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So, we shall carry on with the applications of this second quantized formalism that we

have learnt so far. And this time we are going to apply it to real materials or rather the

models  which  actually  mimicrial  materials.  So,  in  that  context  we will  look at  tight

binding approximation today.
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So, I am assuming that you have done tight binding approximation in your solid state

physics course when you wanted to calculate the electronic structure or the electronic

band structure of metals and in that context you have learned that we assume that in the

vicinity of each lattice point, the full periodic crystal Hamiltonian, which is given by H.

So, H is the full Hamiltonian is approximated by H 1 which is an atomic Hamiltonian

and localized at a lattice site. 

So, the approximation is about full periodic Hamiltonian, which we assume that it is now

a localized atomic Hamiltonian which is localized or rather only confined to a lattice site.

So, the overlap of the atomic wave functions is still enough for us to consider that there

is we are talking about a real material and not talking about isolated atoms or ions, but it



is not so much that the independent electron or rather the isolated atom information is not

completely dumped.

So,  it  is  just  the  balance  between that  we are  saying that  the  wave function  is  just

restricted  to  a  site,  and  it  is  minimally  overlapping  with  the  wave  function  to  a

neighbouring site, but; however, we are still acknowledging there is some very minimal

overlap so, that the isolated atomic description is not completely overthrown, but the

presence  of  other  atoms  are  being  acknowledged  at  the  same  time.  And  this

approximation  is  useful  in  describing  energy  bands  that  is  that  are  relevant  to  two

partially filled d-shells of transition metal atoms and describing the electronic structure

of insulators.

So, this Hamiltonian within the tight binding approximation is what we are going to see

now. So, we have tightly bound electrons to the iron cores and we are pretty much this is

called as the atomic limit and this word is used to denote that the electrons are typically

bound to the iron cores.  To write  down the Hamiltonian  in  a  formal  manner, let  us

introduce the wave function of the electrons in this atomic limit.
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As a psi of R n will tell you what n is R is of course, a site or lattice site where an atom

or an iron is located and n is actually an orbital which we are going to come to and this

has a normalization factor like this, and then you have an exponential minus i k dot R

and in the momentum space it is written as this.



So, let us put a comma in between and there is a K that is only restricted to the first

Brillouin zone. I mean when I say B Z. So, B Z for me stands for Brillouin zone and we

say the mostly we say the first  Brillouin zone.  So, we use this notation that  the BZ

actually talks about the first Brillouin zone. 

So, this is the wave function of the electron which is localized at a given iron core or at a

given lattice site and so, there is a free part which is given by exponential minus i k dot R

and there is also this psi k n, where n is as I said is the orbital index, and R is a location

of the lattice. And you can write also the psi k n and just by taking the Fourier transform

and which will come with a simple.

So, psi k n is written as 1 by root over N and this sum over R exponential i k dot R and

psi  R n.  So,  thus  for  this  system which comprises  of  vanishingly  weak inter  atomic

overlap, this are called as the Wannier basis. And these are localized written the wave

functions  are  written  in  the  localized  Wannier  basis  and  now this  for  an  interacting

Hamiltonian  the  Wannier  basis  is  certainly  not  the  Eigen basis  of  the  problem,  but;

however, we can still they are still helpful and let us give you a picture physical picture

that what we are trying to talk about.

So, this is my energy axis and this is what I say that it is my interaction is in this along

this  axis.  And when we have  this  each  of  these  orbitals  what  happens  is  that,  at  0

interaction these are discrete energy values. So, this one corresponds to say n equal to 1

and the other corresponds to say this n equal to 1 and these are n equal to 2 and so on,

but; however, when the interaction becomes larger than some value these start you know

branching out like this, and they spread out like this and these form the energy bands and

again I assume that you have done the first course of solid state physics in which the

formation of energy bands are taught. 

So, beyond a certain interaction potential between the energy levels we would have these

individual  orbitals  from transform from being  single  particle  discrete  single  particle

states, and to they will fan out or they will branch out like this and for being energy

bands.

Now, they will be called as insulators or conductors depending on the position of the

Fermi level and let us say. So, as I told this is the energy axis. So, let us say the Fermi

level is somewhere here and let us call that as EF and then if the Fermi level falls in the



spectrum of the available energy states within that spectrum, and then it is called as a

metal and otherwise it is called as an insulator. So,.

