is a matter of taste, you can go ahead and do

it  using  canonical  ensemble,  as  I  have  told  you,  those  two  are  interchangeable  in  the

thermodynamic limit. 

Alright, so now i am really going to go ahead and calculate the Helmholtz free energy because I

am going to use it to find what is called a diamagnetic susceptibility, which is defined in terms of

Helmholtz free energy. So as you very well know Helmholtz free energy is defined as internal

energy - absolute temperature - times entropy. So that is how it is going to look like. And If I, if I



use this, so there is my entropy. And so this is what it is going to look like. 

So now, the idea is that if I expand the free energy, so notice that everything is going to N is

fixed, but μ can depend on the magnetic field. So the number of particles is fixed, but them you

can change depending upon the magnetic field. And temperature is fixed number of particles in

the canonical and symbol what is all fixed number of particles is fixed, temperature is fixed and

volume is fixed, so in that sense these things can change with the magnetic field and temperature,

the chemical potential. So I can go ahead and expand the Helmholtz free energy in terms of the

applied magnetic field, so I will get a Taylor series in this fashion. So if I decide to do this, and

Taylor  series,  and it  so happens that,  in this  example,  the Helmholtz  free energies and even

function of H. So it is going to look like this. So this is going to be zero. 

So  that  is  also,  that  is  understandable,  in  the  sense  that,  you see  the  susceptibilities  or  the

magnetization, is basically the rate of change of Helmholtz free energy with the magnetic field if

you like, so it is like magnetic moment, induced magnetic moment is proportional to the dF/dH.

But we also know that if you turn off the magnetic field, in a diamagnetic material, the magnetic

moment should also go to 0, unlike in a paramagnet, where it does not go to 0. 

So if this is nonzero, then the rate of change of the Helmholtz free energy with magnetic field

does not go to 0 as the magnetic field tends to 0. So that is the reason why you do not, you

should not be having this in a diamagnetic material. So that is going to be 0 in a diamagnetic

material. So the series really starts from here. And this quantity is therefore proportional to what

is called the diamagnetic susceptibility.

I  am going to  define this  object  more carefully  later  on,  but basically  the coefficient  of the

leading term in the Taylor series of the free energy with respect to the applied magnetic field, so

you expand the Helmholtz free energy in terms of the applied magnetic field. And the coefficient

that appears in the leading term is basically proportional to the magnetic susceptibility. that is

understandable, because like I told you, so diamagnetic susceptibility is basically defined as the

induced magnetic moment, change in the induced magnetic moment for unique change in the

applied magnetic field, and the magnetic moment itself is defined as the change in the helmholtz



free energy with the applied magnetic field. So as a result, ξm is proportional to d2F / dH2. 
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So now the question is, how do I, you know, do this summation, so it looks nasty, because firstly,

doing the summation, over kz is not that difficult.

Because we know that kz is continuous, in the sense that I mean, of course, if it is particle in a

box, then it is not continuous. It is discrete, but you know that we are in the thermodynamic limit

in the z direction. So we know how to convert that into an integral. But however, these Landau

levels are, by definition discrete, so there is nothing continuous about them. So we have to learn

how to do discrete sums. But we are not good at that. 

Because we know, well, if it was a continuous integral. We know how to do that using saddle

point and this and that. But if it is a discrete sum we are stuck. So it would be really nice if we

could convert a discrete sum into an integral, which we know how to do, right, using saddle

point, and so on. So Fortunately, there is a mathematics who has an identity, which is called

Euler MacLaurin formula.

Which allows us to write a discrete summation, such as this in terms of an integration in terms of

a continuous integration. So I won't again, derive this, I won't tell you the derivation, you will

have to take my word for it, you will have to look up some maths books, or you know, just take



my word for it. So it is just an identity from mathematics. And So I am going to try and use this

to do the summation. So i am going to define this as Ω. 

So This is also what is called the grand partition function. So I mean, I, maybe I will touch upon

this a little later. So this, this also has a physical meaning. But right now, it is just a symbol. It

just means this sum. So the question is, how do you do this? So you see the, notice that the

quantity that sitting here is independent of j. So when I sum over j, this degeneracy, so it is just

some over all the degenerate states, and whatever I am summing over doesn't depend on that

index. 

So finally, what I get is the number of degenerate energy levels, which is the, you know, the flux,

that is threading the system, divided by the quantum of the flux. So then, whatever remains is

basically the summation over kz, which I have converted to an integration, which is, of course,

we know how to handle but what we do not  know how to handle is  this  one,  which is  the

summation, discrete summation over Landau levels. 

