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So, today we well talk about Spin Angular Momentum. We have talked about the angular

momentum in  general,  but  however,  for  our  purpose  the  discussion  on spin  angular

momentum is required. And we will also talk about the total angular momentum, their

algebra, the commutation relations and various things that are related to this and we have

already learnt that the generators of rotations are the angular momentum.

So,  a  system  having  a  rotational  symmetry  that  is  it  is  invariant  under  rotational

transformation  in  space  has  its  angular  momentum conserved and the  corresponding

quantum numbers are good quantum numbers for the problem. So, let us look at the spin

angular momentum. So, all these all the elementary particles that we know they possess

an internal degree of freedom which behaves as angular momentum and termed as the

spin or the spin angular momentum S.
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The computation  relations  are  written  as  S cross S equal  to  i  h cross  S.  This  is  the

commutation relation in shorthand notation. This if you, break it up into components it



will look like the commutation of S x S y equal to i h cross S z S y S z equal to i h cross

S x and S z S x equal to i h cross S y and it’s a cyclic permutation of that. So, it in a very

compact  fashion it  can  be  written  as  the  commutator  of  S i  S  j,  where  i  and  j  are

components of the spin angular momentum is equal to i h cross and epsilon i j k S k..

Epsilon i j k is called as a Levi Civita tensor or it is also called as a Levi Civita symbol

which has a value equal to 1 on cyclic reshuffle of indices and it has a value minus 1 on

non-cyclic reshuffle of indices and it is equal to 0 on having more than one index being

identical. So, if you have i i k that will be equal to 0 which means equal to that, if you

want to take the commutation between S x S x that will be 0 for obvious reasons. And, if

you break the cyclic symmetry that is if you right it as instead of i j k you write it as j i k

then it will pick up a minus sign.
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So, similar to this orbital angular momentum which we have learnt we can also choose

this S square which is equal to the sum of the squares of its individual components. And,

S z just like l square and l z they are the two preferred operators and we can write down

the angular momentum spin angular momentum in a representation in which its diagonal

in S z and S square.

And  of  course,  S  square  commutes  with  any  of  the  components  of  the  angular

momentum S square and S z that is equal to 0. So, they have common eigenfunctions and

let us write the common eigenfunctions as chi of S and m s these are the two quantum



numbers that describe the problem of spin or spin angular momentum. S is so, they are

defined in the following fashion. So, the eigenvalue of S square acting on chi s m s is

equal to S into S plus 1 h cross square and returns back the eigenfunction.

And, similarly S z acting on the eigenfunction will give us m s h cross and a ket chi S m

s. These relations are very similar to the orbital angular momentum that we have seen,

excepting that there we have written it as l and ml. However, one thing that you need to

notice that there is there no dependence on the space coordinates for this chi. While, the

angular momentum the eigenfunctions of the angular momentum they are the y length

functions of the spherical harmonics which depend upon the angular variables theta and

phi. These are simply numbers or so, they are simply quantum numbers which are which

denote the eigenfunctions of S square and S z.

So, there are of course, other differences as well because l and m l both were integers is

like 0, 1, 2 etcetera. However, for S these are integer for Bosons such as 0, 1, 2 etcetera

and half integers such as half three half five half etcetera for fermions. So, where l and m

l are necessarily integers, these could be integers or maybe half integers for namely for a

Bosons and fermions respectively. And of course, m s as earlier will have values which

are minus S to minus S plus 1 through 0 to S minus 1 and S. So, there are 2 S plus 1

distinct values of m s exactly like that we have for ml the orbital angular momentum.

So, in many aspects they are similar, the algebra is very similar. However, we still need

to go through some of the algebra in order to make our self familiar and comfortable

with this analysis of the spin angular momentum.
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The orthonormality condition of the eigenfunctions is written as this S prime m s prime

and chi s m s is equal to chi s prime and m s m s prime, which means that both the

indices have to be same in order to give 1. And, if any of the indices either S or m s if

they are different than that gives 0 because, of the orthonormality relation and the basis

of S square and the component of S that is S x S y S z. However, as we have said that its

only S z that is important, all these operators have a dimension 2 S cross 1 into 2 S cross

1 because, of the m s value taking values m s taking values from minus S to plus S

through 0.

