
Prof. Saurabh Basu: Let us now discuss how one gets a magnetic Hamiltonian
involving only spins. We are particularly talking about Ising kind of 
Hamiltonians or Heisenberg kind of Hamiltonians. Mainly, we would be 
talking about Ising Hamiltonians where the spin can only have either pointing
up or down. These are the two possible orientations, and let us see that how 
we derive Hamiltonian, which we have introduced or rather we have talked 
about when we spoke on magnetism during our lectures.



So we want to study magnetic Hamiltonian and a derivation of a magnetic 
Hamiltonian would require that we know the addition of spins. So, say, 
addition of two spins and these are spin half particles. So we have spin half 
particles and we would see that how one actually add the spin vectors.

So let us consider two particles with spin vectors S1 and S2. The total angular 
momentum -- I mean what I mean by angular momentum is that the total 
spin angular momentum is S = S1 + S2, where S1 and S2 are the spin vectors 
for the two particles that we are considering. So just to remind you that both 
are spin half.

Now the direct product space that consists of -- it’s of four dimensions. So 
the direct product space is 4-dimensional and we can use the basis use (S, 
ms) basis for each. So what I mean by that is that the eigenvalue for the spin 
operator, S has eigenvalue S and Sz has eigenvalue ms. So we can form the 
basis of each of the particles by this S, ms and the total space will be produce
of two such S, ms that is S1. So total space is (S1, ms1) x (S2, ms2).



Let the -- since we have for each one of them, so ms = ± ½ ħ, so let’s 
represent the states by ↑ and ↓, so each of these ½ ħ will correspond to say 
a ↑ and this minus half will correspond to minus half ħ, so +ħ/2 and this is 
-ħ/2, and hence we’ll have -- we can write it in two ways. So the spin space 
or the direct product space is either you call it α(1), so maybe this is called 
as α and this is called as a β. So it’s α(1) α(2), which means both are in |↑>, 
α(1) β(2) means one of them in |↑> and the other in |↓>, and α(2) β(1), the 
first one is in the down and the second is in up; or both of them are in the 
down.

This is one option whereas the other option is that we can write it as |↑↑> as
a states, |↑↓> and |↓↑>, and |↓↓>, okay. So this is other option. We can 
simply choose one of them, but let us choose this option in order to write the
wave function and -- I mean to discuss this problem of two spins.

So what is the total value of ms, which is ms1 +ms2, which can take value 1, 0,
0, -1; 1 when they both add up ½ + ½ and this is when ½ - ½, this is - ½ ½, 
and this -½ -½, and the total spin quantum number S, which is equal to S1 + 
S1, which can take value 0 and 1, okay. So for S = 0, we have just one eigen 
function and that eigen function, let’s write it with a form which is |ϗ00>, 
which is 1/√2 and I have a |↑↓-↓↑>. So this is called as a singlet wave 
function, and this is antisymmetric.

What I mean by antisymmetric is the following: that you have two particles, 
so the first one is in upstate, the second one is downstate. Here, the first one
is in downstate and the second one is in upstate, and now if you interchange 



↑ to ↓ one gets a negative sign. So that’s why it’s called as a antisymmetric,
and for S=1, we would need -- so for S=1, we’ll have three combinations, 
because we’ll have to take care of |ϗ11>, which will be simply |↑↑> state, |
ϗ10> which will simply be combination of |↑↓+↓↑>, and |ϗ1-1>, which is 
equal to a |↓↓> state. Now all these are called as triplets and triplet states, 
because they are three in number and one can easily check that they are 
symmetric, because if the first particle is swapped with the second particle, 
the wave function remains the same.

So these are the state or the wave functions for the two particles, both spin 
half, and there’s a -- for a system consisting or comprising of two spin half 
particles and all possible combinations have been taken. We get four states 
and those four states are one singlet and three triplet states. The singlet 
state is antisymmetric with respect to the change in the position of the 
particle, and the triplet states are symmetric with respect to the change in 
the position of the particle.

So these are the state what about the eigenvalues, because in order to solve 
a full quantum mechanical problem, we need both the information and the 
eigenvalues and the eigen functions.

So let us see that, so all these three states, so now we’ll talk about the 
eigenvalues. These states are |↑↑>, |↑↓>, |↓↑>, and |↓↓>, so this forms 
the basis of the problem of a two-particle spin half system.



So they are eigenstates of S1
2, S2

2, S1z and S2z. So the total spin S can be 0 or 
1, okay. So now we can see how these total spin operators act on each of 
these states. So the total spin operator, which Sz = (S1z + S2z), that action, 
the state acting on -- or let us write is here as well. So Sz acting on the |↑↑> 
state, this will give me S1z will only act on the first spin on the left and S2z will 
act on the spin on the right. So this will give me ħ/2 for each one of them and
ħ/2 and a |↑↑>. So as we have said that these are eigenstates of these 
operators, so I get an eigenvalue equation, which is Sz acting on a |↑↑> 
state gives me ħ/2 as the eigenvalue and returns me the |↑↑> state as well.