So, how do we actually exploit this Wannier basis to write down the ore to form the

Eigen states of the general Hamiltonian the full periodic Hamiltonian? So, two things

that need to be kept in mind one is that that the Wannier states represent orthonormal

basis of single particle states. The word orthonormal means it is both orthogonal and

normalized and it is also we can see that one can actually drop the band index because

only  one band index or  orbital  index as  we have  said  band index n is  important  is

important as we have shown yet only n equal to one is important. So, we can drop the

index n and drop n ok.
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So, now allow us to introduce a transformation of the form a sigma r equal to sum over R

and psi R star and it is r and a R sigma dagger or we can write the Fourier transform of

this as a R equal to sum over i psi of R i and r and this is a i sigma dagger. So, this is how

the  operators  are  defined  in  terms  of  the  Wannier  functions  look  these  size  are  the

Wannier functions that we have just spoken and we have dropped the band index and as

we introduce new operators the creation operators in terms of the Wannier basis. 

And a momentum space representations is equally possible which is given by a k sigma

equal to 1 by root over N an exponential i k dot R i and a i sigma and similarly the

Fourier transform of that is a i sigma dagger equal to 1 by this is i 1 by root over N and



this is equal to sum over k which belongs to the first Brillouin zone and then you have an

exponential minus i k dot R i and a k sigma dagger.

So, this transformation can be used to write down the generic single particle Hamiltonian

as H 0 is equal to sum over k epsilon k a k sigma dagger a k sigma which finally, gives

me it is equal to 1 over N because from both the operators we get 1 over root N. So, that

becomes 1 over N and there is a i and i prime and also there is a k. So, that gives me a

exponential i k R i minus R i prime and then there is an epsilon k and there is a a i sigma

dagger a i prime sigma and so, that can be written as sum over i and i prime and a i

sigma dagger t i i prime and a i prime sigma. 

So, this t i i prime is equal to 1 over n sum over k again k belonging to the first Brillouin

zone and this is equal to an exponential i k R i minus R i prime and then there is an

epsilon k and so, let us take a particular. So, this is the formula for the or rather the

Hamiltonian and the t i i prime represents this, and let us see the example of a square

lattice.
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And what is the square lattice you have these are the positions of the lattice points where

which is occupied by the atoms or the ion cores. So, this is my x direction and this is my

y direction and let us say that this is called which is called as a lattice spacing which is of

a and then this direction is called as the x cap direction and this is as the y cap direction.

So, we have for a particular site we have four neighbours. So, an electron actually can



hop in a lattice on a on a two dimensional square lattice from this point let us call this

point as o or let us call this point as x or will be indistinguishable in this matrix of the

lattice points that are shown here.

So, from this lattice point x, it can go to x 1 which is on the positive x axis towards the

positive x axis it can go to x 2 which is in the negative x axis, and it can go to y 1 which

is in the positive y direction and it can also go to y 2 which is in the negative y direction.

So, the neighbours for in a square lattice is given by plus a x cap and a minus a x cap and

a plus a y cap as I said a is called as a lattice constant and there is also a minus a y cap. 

So, these are the four neighbours of a lattice site for a 2D square lattice two dimensional

square  lattice  ok.  So,  we  so,  to  write  down  the  tight  binding  model  we  need  an

information  about  the  neighbours,  which  are  the  most  dominant  contributor  to  the

Hamiltonian. So, then I can write down this epsilon k which is the single particle energy

spectrum as written in this slide here.

So, this epsilon k can be written as a 1 over n again taking a Fourier transform and there

is. So, it is x cap and y cap and this will be like exponential minus i k and then it will be

all the let us call these neighbours by a name let us call them as delta. So, it is dot delta

and there is a sum over in you can write it x cap y cap, but let us write it as delta sum

over delta and this delta are these all these neighbours and this is equal to.
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So, this is simply I need to find the neighbours and then just take a k dot delta, where k is

just a generic vector in two dimension which is k x x cap plus a k y y cap. So, this will

give  me  a  1  over  n  and  I  have  an  exponential  minus  i  k  x  a  a  and  I  have  also  a

exponential minus exponential i k x a. So, this is for the term that is for delta to be plus a

x cap and delta to be minus a x cap and for the plus a y cap and minus a y cap are

similarly given by. So, this is will be simply equal to.

So, I should have ok. So, these are simple to see you should verify them. So, k y a and

exponential i k y a. So, this is nothing, but twice of cos k x a and this is nothing, but

twice of cosine k y a and hence my epsilon k becomes equal to with an amplitude that is

given by that as minus p and then there is a sum. So, because this will take care of this 1

over n and I will have. 