So, there are so, this the size of the vector space for each one of the components of S or

the S square. And, let us write down the for spin S equal to 1 and maybe we shall look at

this in a tutorial for proofs. And so, these are borrowed from relationships for l and S

plus which is the spin raising operator, it has the matrix elements of that between S prime

m s prime and s m s states are given by this h cross root over S into S plus 1 minus m s

into m s plus 1 delta ss prime and delta m s prime m s plus 1.

So,  this  is  an  off-diagonal  opera[tors]-  or  rather  these  are  the  off-diagonal  matrix

elements and is very easy to understand that they cannot be diagonal because, if they are

diagonal then s m s would have been an eigenfunction of S plus or S minus which it is

not. Because, we are writing S plus is as we have seen earlier that for l plus and l minus

they are written in terms of the linear combinations of S x and S y in this particular



fashion. And, neither S x nor S y are have eigenfunctions s m s are not ei[gen]- I mean s

m s none of  the s  m s are  eigen functions  of  this  S x and S y, hence they are not

eigenfunctions of S plus and S minus.

And, hence we will have off-diagonal terms in the matrix elements as it is given by this,

similarly for the S prime sorry S minus which is a spin lowering operator that has a

change in this term where it is m s plus 1 whereas, it is m s minus 1 and so on. So, this

also connects the m s prime to m s minus 1 the later one alright. So, let us look at some

of the spin operators in the matrix form; so, that all these things that we have just seen

the matrix element written in terms of indices general indices can be verified.
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So, we are writing it for a S equal to 1 and because S equal to 1 we have a 2 S plus 1 into

2 S plus 1 that is the size of the matrix. So, S equal to 1 means is 2 S plus 1 is 3. So, we

have a 3 cross 3 matrix as you can see here. So, S x is equal to h cross by root 2 and 0 1 0

1 0 1 and 0 1 0. And similarly, S y has got a similar form with it is of course, imaginary

because of this relationship that we have seen. It is 0 minus y minus i 0 and i 0 minus i

and 0 i 0 whereas, S z as we know it has to be diagonal. So, it is equal to 1 0 minus 1 as

the diagonal entries, all the off-diagonal entries are 0 and similarly the S square is also

diagonal in the s m s basis. So, and this is equal to 1 0 0 1 1 1 0 and a 1 0 0 1 and if you

want to know I will show it for one particular.



So, these are the s m s values that you need to write down. So, S is equal to of course, 1

and m s is equal to 1 so, this is S m s. So, this is like writing like a conjugate and it is a S

this and then this is equal to 1 1 minus 1 and I will write it the ket of that its 1 1 and 1 0

and 1 minus 1. And, if you take the matrix elements according to this relations that we

have seen here then of course,  you will  get this  all  these things.  And, if  we so,  the

corresponding spin eigenvectors for say S z is given by its a 1 0 0. So, these are for S z

and this is equal to 1 0 0 0 1 0 and it is a 0 0 minus 1. And so, this is actually same for

everything or rather it is for S z, you can check for others what are the spin eigenvectors.

First  calculate  the  eigenvalues  and then  put  them into  the  equation  to  calculate  the

eigenvectors alright.
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So, let us go to the special case of S equal to half which is of interest because we usually

talk about fermions, who which have the spin angular momentum having a value half.

So, the eigenfunctions are chi half and chi half minus half because, these are for S equal

to half we can have the m s value is equal to plus half and minus half. So, of course, here

again the dimension of a vector space as we have seen earlier x equal to are 2 S plus 1

cross 2 S plus 1 and for S equal to half it is equal to 2 cross 2 and these are the two

eigenfunctions calling it as alpha and beta.

So, S square acting on alpha which is half is half into half plus 1 h cross square which is

3 by 4 h cross square alpha. S square acting on beta is 3 by 4 h cross square beta and S z



acting on alpha will give h cross by 2 alpha; S z acting on beta will give minus h cross by

2 beta. Again, remember that h alpha and beta are only eigenfunctions of S square and S

z they are not eigenfunctions of S x S y or S plus S minus. Now of course, this is the

maximally aligned state because if S is equal to half m s the maximum value of m s is

equal to half. So, alpha is called as a maximally align state.

If you operate S plus on the maximally allowed maximally aligned state pardon me that

will give a 0 because, there is no way that you can raise the m s value any farther. And, S

plus is known to raise the m s values. Similarly, the S plus acting on beta will of course,

raise the m s value from minus half to plus half. So, it will give an alpha and of course,

we will give the coefficient which is according to this relation that we have shown here.