Similarly, for Sz acting on |↑↓> would give me 0, because S1z will give me a 
ħ/2 and S2z will give me -ħ/2, and similarly we’ll also have Sz acting on the 
state |↓↑> state should also give me 0, and Sz now acting on the |↓↓> state
will give me a -ħ -- sorry there is a -ħ/2 for each so this should be simply ħ. 
So for each one of them there’s an ħ/2, so there are two ħ/2 which makes 
this ħ. So Sz on |↓↓> will give me a -ħ and so on. So these are the 
eigenvalues of this Sz operator.

So furthermore, we have S2 = (S1 + S2)2 = S1
2 + S2

2 + 2S1.S2, S1 and S2 will 
commute with each other, because they pertain to different particles. So S1

2 
will be ħ -- so it’s ½ (½ + 1), this acting on. So S2 acting  on any of these 
states, so say we talk about |↑↑>, say for example, so this is equal to ½ (½ 
+1) -- it’s S (S + 1), so that is this. Then again, for the S2

2 this will be ½ (½ 
+1).

Now we of course don’t know what is 2S1 + S2, so we’ll leave it for the 
moment, and let us see that what we can do for the S1.S2. so S1.S2 if you see 
it is equal to S1

x S2
x + S1

y S2
y + S1

z S2
z. Now if you introduce these ladder 

operators for the spins, so S+ can be written as Sx + iSy and S- can be 
written as Sx = iSy. Now this will give me (S1+ S1- + S1- S2+) and then there’ll 
be a factor of ½ there and + S1

z S2
z.



So this is S1.S2, and hence what we can do is we can see that S2 acting on a |
↑↑>, which we have already saw that the first term gives ¾ ħ2, second 
terms gives ¾ ħ2 as well. Now we have a 2S1.S2. Now for the |↑↑> state, 
this will raise the sin and hence it will be 0, because up is the maximally 
aligned state and though S2- can give you a non-zero contribution, but S1+ 
will give 0, and similarly S2+ will give 0 and that’s why these two terms do no
contribute, and that simplifies the problems and then we are left with S1z S2z, 
for which we know the operation. So that’s why we have done this, and this 
is 2(ħ/2) and this whole thing or rather acted upon by this. So it is a 
eigenvalue equation and this is, if you simplify it, it becomes equal to 2ħ2 |
↑↑> and so on

Similarly, for the |↓↓> as well, one gets the same answer by doing the same
technique. One gets this as a -- so on these, acting on the |↓↓> state will 
give us 2ħ2 and a |↓↓>. So they have -- so these state |↑↑> and |↓↓> 
have total spin S=1 and ms = ±ħ, okay.

Of course, S = -1 should have three states, which are equal to ms = ±h and 
0. So the third state, so ms = ±h is there, so ms = 0 state is obtained by a 
particular operation, so by the application of S- on |↑↑> state. Let’s see how
one gets it; or you can also consider -- or S+ on the |↓↓> states. So S- on 
the |↑↑> state gives me S1- + S2- on the |↑↑> state, which gives me -- so 
S1- will lower this spin and now this is something that you should have done 
in quantum mechanics. This gives me an eigenvalue which is -- these are not
eigenstates of |↑↑>, but it will operate on this and give me, this S1 will give 
me a ħ and will give me a |↑↓> -- sorry it will be a |↓↑>. The first one will 



lower, so it’s a |↓↑+↑↓>. S2 will lower the other one with an eigenvalue 
which is given by ħ. So 1/ħ S- |↑↑> is nothing but 1/√2, which comes as a 
normalization factor, |↑↓+↓↑>, it doesn’t matter we have written down the 
second term ahead of the first term, and this will correspond to Sz = 0. So 
these three will be called as the triplet states.

So the singlet states are of course which corresponds to -- so these are the 
triplet states. So the 2 that’s coming over here with spin S = 1 and ms = 1, 
which is here and the other one comes from here. So these are the three 
states.

Now we’ll just look at the single state, which corresponds to S = 0, ms = 0. 
Let’s just call it as, we can call it as |ϗ00> or we can also use a notation, 
which is like |00>, which is equal to ½ (|↑↓-↓↑>). So why is it a singlet 
state? So Sz acting on this |00> will give me a 3/2 -- it’s S1z + S2z which will 
act on this, it will be a 3/2 ħ2 - 2(ħ/2)2 - ħ2, acting on |00> and it will give me 
a 0|00>, which means that ms value of this equal to 0, and this has S = 0. So
we have found out all the four eigenstates of this 2-particle problem.

So let us now look at the spin Hamiltonian consisting of these -- if you want 
to construct a Hamiltonian only consisting of these two spins, which is like, 
as I said, like a Ising Hamilton or Heisenberg Hamiltonian if h has a full 
rotational symmetry. So let’s just discuss the construction of a magnetic 
Hamiltonian.