So, this 1 over n will not be there if I do the sum and I have a minus 2 t cosine k x a and

a cosine k y a as the dispersion or the energy momentum relation for an electron a tight

binding electron in a square lattice. Now this formalism is very important because this as

I said that in a variety of real materials this tight binding approximation is very helpful in

finding the e versus k relation and this can be plotted on a two dimensional k x k y plane

and one can find that that how the dispersion looks like over the first Brillouin zone what

I mean by first Brillouin zone is that for k x to be. 
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So, the first Brillouin zone of a square lattice is also a square lattice and it looks like this

which is a. So, this is my k y and this is my k x. So, these are points which are pi and pi

here. So, that we have a this point to b like pi pi and this point is like pi minus pi and this

point is like minus pi minus pi and this point is minus pi pi and this is 0 0 and this point

is called as pi 0. They have specific names we are not going into that you can look at any

book on electronic structures and they have names such as m k gamma etcetera points

and. So, this is my first Brillouin zone which I need to do all these sums that we have

talked about. So, k x is between minus pi to pi and same for y.

So, now we can we know a lot of information about this square lattice or the energy

dispersion  tight  binding  dispersion  in  square  lattice,  we  can  calculate  the  electron

velocity  by taking a derivative  with respect  to  k either  k x or k y and then we can

calculate the velocity of the electrons at one of those given points pi pi pi 0 0 0 etcetera

this is called as a zone centres 0 0 is called as a zone centre and pi pi is called as a zone

corner.

So, we can calculate at thus these special points we can calculate the velocity and we can

also find out the effective mass of electrons  by which is  which comes out from the

inverse of the second derivative of this of this energy dispersion or with respect to k x or

k  y. Now so,  this  is  also  widely  applicable  to  other  and let  me write  in  bracket  as

complicated  lattice  geometries  and  by  complicated  we  mean  other  kinds  of  lattice

geometries such as the triangular lattice, the Honeycomb lattice, Kagome lattice and so

on and one of the famous examples is given by Graphene.
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And this Graphene was discovered in 2004 by two scientists called Novoselov and Gaim

and this was their from Manchester united kingdom and they were awarded Nobel Prize

in 2010.

So, this is the citation for the Nobel Prize that they have got this was in 2010 from the

from Sweden and then this is the structure of grapheme, it is one atom thick honeycomb

structure. So, it is the best 2 D material that you can find in nature and it is just like a thin

sheet absolutely one atomic layer thin sheet of carbon atoms, which are which are there

arranged in the hexagonal form or the honeycomb form and to find out the tight binding

dispersion of electrons in graphene we note this figures and this gives the unit vectors of

graphene. So, graphene is a it has two atoms per unit cell. So, one atom is by the filled

circle and the other is the filled and the open circle with the filled circle inside, these are

the two atoms per unit cell and these are the basis vectors that one can see.

So, they are basically the carbon atoms are arranged in the hexagonal lattice as we have

shown, and they are connected by very strong covalent bonds of the sigma orbitals and

they derive from the s p 2 hybridization of these atomic orbitals and the remaining p z

orbital has a weak overlap and forms a narrow band of the pi orbital states. One should

look  up  the  structure  of  graphene  more  carefully  and  understand  that  to  the  first

approximation these pi electrons they can be represented or denoted by a tight binding

Hamiltonian with a hopping energy minus t between the neighbouring atoms. 



And to describe the the spectrum energy spectrum of the system and one actually can

think of a unit cell consisting of two atoms as I told earlier, enclosed in a in this forming

this honeycomb structure they are given by say a 1 and a 2 and from the figure one can

write down that a 1 is equal to root 3, 1 and a by 2 and the a 2 equal to root 3 minus 1 a

by 2 and this a is called as a lattice constant.
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It has a value that is known which is equal to 2.46 angstrom and so, the tight binding

model for this though slightly more complicated than the square lattice which is what we

have written earlier because of the presence of two kinds of atoms per unit cell, we can

still write down in simple enough fashion as there is a r and r prime. So, and this is equal

to some t a a 1 dagger r, a 2 dagger a 2 r prime plus Hermitian conjugate you will often

find  that  in  the  tight  binding  Hamiltonian  written  in  literature  it  is  written  with  a

Hermitian conjugate to make the Hamiltonian real or rather to give the Hamiltonian is

still is. 