And similarly, for a S minus acting on alpha will give a h cross times beta and S minus

acting on beta will give a 0 because, this is a minimally aligned state because this is

equal to half and minus half.

So, m s value the minimum value of m s is equal to minus half. So, you cannot have

anything lower than that. So, if S minus which is a spin lowering operator acting on a

state which has a m s equal to minus half then of course, it will be it will give 0. And

similarly, you can work out this is something very simple for you to workout is S x

acting on alpha will give a h cross by 2 beta. S x acting on beta will give a h cross by 2

alpha and S y acting on alpha will give i h cross by 2 beta and S y acting on beta will

give a minus i h cross by 2 alpha. S z acting on alpha will give h cross by 2 alpha, S z

acting on beta will give minus h cross by 2 beta.

So, remember that once again repeating the same statement is that alpha and beta are

eigenstates of S square and S z, but not of S x and S y. And, that is why these two

relations  adequately  make it  clear  that  that  they are not  eigenfunctions  because,  S x

acting on alpha does not return alpha, but it returns beta. So, let us now define a set of

matrices  which  are  quite  important  in  the  study  of  quantum  mechanics  and  sure

condensed matter physics. And, every other subject that we come across these are called

as a Pauli spin matrices which are simply related to the S matrix that we have just studied

by a factor 2 by h cross.
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So, if I multiply the spin operators that we are just learned first spin equal to half by 2 by

h cross or write S as h cross by 2 and sigma. So, these sigmas are called as a Pauli

matrices. In fact, there is let me write down that sigma x which is the x component of the

Pauli matrix, sigma y sigma z and a 2 by 2 identity matrix can represent any 2 by 2

matrix as a linear combination and this can be proved. Let me tell this statement a little

more clearly so, that you comfortable with this. So, let us take any 2 by 2 matrix such as

a b c d, where a b c d are arbitrary numbers and this is equal to some alpha sigma x plus

a beta sigma y plus a gamma sigma z plus a delta i by suitable choices of alpha, beta,

gamma and delta.

So alpha, beta, gamma and delta are simply coefficients. So, what about the commutation

relations of sigma x and sigma y, sigma x and sigma y have the commutation relations

which is 2 i sigma x sigma y commutator equal to 2 i sigma z. And, similarly y z is 2 i

sigma x sigma z sigma x is 2 i sigma y and which is basically again that you one can

write it using the Levi Civita symbol that is sigma i sigma j equal to 2 i epsilon i j k

sigma k.  So,  and they  also  have  an  anti  commutation  relation  which  are  often  very

important, that is sigma i sigma j anti commutator which is written as the commutator is

written with a minus sign in between the two terms whereas, this is written with a plus

sign it is a sigma i sigma j plus sigma j sigma i equal to 2 delta ij, where ij is belong to

the xyz components which are shown here.



And, we can write down the sigma x as a 0 1 1 0 sigma y as 0 minus i i 0, sigma z is 1 0

0 minus 1. See again we are interested in the in basis or a representation in which sigma

z is diagonal and it is shown as diagonal. A very interesting similarity between these 3

matrices they are all traceless, that is the sum of the diagonal elements are 0. So, it is 0

plus 0 and 0 plus 0 and it is 1 plus minus 1. So, they are traceless that is why they called

traceless and the determinant we calculate,  that is equal to 1 which is sorry which is

equal to minus 1 and of course, as I said that in this representation all the sigma z is

diagonal.

And all sigma all of sigma x, sigma y and sigma z have eigenvalues a plus 1 and minus 1

ok. So, little bit of algebra if you do it reveals that the eigenvectors are for sigma x are

written as a 1 1 and 1 minus 1, corresponding to this eigenvalue that is here lambda equal

to plus 1 and lambda equal to minus 1 respectively. Sigma y equal to 1 i and 1 minus i

corresponding to lambda equal to 1 and lambda equal to minus 1 and sigma z has 2

eigenvectors corresponding to lambda equal to 1 and lambda equal to minus 1 as 1 0 0 1

respectively. It  may be given as  an exercise  maybe,  in  the  tutorial  that  for  any two

arbitrary vectors A and B it can be proved that a sigma dot a that sigma is the sigma xx

cap sigma yy cap.