So in order to do this, since I know how to do the integration of kz, and I am going to take the

liberty of giving this a name. So I am going to call this quantity, this. The reason why I call it this

is because you see, this energy is nothing but ħ2 kz
2 /2m . So it is going to look like nL ħ ωc, then

it is going to look like plus  ½ ħ ωc -μH. So i am going to put these two together and call it mu

not okay. 

So the rest of it is this one. So mu not this this much. Okay, so that is the reason why i have

given it that name okay. 
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So whatever that is, I am now forced to evaluate this discrete sum in this fashion. So now I am

going to use my Euler MacLaurin formula. And which allows me to rewrite, so you please verify

all these steps by yourself. So this is using the earlier this result.

So i am going to use this result, which is Euler Maclaurin formula, I am going to stop right here,

I am going to stop there. So I am going to use this. And so the first term is this one. So this term

that I am looking at, so the summation becomes an integral so this summation has become this

integral. But then there is f(0), 1 over 1/2 of f(0). And that is what this is, right? And then this is

the first derivative, which is 1/12. So 1/12. And i am just, and of course, the second derivative.

I do not care about. So now I am going to rewrite in terms of so if I decide to rewrite in terms of

μ and mu not this, this term cancels out. 

So you please do this yourself, All I have done is, so instead of writing in terms of mu not, I have

written in terms of mu. So when I do that, this term cancels out. So this term cancels out. So I

will end up with this. And immediately this, And notice that there is a change in sign, mainly

because of certain conspiracies, and then this 1/12 will become 1/6. So you please work this out

yourself. I can't explain everything. 

So this can be a useful exercise to you to explain how to go from here to there. Alright, so now I



am going to substitute that, I am going to substitute this here, and I end up with this result. So

notice that the helmholtz free energy is, so i am going back here. So this is this is your Ω. So this

is your Ω(H). So basically, it is helmholtz free energy n times muH+omega(h). So which is what

I have written here. So it is 

                                                           F(H) = N μ(H)+ Ω(H).

But then you see if I decide to keep N fixed, which is of course, what I am mandated to do, But

then if I decide to keep N fixed and differentiate Ω with respect to μ. So why is this the case so

let me explain that to you. I love to explain why this is. So this is my  Ω. So now suppose I

calculate the d Ω /dμ Suppose so there is a μ setting here. So what I get basically is, So I see if I

calculate d Ω /dμ. So there is a μ sitting there. 

So If I differentiate this omega, okey let me do that. Here, for example. Okay, So 

                                                          Ω(H) = -T ln(1+e-β(ε-μ(H))  

okay. So that is what that was, so now, suppose I want to calculate d omega/d mu. So what is that

going to  look like?  So it  is  gonna look like  1/e-β(ε-μ(H),  times  this  one,  ε-μ,  then  again,  if  I

differentiate exponential chain rule, so if I differentiate the exponential with μ, i will get a β out

there.

                                       d Ω /dμ = Σ  -Tβ eTβ eβ e-Tβ eβ(ε-Tβ eμ)/(1+ee-Tβ eβ(ε-Tβ eμ)) = -Tβ en

 And this is nothing but you see, -n and so this is the number of particles there is the Fermi-Dirac

distribution, -n and So that is the reason why this is n is negative derivative of chemical potential

with a spectrum mu okay. So, now I am going to use that.

So n is the derivative of this with respect to medium. So if I differentiate with respect to μ here,

So I get from so the derivative of this with respect to μ become this, and derivative of R’ with

respect to μ becomes R’’. Okay, and then there is a minus sign where the minus sign goes away

becomes a plus sign there. Alright, so it looks very nasty. But let us proceed, you will see that the

final answer will look quite simple. 

So now that I know what it is, I am going to use this later. So now i am going to go ahead and



calculate Ω, the derivative of Ω with respect to H. So if I do that, I get this result. So basically, I

just have to take this, I have to repeatedly manipulate this formula. So first, I differentiate this

with respect to mu and I get formula for total number of particles. Now, I decided to differentiate

with respect to H, which is magnetic field, then I get this formula.
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And then notice that I already have this.  So I  can put these two together and write down a

derivative of omega the grand partition with respect to the applied magnetic field is going to look

like this. Okay, so now the change of the rate of change of the helmholtz free energy with the

magnetic field is given by this formula, because N is fixed, so I have just have to differentiate the

chemical potential and the grind partition function. So when I put them together, you see that this

which is nasty, which I would not have known.