So, the energy spectrum is real. So, that is why this Hermitian conjugate is added and

this sum is overall the nearest neighbour basis vectors of the unit cell that is shown there

this is a problem that is given to you to solve I am only outlining the solution of this

problem and this Hamiltonian can now be written in the momentum space as rather.

So, this is equal to a a 1 sigma dagger a 2 sigma dagger and then it is 0 and the t f of k I

will tell you f of k is a function of k and minus t f star k and a 0 and this is equal to a 1



sigma and a 2 sigma. This is the form of the Hamiltonian and it has simply has to be

diagonalized in order to find the energy Eigenvalues it is just a 2 by 2 matrix that one has

to diagonalize where f of k is simply equal to 1 plus exponential minus k 1 a and plus

exponential  i  minus  k  1  plus  k  2  a,  where  k  vector  is  written  as  k  1  having  two

components k 1 and k 2 because we are talking about a two dimensional system and

finally, you should be able to write.

(Refer Slide Time: 32:48)

The dispersion as a plus minus t f of k, and this is equal to a plus minus and then we have

3 plus 2 cosine k 1 a if you like you can call the k 1 to be. So, we can simply call this as

k x, k y and maybe it is better to write with the k x and k y instead of k 1 and k 2 because

which is what you are more familiar with it is k x a and a plus 2 cosine k x minus k y a

and up to cosine k y a.

So, that is the dispersion and this of course, because of the plus minus sign it has two

bands and let me write down this together there. So, this is the dispersion and there is an

upper band and there is a lower band upper band is given by the positive sign and then

there is a lower band that is given by the negative sign and in fact, you should try to plot

it on a do a three dimensional plot of epsilon k being in the z axis, and a k x and a k y say

in the. So, let this be k x and the k y and if you plot epsilon k, you will see some nice

structures which I leave it as an example or rather a problem that needs to be solved. And



you will find that these two bands actually touch at 6 points in the Brillouin zone and

near those 6 points the energy dispersion is not parabolic it is rather it is linear.

So, these linear dispersions are called as the Dirac cones and because linear dispersion is

found in relativistic particles such as a photon, and the energy dispersion close to those

points where they touch they represent or rather resemble that of massless electrons and

that is why they are called Massless Dirac fermions. So, most of it we leave it as an

exercise for you to solve let us go to the an interaction term and write that interaction

term in some simple form for the two particle interaction.

(Refer Slide Time: 35:51)

So, interacting Hamiltonian; a bit of a summary if you like that we have done the second

quantized formalism, we have introduced the creation and the annihilation operators and

we have written down generic Hamiltonian which includes single particle Hamiltonian

and a Hamiltonian which consists of two particle interactions. As we have said earlier

that there could be higher body interactions but usually they are too weak and most of

the  time  they  are  unsolvable  and  the  two  particle  interactions  are  good  enough  for

describing most of the systems that we come across, and from there on we have done the

single particle Hamiltonian and that Hamiltonian has only a single particle term which

can be solved it is a kinetic energy mostly it is a kinetic energy part of the Hamiltonian,

there could be also an onsite potential which it may include. 



And we have also now seen today it is about the tight binding Hamiltonian, let us now

talk about the interaction Hamiltonian, again we will write it in a generic fashion. So, it

is an electron electron interaction and we have i, i prime j, j prime and this is like U i, i

prime j j prime and there is a a i sigma dagger, a j sigma and a i prime sigma prime

dagger and a j prime sigma prime. So, once again just to make the notation clear that

there are two particles interacting via some interaction strength U i i i prime j j prime and

these two particles are at i and i prime and they have spin sigma and sigma prime and

after the scatter.

So, interaction is a type of scattering which we are going to see elaborately later and then

they go on to sites which are j and j prime, and maybe the sigma becomes sigma prime

and sigma prime becomes sigma or sigma retains as sigma and sigma prime become

retains is retained as sigma prime. This is a generic Hamiltonian and if you like the the

amplitude of the term is written as this thing is like half and a d d r and d d r prime and

there is a psi R j star and psi R i star and there is a V r minus r prime and these are of

course, the psi's are of course, functions of r and r prime and we have then we have a psi

R i prime and psi R j prime here we have dropped the. So, maybe we have not kept that

same notation let us just make it a little more careful.