(Refer Slide Time: 21:11)

So, this is let me write this here. So, sigma equal to sigma x x cap plus sigma y y cap

plus sigma z z cap and of course, A has this components A xx cap A yy cap and A zz cap,



it can be written as sigma dot A multiplied by sigma dot B which is equal to A dot B and

i sigma dot A cross B. Now, move onto the total angular momentum and now this total

angular momentum is important in a context that I will  not immediately discuss, but

whenever there is spin orbit coupling of the form, L dot S neither L nor S are good

quantum numbers for the reason that L dot x can be written as L x S x plus L y S y and L

z S z.
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Thus, since the each of these individual components do not commute neither L nor S will

remain as good quantum numbers, but luckily the J which is the vector sum of L plus S

that  remains  as  a  good  quantum number.  And,  again  the  commutation  relations  are

written as J cross J equal to i h cross j, a J square j m j. Now, I am changing my symbol

from s m s to j m j which is equal to j into j plus 1 h cross square j m j. Same relations

accepting that for L we have written it as l m l, for S we have written it as s m s these are

quantum numbers and for J we are writing it as j m j.

So, J square acting on j m j is will give you j into j plus 1 h cross square and returns back

the state j m j and the J J z acting on j m j will give a m j h cross j m j. So, m j takes

values 2 j plus 1 2 j plus 1 values minus j 2 j and again the matrix dimensions has earlier

is that it is 2 j plus 1 into 2 j plus 1. So, as I said earlier the neither l nor S remain a good

quantum number in the spin presence of a spin orbit coupling. So, j is a good quantum



number and the eigenfunctions of such a Hamiltonian can be represented in terms of j m

j.
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Now, we are going to talk about addition of angular momentum and very importantly

something called as Clebsch Gordan coefficients. Now, these are quite important in a

various  branches  of  physics  mainly  quantum  mechanics  and  atomic  and  molecular

physics etcetera in even a nuclear physics. So, I am having a good understanding of

Clebsch Gordan coefficients is a quite helpful. Let us see what they are, but before that

let us do a little bit of algebra to familiarize ourselves with j vector.

Now, we talking about two electrons with their total angular momentum as J 1 and J 2.

So, the total angular momentum is equal to J 1 plus J 2 so, which is here. So, this is the

total angular momentum all components of J 1 and commute with all other components

of J 2 ok. So, they have all components commuting and let the eigenstates for each one

of them be taken as j 1 m j 1 and j 2 m j 2. So, just we wish to discard this j index or

suffix with m. So, we simply write it as j 1 m 1 and j 2 m 2 just shorthand notation for

that, they mean the same thing.

So, now we can construct product states from individual particles states. So, it is a j 1 m

1 and j 2 m 2 which are products of j 1 m 1 and j 2 m 2 just what we said, but we will

write them as just like within a single ket. The products says of course, of dimensions 2 j

plus 1 into 2 j 2 2 j 1 plus 1 multiplied by 2 j 2 plus 1 and then 2 j 1 plus 1 multiplied by



2 j 2 plus 1 that is the size of the vector space. And obviously, the J 1 square will act on

only j 1 m 1 not on j 2 m 2, will give us j 1 j 1 plus 1 j 1 into j 1 plus 1 h cross square j 1

m 1. And similarly, J 1 z will give j 1 m 1 and j acting on j 1 m 1 will give m 1 h cross j 1

m 1.  And similarly, you can  just  simply  change the  index or  the  suffix  from rather

subscript from 1 to 2 and can write it for the particle 2, same relationships will hold

alright.
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Now, let us work out the operations of the total angular momentum operator J square and

J z, which are the for the composite system the square of the total angular momentum

and the of course, there will not be any vector on J z it simply J z ok; no vector on that on

the product sets. So, J z acting on j 1 m 1 j 2 m 2 will give me a J z can be written as a J

1 z plus J 2 z, they will act on each one of those. And so, it is m 1 plus m 2 h cross j 1 m

1 j 2 m 2. Thus, simultaneous eigenfunctions of J 1 square J 2 square J 1 z and J 2 z are

also eigenfunctions of J z.