It would have been hard for me to calculate mu dash, it drops out of my calculations, fortunately.

So I end up with this nice, compact looking formula for the rate of change of the free energy with

a magnetic field, which is of course, you should recognize that is proportional to the induced

magnetization. Now, so that is understandable, because you see it,  it is basically proportional to

the cyclotron frequency which is proportional in turn to the applied magnetic field. 

So,  they  induced magnetization  is  proportional  to  the applied  magnetic  field,  which is  as  it

should be. So, now, I differentiate again, with respect to the magnetic field, and I end up with



this formula for the second derivative. So, recall that that was the, that coefficient in the Taylor

series, which, which was supposed to be proportional to the diamagnetic susceptibility. So I end

up with this result for that coefficient. 

So, I’ll to find out what this is in order to complete my calculation. So for that, I have to go back

to that definition of this R so R was this. So when H is  0 μ0 is the same as μ. 
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So this is proportionate to the magnetic field. So μ0 is same as μ(0) because this is proportional to

the applied magnetic field. The cyclotron frequencies proportional apply magnetic field.

So now, as a result, I can write down this, okay, so this is from this by definition,  then if I

differentiate with respect to μ0 , I end up with this formula. And then I substitute that back into

this expression. And I get this result. So now finally, I take the zero temperature limit. So at zero

temperature, this becomes basically a step function. So at 0 temperature, beta tends to infinity.

So when beta tends to infinity, this whole thing is 0.

If you know ħ2 kz
2 /2m > μ0 it is 0. So basically, I have to integrate only in situations where it is

less than mu not, so in other words, have to integrate. So this is nothing but . So I am going to

write this in terms of my for me momentum, so I have to integrate from kz from 0 to kF. So that

is the Fermi vector. And so this becomes one in that region. So this is just for me statistics. And I



end up with this result, okay. 

So that is what it is. So notice that case, it is from 0 to infinity - sorry, it is from 0 to Kf.  So that

is how it is been, I mean, we have defined it that way, remember, so it is 0 to Kf. So it is only Kf

which  comes  in  the  formula.  So,  finally,  we are  ready  to  write  down our  formulas  for  the

magnetic susceptibility. So, notice that in the linear regime, The helmholtz free energy per unit

volume is basically induced magnetic moment times the applied magnetic field. 

So, so this would be in the linear regime. So in general, in the nonlinear regime, The  induced

magnetization is defined as the rate of change of the helmholtz free energy per unit volume with

respect to the magnetic field. So this is going to be my induced magnetic moment. So I further

know that this is also proportional to so F’(H) is basically HF’’(0). So that is because the Taylor

series of the first term is 0.

As I told you, that induce magnetic moment is proportional applied magnetic field. So this, we

have taken a lot of trouble to calculate just now. And this is done. So finally, I am able to write

the  induced  magnetic  moment  as  being  proportional  to  the  applied  magnetic  field.  And the

coefficient is called the magnetic Landau’s diamagnetic susceptibility, It comes with a - sign,

signifying that it is, it is it opposes the applied magnetic field. 

And the final answer is, this classic result is one third. So without the one third is basically what

is called Pauli's paramagnetic susceptibility. So which I am going to discuss next.  But right now,

this  is  the  result  which  Landau  derived  long  ago  in  the  1930s.  And  As  you  can  see,  this

calculation is not very easy. And as a result, it is not frequently covered in many of the stat mech

courses that we teach, but I feel that it is important to discuss this.

Because we will very quickly discuss Pauli paramagnetism is mathematically easier. And then I

stopped by that they do not teach Landau diamagnetism. So that is because it involves reckoning

with Landau levels and their associated degeneracy and we know this Euler Maclaurin formula,

which is a very unusual and unfamiliar mathematical tool, which appears to be necessary in this

calculation. So, so given all these facts that it is not surprising that many courses kind of gloss



over this result. 

So I find that it  is important to include this to make this course a bit different from what is

usually out there. Okay, so I hope you enjoyed this particular portion. So If you really, I can

understand if you did not understand everything, So you should work out all the steps on your

own. just pause and rewind and work out all the steps on your own. And we will meet for the

next class which is something slightly simpler which is Pauli's paramagnetism. Thank you. 