So, we have and let us not keep this and so, we write this as R i and R i prime and this is

r j and r j prime ok. So, that and then the full Hamiltonian looks like i i prime a i sigma

dagger t i i prime, a i prime sigma now we have gotten back the spin and this we have

neglected the spin,  because most of the time the interaction between two particles is

spinning independent it may not be, but occasionally it is. So, it is i i prime j j prime and

we have U i i prime j j prime and now I have a i sigma dagger, a j sigma a I prime sigma

prime and a j prime sigma prime. 

So, that is the interaction term we have put in and this is the full Hamiltonian that one

usually has to solve and most of the time this Hamiltonian has no solution that we have,

and there are there could be many approximations in which we can write this and we

have U we can have U i i prime and i prime i this could be a v i i prime and or it could be

simply you know all these.
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So, U so, this is equal to maybe i j i prime j prime as we have written could be simply it

depends on two indices or it may actually depend on one index. So, it is i j and i prime j

prime this is equal to simply equal to V and these are some of these things that we want

to discuss now.

So, let us now discuss specific types of interactions and call these as maybe 1 and maybe

this is 2, let us see specifically what one does. So, when we have U i j i prime and j

prime equal to depends only on two indices that is V i i prime as it is shown in the above

equation, then I have i not equal to i prime the V i i prime n i sigma n i prime sigma

prime is the interaction term and this is the interaction term that we have for. So, n i

sigma equal to a i sigma dagger a i sigma, and this is let us call it as H interaction and

this is the form. So, this is going to give me a charge density wave type of modulation.

So, because you have a density which is n i sigma at a given site and in another site it is

going to be probably in the neighbouring site it is going to be n i prime sigma prime. So,

one is going to have a charge density wave, and this may lead to charge density wave

instabilities which those physics we will discuss later. Now in the atomic limit what can

happen. So, let us define what is the atomic limit and atomic limits means the hopping

which is denoted by t that is set equal to 0 or it tends to 0 becomes vanishingly small and

the atoms are well separated with the overland between the neighbouring orbitals to be

minimal if in this limit.



So, the atomic limit just to repeat it again it talks about the overlap of the atomic orbitals

being minimum and the resultant interaction is called as the in that case the interaction is

known as Hubbard interaction and this was by john Hubbard, who first wrote down this

Hamiltonian way back in the 60s 1960s and in which case we have for this as we have

written it for the second one that is or the interaction is completely independent of the

indices i j and i prime j prime and it is equal to a constant and then we can write down

this interaction.
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So, let us write it fresh to be U a i sigma dagger a i sigma a i sigma prime dagger a i

sigma prime and there is a sum over i sigma and sigma prime and this can be written

with a little bit of effort as n i up n i down sum over i and also a u by 2 n i. Now this last

term is just a constant because it acts like a chemical potential which acts on a single site

or rather it is a single particle operator, which will just shift the energy up or down and

hence we can neglect that term.

So,  the  neglecting  this  term which  we understand is  going to  shift  the  energy by a

constant amount and as if it is just acts like a chemical potential. So, we will drop that

and we will write the Hubbard Hamiltonian as H which is equal to i j and a sigma and a i

sigma dagger t i i prime a i prime sigma, and a plus U n i up n i down. So, this is known

as the Hubbard Hamiltonian and in fact, even though it is as I said that it is discovered in

the sixties of the last century, there is still physics which are not understood and is often



thought as the you know the research focus for many groups and it is still under active

you know research. And especially it was under focus immediately after the discovery of

the high temperature superconductors, in which it thought to away from half filling it

thought to give rise to the correct physics and it is been debated since then in a number

of variety of occasions.

So, well stop this discussion at this moment and let us go to another discussion in which

we will talk about maybe let us talk about a magnetic Hamiltonian.
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And  see  that  how  this  magnetic  Hamiltonian  gives  rise  to  magnetic  properties  of

materials, and by a magnetic Hamiltonian what I mean is that it is written as J and S i dot

S j and where maybe it is just for the moment I assume that, j is greater than 0 and the

sum is over nearest neighbour sites and this is why it is called a magnetic Hamiltonian

because there is no Fermion or there is no kinetic energy of the Fermion it is basically

two frozen spins are interacting via a strength J and so, the ground state properties of this

model at low temperature has a long range anti ferromagnetic order and this long range

anti ferromagnetic order is called as an nil state. 