So,  at  least  one  thing  we  have  been  able  to  settle  is  that  a  for  the  total  angular  z

component of the total angular momentum, that is J z has same eigenfunctions as each

one of those J 1 square J 2 square J 1 z and J 2 z. Now, what about J square? What are

the eigenfunctions? Do they have the same eigenfunctions at J 1 square J 2 square J 1 z

and J 2 z? J square is written as J 1 plus J 2 whole square and it is written as J 1 square

plus J 2 square and J 1 J 2 plus a J 2 J 1. Now, since every component of J 1 commutes



with every other component of J 2 we can combine this to write as 2 J 1 J 2. So, so the J

square contains a twice of J 1 dot J 2.
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Now, J 1 dot J 2 is J 1 x J 2 x plus J 1 y J 2 y plus a J 1 z J 2 z. Now, since the J 1 x and y

they do not commute with J 1 z so, J square as it contains J 1 dot J 2 does not commute

with J 1 z or J 2 z ok. These are very important result because, we just found that J z

commutes with J 1 square J 2 square J 1 z and J 2 z. However, J 2 I mean the whole J

square does not commute with these.  So, there is a simultaneous eigenfunctions of J

square and J z are eigenfunctions of J 1 square and J 2 square, but not J 1 z and J 2 z;

even though J z has same eigenfunctions as J 1 z and J 2 z, but J square does not have.

So, thus there exist two distinct descriptions of the system, in terms of the eigenfunctions

of J 1 square J 2 square J square and J z and J 1 square J 2 square J 1 z and J 2 z ok. Now,

this is important because if there are two such identical descriptions of a system then

there has to be a unitary transformation or a relation that connects these two bases. So,

the eigenvalues corresponding to 1, 1 is this let us this called this as 1 and this as 2 is

written there of course, on the left hand side.
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And this is equal to j 1 into j 1 plus 1 h cross square and j 2 into j 2 plus 1 h cross square

and j into j plus 1 h cross square and m h cross. As the eigenvalue corresponding to 2

which are these J 1 square J 2 square J 1 z and J 2 z are j 1 into j 1 plus 1 h cross square

and  j  2  into  j  2  plus  1  h  cross  square  and  m 1  h  cross  and  m 2  h  cross.  So,  the

eigenfunctions corresponding to 1 are j 1 j 2 j m and the eigenfunctions corresponding to

2 are j 1 j 2 m 1 and m 2.

Since both define the complete vector space, there has to be a unitary transformation

connecting the two bases. The coefficient of the unitary transformation are known as the

Clebsch Gordan coefficients  which we intend to compute for a given case.  So, once

again so, both define a complete vector space for a problem of j square and j z. So, now,

there  has  to  be  a  united  transformation  connecting  the  unitary  transformation  that

connects the two bases, the coefficients corresponding to that are called as the Clebsch

Gordan coefficients.
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So, we are writing these states as j 1 j 2 j m and the j 1 j 2 m 1 m 2 and now the

coefficients are the overlap of this j 1 j 2 m 1 m 2 and j 1 j 2 j m. The restriction on the

sum is that that m 2 has to be, there is a sum over m 1 and m 2, the restriction on m 2

should be that is the total m minus m 1. So, we want to determine the values of j for a

given j 1 and j 2 ok. The values of m 1 and m 2 of course, range from minus j 1 to plus j

1 through of course, 0 which we have not written here; there is a 0 here and there is a 0

here. Similarly, for m 2 it is minus j 2 2 plus j 2, since m equal to m 1 plus m 2 the values

of m and the all  the corresponding value m 1 values for m 1 and m 2 can now be

assigned.
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Let us look at the table, for m to be having the maximum value which is j 1 plus j 2 my

m 1 can be j 1 and m 2 can be j 2 and that is the only way to achieve the maximum value

of m. However, when we take the next to the maximum value that is j 1 plus j 2 minus 1,

there are two possibilities that is either m 1 can be j 1 minus 1 and m 2 could be j 2 and

also j m 1 can be j 1 and m 2 can be j 2 minus 1. So, these are the two possibilities that

we are showing here and similarly for the third-one that is the next to that is j 1 plus j 2

minus 2. So, there is a j 1 minus 2 and j 1 minus 1 and j 1 and j 2 and j 2 minus 1 and a j

2 minus 2 it is a threefold degenerate.