So we have S2 = S1
2 + S2

2 + 2S1.S2, now the eigenvalue of S2 = 3/2 ħ2, as we 
have discussed that 3/2 comes from two terms of ¾ ħ2, each of S1 and S2, 
and plus a 2S1.S2. So for the singlet state, that is S=0, we’ll have to put S=0, 
the S1.S2 has an eigenvalue, which is equal 2 -½ -3/4 ħ2, because this is equal
to 0. If you put the right hand side equal to 0, the S1. S2 will have an 
eigenvalue which is half of or minus of half of 3/2 ħ2, which is -3/4 ħ2…

Whereas for the triplet state, which corresponds to S=1, so that will have 1(1
+ 1) ħ2 for the left hand side, which is equal to 3/2 ħ2 + 2S1.S2, so this is 
equal to 2, so 2ħ2 - 3/2 ħ2/2 is the eigenvalue for S1.S2 for the triplet state. So
this is equal to 2 - 3/2 is just ½, so this is equal to ¼ ħ2. So ¼ ħ2 is the 
eigenvalue, in short e-value I am writing, for the operator S1.S2 for a 2-
particle problem. So let’s just summarize this quick result. So for singlet 
states S1.S2 -- so this is singlet and triplet. So this singlet one has -¾ ħ2 and 
this is ¼ ħ2. So this is the eigenvalue of S1.S2.



Now if we write down a Hamiltonian, which is H = ¼ (Es + 3Et), I’ll tell you 
what these are, (Es - Et) S1.S2, we have written it in a particular way of this 
term where Es is the energy of the singlet state and Et is the energy of the 
triplet state. Why have we written it in this fashion, is that H acting on the 
single state which is |00> will be simply equal to this ¼ (Es + 3Et) and (Es - 
Et) S1.S2 acting on |00> -- we can skip the comma in between -- so that’s a 
singlet states. So with Es = -¾ ħ2 and Et = ¼ ħ2, one can simply check that H|
00> will give me a -¾ ħ2 |00>, and similarly H acting on either of these |
↑↑> states or |↓↓> states or |↑↓+↓↑> states, all those multitude of |↓↓> 
or |↑↓+↓↑> up state with a normalization will give me a ¼ ħ2 and these 
states that we have written such as |↑↑>, |↓↓>, |↑↓+↓↑>.

So that says that. We have arrived at a Hamiltonian which gives us -- for a 2-
particle problem, which gives us the correct energy eigenvalues for a two 
spin half particles, for a system of two spin half particles, and this is that 
Hamiltonian.



Now we can see that if you redefine the zero of the energy, we may omit the 
constant (Es + 3Et/4), which is common to all the states, all the four states. 
Then we can write down a spin Hamiltonian as H = J S1.S2, where J is nothing 
but the difference between the singlet and the triplet energies. Here of 
course we have the singlet energy to be lower, which is equal to - ¾ ħ2 and 
Et being ¼ ħ2. So J will be negative.

Now if we say that such Hamiltonians can be written for N particles with a 
pair wise interaction between the particles, then we can write a generic 
Hamiltonian for a magnetic system or spin half system. We can extend it to 
spin having any values. It should be then -- it’s a J and then there is a Si.Sj, 
it’s i and j. It’s between the neighboring sites and this is of Heisenberg 
Hamiltonian, if S has a full rotational symmetry, and it’s just the Ising 
Hamiltonian if S is taken as ±½, but however it gives magnetic properties of 
the magnetic system such as antiferromagnet or ferromagnet, and of course 
if J is positive, now we are not restricting ourselves to only two particles 
where we know that J is negative, but we also go ahead and consider J to be 
positive as well.

So if J is positive in this particular model, in this Hamiltonian given by (1), (1) 
favors -- we can write it with a minus sign, putting a minus sign from outside,
then this favors parallel arrangements of spins, which are essential for 
ferromagnetism. And if J is negative, then (1) favors antiparallel arrangement
and it is antiferromagnetism. We have seen this phenomena from a purely 
electronic model, which is Hubbard model, but however, we have also gotten
exposed to this kind of spin only models, which are there.



So if J is positive, then the energy is lowered. If the Si.Sj that is the Si and Sj, 
they point, spin point vectors point in the same direction, which are in a 
sense we talk about ferromagnetism, whereas if J is negative, then that 
means that whole energy would be negative if Si and Sj are antiparallelly 
aligned which are the features of antiferromagnetism.

So this can be actually compared with the magnetic dipolar interaction, like 
this which is 1/r3 and it’s m1.m2, so these are the two magnetic moments 
and these are related -- this you are familiar in the context of classical 
electromagnetic theory, and the relative distance between m1 and m2 are 
involved, but here, we have a purely spin Hamiltonian, which neglects all 
special symmetries.

Now this is H written as J [Si.Sj] has -- there are a large number of 
approximations that are going on, namely i, j are nearest neighbors. One 
doesn’t have to be, on can include longer than nearest neighbor, that is next 
to next nearest neighbor interactions as well, and we can also write this 
inside, the J to be inside and it doesn’t have to be constant, and it can be 
depend from one bond to another. So these are possible Hamiltonians and 
they have all been explored in the context of spin systems.