So, what I mean by long range anti ferromagnetic order is that, the spins are alternately

pointing up and pointing down and there is a long range order in the system which means

that the spins at i and spins at some distant j are linked or related and so, this the long

range order is technically defined by a correlation function of S i and S j when i i and j



are large. And the signature of a long range order is given by this correlation to decay in

some exponential fashion as a function of the distance.

So,  this  long  range  order  is  achieved  below  a  certain  temperature,  which  is  a

characteristic temperature for antiferromagnets and is called as an nil temperature and an

effective  theory  can  be  written  down  in  terms  of  the  partition  function  and  hence

calculating the susceptibility and so on. It is difficult to solve this Hamiltonian in higher

dimensions.  In  one  dimension  we  can  hope  to  solve  this  Hamiltonian  with  certain

approximations and this is what I am going to show you now that how this Hamiltonian

can be solved in one dimension and that to a restricted version of the Hamiltonian and

how it can be solved using some transformations. So, let us write down the Hamiltonian

in one dimension and that is equal to J and S i, S i plus 1 and there is a sum over i.

So, every spin at site i is interacting with it is neighbour at i plus 1 and these are assumed

to be all spin half particles; that means, these values of s is are either up or down which

we can represent by plus 1 or minus 1. And this model was exactly solved by bethe and

then onwards by many others and it is known that there is no anti ferromagnetic long

range order for this model, and the spin correlations have a power law that is the spins at

site a and spins at site j where i and j are distant sites in the lattice, it does not have

exponentially decaying correlations rather it has a power law of correlations and at the

wave vector given by k equal to pi and. So, there are these physics which has already

been known since the exact solution by bethe, we are not attempting that solution rather

we would take a simpler model which is called as the quantum x y model.

So, we will do a S equal to half quantum x y model in 1-dimension. And let us write

down this Hamiltonian which is the starting point of our discussion now and this is equal

to S i x S i plus 1 x and plus S i y and S i plus 1 y. So, the interaction for the spin

components are only taken to be in the x and the y directions; however, the system is a

one dimensional chain of spins there is no s z component or the interaction between the s

z components  are  neglected and that  is  why this  name is  x y model.  So,  this  is  the

Hamiltonian that we want to solve and see that what it gives us.
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So, if you define operators which are S i plus minus this is equal to S i x plus minus i S i

y. So, I these are called raising and lowering operators.

So, I am making this or rather constructing this raising and lowering operators from the x

and y components of the spin at a given site, and there is a plus and a minus sign are

related to the plus and the minus which means S i plus equal to S i x plus i S y and

similarly for the minus sign. So, if I use these operators to write down the Hamiltonian,

this you should do it and convince yourself. So, the Hamiltonian is J over 2 and S i plus

S i plus 1 minus and a plus S i minus and S i plus 1 plus. As I said you should check that

that how this Hamiltonian written in let us call it as equation 1, let us call this as equation

2 and let us call this transformation as equation 3 and equation 4. So, you should see that

how equation 2 becomes equation 4 via this transformation.

Now, if you write further that these a size are simply equal to half sigma is where sigma

is are the Pauli matrices sigma i vector is a matrix or rather it is a it is equal to sigma x i,

sigma y i and sigma z i. So, this is the definition of sigma i there is a H cross which has

been taken as 1 here, otherwise you could have written it as H cross over 2 it really does

not matter in this case even if we take H process 1 it is and it is a normal practice to take

H cross equal to 1 for this particular cases. And in which case your sigma i plus minus

becomes equal to your S i plus minus ok. So, you have a size now the spin vectors are

defined in terms of the Pauli spin matrices and the raising and the lowering of the Pauli



spin matrices  are nothing, but the raising and the lowering of these spin operators s

operators.

So, now what we can using this we want to write down the same Hamiltonian in 4 in

terms of the Pauli matrices and that is written as sum over i and a sigma i plus and a

sigma i plus minus 1 plus the Hermitian conjugate. So, the Hermitian conjugate will be

sigma i minus and a sigma i plus 1 plus. So, the Hilbert space is two dimensional, Hilbert

space is two dimensional and it is consists of spin up and spin down fermions. 

Now it is important to realize there are no fermions so far in the Hamiltonian 5 however,

these  spin  matrices  they  correspond to  fermions  and  these  are  the  spin  half  objects

correspond  to  fermionic  particles  and  that  is  why  these  up  and  down  spins  they

correspond to fermionic operators or rather  fermions and so,  the only thing that you

should keep in mind is that the sigma is are not fermion operators at the sigma i actually

at different sides they commute and not anti commute as the fermion operators would

have done.