So, we are writing down the degeneracy on the rightmost column. The first-one having a

degeneracy 1, the second-one having a degeneracy 2’s, third-one having a degeneracy 1

because, all combinations are possible and the lowest value of a m is minus of j 1 minus j

2. So, each of m 1 and m 2 can take values minus j 1 and m 2 can take value minus j 2

and again the degeneracy is equal to 1. So, these are the values that the total angular

momentum can take for the composite system, that is m values and viz a viz be the m 1

and  m  2  values  which  are  the  individual  quantum  numbers  for  the  total  angular

momentum, they can take alright. So, now still that question which we have posed earlier

remains that is how to figure out the allowed values of j for a given value of j 1 and j 2.
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So, the maximum values of m 1 and m 2 are j 1 and j 2, such that m equal to j 1 plus j 2

equal to j. So, the maximum value of m is j 1 plus j 2. So, remember m can take only

values which are from a 2 j  plus 1 values from minus j 2 plus j.  So,  the maximum

possible values of j is j 1 plus j 2. So, case 1: that is the top of the table that we have seen

here. So, take the maximum value of j equal to j 1 plus j 2 and the maximum value of m

which is equal to j 1 plus j 2, again there is just one term in the sum with m 1 equal to j 1

and m 2 equal to j 2. Go back to the sum that we have shown here for the Clebsch

Gordan coefficients we need to sum over m 1 and m 2.

So, we need to know the precise values of m 1 and m 2 such that we can perform the

sum. So, m 1 equal to j 1 and m 2 equal to j 2. And, now we introduce another shorthand

notation that is j 1 j 2 j m as phi j 1 j 2 and in the superscript j m. And, similarly for the

other bases we write psi of j 1 j 2 m 1 m 2. Thus, phi which is the one of the bases which

is j 1 j 2 and for j equal to j 1 plus j 2 and m equal to j 1 plus j 2, again that is the which

has the degeneracy equal to 1.  So, there is nothing to you know sum up and this  is

written the Clebsch Gordan coefficients written as j 1 j 2 j 1 j 2 j 1 j 2 j 1 plus j 2 and j 1

plus j 2. And, then the psi the other bases and since both phi and psi are normalized this

Clebsch Gordan coefficients must be equal to 1, it has to be normalized. So, this Clebsch

Gordan coefficients equal to 1.
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Let us now take the same j which is j 1 plus j 2, but take the next lower value of m which

is j 1 plus j 2 minus 1. This is the term in the second term in the table that we have just

shown. So, in this particular  case this  has two possibilities namely, see here it is j  1

minus 1 and j 2 and also a j 1 and j 2 minus 1 for m 1 m 2. Thus, phi j 1 j 2 and j j 1 so, j

1 plus j 2 minus 1. So, this is equal to this should be equal to j 1 plus j 2, should be linear

combination of two linearly independent eigenfunctions namely psi j 1 j 2 j 1 j 2 minus 1

and psi j 1 j 2 j 1 minus 1 and j 2.

Moreover two such linear combinations are appearing, one for j equal to j 1 plus j 2 and

the other for m equal to j plus j 2 j 1 plus j 2 minus 1. Proceeding further to the next one,

m equal to j 1 plus j 2 minus 2. So, we shall have 3 linearly independent sets for 3 for

values of m 1 and m 2 which are j 1 minus 2 j 2 j 1 minus 1 j 2 minus 1 and j 1 and j 2

minus 2 and so on. So, this will go on.
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Let us take a simple example to calculate the Clebsch Gordan coefficients. Now, this is a

quite a task to do it for complicated problem and which we want to avoid here, but we

will still the essence still remains the same and we will show it for a particular case. So,

once again to remind you that we will write down the kets as this where C m 1 m 2 are

the CG coefficients. Let us have so, we have to calculate C m 1 m 2 for j 1 j 2 j m as 1 1

1 and minus 1, that is j 1 equal to 1, j 2 equal to 1 j equal to 1 and m equal to minus 1.

So, since total m is equal to minus 1 m 1 plus m 2 must be equal to minus 1. So, either m

1 equal to minus 1 m 2 equal to 0 or m 1 equal to 0 and m 2 equal to minus 1. So, I can

write down this as C 0 minus 1 and 1 0 and this is for the first particle and this is 1 minus

1 is for the second particle. This is a shorthand notation for 1 1 0 minus 1 and similarly it

is a C minus 1 0 1 minus 1 and the 1 0 ket which is a 1 1 minus 1 0.

Now, in order to calculate this a trick is required that is, if we since this is a minimally

aligned state that is m has the value which is minus 1, if we apply a j minus 1 because

your j is equal to 0. So, m is the minimal value of m is minus 1, if we apply j minus on

this state will give me 0. So, j minus simply nothing, but j 1 minus plus j 2 minus which

will act on the state and will give me 0.
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So, that will use those relations that we have learnt earlier that is a j plus minus acting on

j 1 m 1 is equal to j 1 j 1 plus 1 and minus m 1 and m 1 plus 1 and or minus 1 depending

on whether you are applying the raising operator or the lowering operator; here we are

interested in the lowering operator. So, that gives a state which is 1 1 minus 1 minus 1

and because this is equal to 0 these kets are not equal to 0 and neither root 2 is.

So, we have this a bracket equal to 0. So, if this is equal to 0 then we have C 0 minus 1

equal to minus of C minus 1 0. And so, each one of them if you normalize it becomes

equal to 1 over root 2 this is of course, one is a 1 over root 2, the other one is minus 1

over root 2. So, this is the way we have calculated the Clebsch Gordan coefficients for

this state given by here alright.
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Let us go through some of the problems which you may see in the tutorial and these are

exercise problems, nevertheless is important for me to just browse through them which

are the relations that you need. The some commutation relations which you have seen in

some form, I am writing them down again. It is a commutation between L plus L minus

which gives a 2 h cross L z and L z and L plus minus gives plus minus h cross and L plus

minus.

And, similarly L square and L plus minus commutator always give 0 because, L plus

minus  is  nothing,  but  a  linear  combination  of  L x  and  L y  and  because,  L  square

commutes with all components of L that is why this is equal to 0. And, similarly for the

spin angular momentum sigma i sigma j equal to 2 i epsilon ijk sigma k and sigma i

sigma j the anti commutator is equal to 2 delta i j. So, these are the problems that you

should do and practice in order to have a familiarity with the angular momentum algebra.

So, L plus minus acting on l ml equal to a we have a we may not write this ml, but since

we have written let me just add that ml here. L plus minus acting on l ml is h cross root

over l into l plus 1 minus ml into ml plus 1 and l ml plus minus 1. Of course, as I said

that these are not the eigenfunction so, one gets the different state after one operates L

plus minus on l ml and let say the find the eigenvalues and eigenfunctions of a spin half

particle pointing arbitrary direction in space. So, we have now so, far talked about z

being the preferred direction in which case S z has always been diagonal.



Suppose the spin vector is pointing in some particular direction in space which is the n

cap direction then what are the you know the so, these are the so, this phi and this is theta

or so, this is a theta and so on. And so, this can be worked out and you can find out the

forms for the Pauli matrices which you have learnt.
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Look at this problem that, write down the matrices corresponding to L x L y and L z for l

equal to 2. So, l equal to 2 the size is equal to 2 l plus 1 cross 2 l plus 1 and this is equal

to a 5 cross 5. So, we will have a 5 by 5 matrix which are written as L x is equal to h

cross by 2 and these all these elements that are written there L y equal to h cross by 2 and

all these elements. L z of course, is diagonal when you have l equal 2 the ml values are 2

1 0 minus 1 and minus 2. So, these are appearing at the diagonal entries and all the off-

diagonal entries are 0 and of course, this is the eigenstate of L z. The basis is an Eigen

basis of L z.
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Let us do a problem which is the two-dimensional rotation operator, we have looked at

rotation operator in three-dimension which you know that, if you rotate a system or an

object  about  the  z  axis  then  what  rotation  matrix  is.  We are  simply  talking  about  a

rotation in the xy plane which has a form which is written here, for this U R of theta so,

show the group property. So, basically U R forms a group and there are elements of the

group and they have certain properties. So, this is one group property which is U R theta

1 and U R of theta 2 which is U R theta 1 plus theta 2.

And so, this called as a associative property. So, U R of theta is written as cos theta sin

theta minus sin theta cos theta. So, U R of theta 1 into multiplied by U R of theta 2 is the

product of these two matrices and this is equal to, if you do the simplification it comes

out as this and this is equal to U R of theta 1 plus theta 2. So, that property can easily be

proved.

And so, we stop here with I mean having told you most of the relevant things that are

needed for the angular momentum, including it is a commutation relations, the algebra

that is needed and various things such as the being the generator of rotation. And the

reason that the rotation operators do not commute because the components of the angular

momentum do not commute and in general when you write it as matrices one should

understand easily that their own commute because, matrices do not matrix multiplication

is non-commutative in general. 