So, if there is any hope to transform this Hamiltonian into a Fermionic Hamiltonian we

have to  do a  careful  transformation  and which is  what  we are going to  do.  So, this

Hamiltonian  is  written  in  terms  of  Pauli  speed matrices  and we shall  transform this

Hamiltonian to a Fermionic Hamiltonian and how do we do that let us define C i dagger

equal to this you should do it carefully because this algebra slightly involved algebra that

is going to follow, and sigma i plus an similarly C i is defined as j i and sigma j z sigma i

minus. 

So,  these are  the transformations  that  we do for from the pauli  spin matrices  to  the

fermionic operators. And now writing down a transformation does not guarantee that

these are fermionic operators unless they satisfy the anti commutation relations that we

have spoken about. So, we have to check that whether they correspond to the or rather

they satisfy the anti commutation relations the c operators. So, one can check.
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So, please check this that C i dagger C i equal to sigma i plus sigma i minus and this is

true because you are the product of sigma j z and sigma j prime z it is equal to 1 for all

sorry for all j j prime less than some i ok.

So, if that is the case then we can write this down as a one fourth of sigma x plus sigma i

sigma y and sigma x minus i sigma y. So, sigma i will be half of sigma x plus I sigma y

and sigma i minus will be half of sigma x minus i sigma y, and this if you expand it

becomes equal to one-fourth of 2 minus i and a sigma i x and a sigma i y and this is equal

to a one fourth of 2 minus 2 sigma i z which is nothing, but equal to half one minus

sigma i z so, C i plus C i minus which is a number operator for the fermions is written as

half into 1 minus sigma i z. 

So, if I do the reverse transformation. So, my sigma i z is equal to 1 minus twice of C i

dagger C i. Now it is known that C i dagger C i is equal to either 0 or 1 for fermions at a

given site that is a restriction on the number of occupancy of the number of fermions at a

given site going to the Pauli’s exclusion principle.

Now, you see that if C i dagger C i is equal to 0, then my sigma i z equal to 1. So, and if

C i dagger C i equal to 1 then this is equal to sigma i z equal to minus 1. So, sigma i z

can take value sigma i z can take values plus 1 and minus 1 for n i to be 0 or 1. So, we

can write sigma i z equal to minus 1 whole to the power C i daggers C i. Now this is a

clever way of writing if C i dagger C i equal to 1 then sigma i z is equal to equal to



minus 1 if C i dagger C i equal to 1, then it is equal ton minus 1 and if it is equal to 0

then it is equal to plus 1. So, that is the that is the thing that we have decided or rather we

have gotten  from this  earlier  step.  So,  my sigma i  z  can  be written  in  terms  of  the

fermionic operators as this all right.
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So, if we have this for the sigma i z then we have sigma i plus can be written as a product

for all j less than i and the minus 1 c j dagger c j and a C i dagger. So, this is in the

exponent. So, let me write it little neatly here ok.

So, that is my that is my sigma i raising or the plus 1 and for the sigma i lowering or the

minus 1 this is equal to j less than i and a minus 1 C j dagger C j and a C i. So, you have

to convince yourself that this is the right transformations between the raising and the

lowering spin matrices Pauli spin matrices with the fermionic operators and it has to be

also checked that C i C i dagger is equal to 1.

So, the fermionic anti commutation relations should give you 1 at a given site and this

means that C i C i dagger plus a C i dagger C i which should give you 1 and that can be

checked from the fact that. So, check this I am almost doing it for you, but you should

also do it yourself to check that so, C i. So, C i and a C i dagger which is equal to a

sigma i minus and the sigma i plus and this divided by this product. So, it is which is j

less than i and j prime less than i as well and we have a minus 1 whole to the power c j

dagger c j and minus 1 whole to the power c j prime dagger c j prime and this is the



definition of the anti commutation relations in terms of this Pauli matrices and let us only

take this the numerator. So, the numerator is of the right hand side, which is sigma i plus

minus with a sigma i plus and that can be written as.

(Refer Slide Time: 66:39)

Sigma i x minus i sigma i y and that has to be taken the anti commutation has to be taken

with this. And this can be written down as minus sigma i plus plus sigma i plus sigma i

minus which is equal to twice of 1 minus sigma z plus twice of 1 plus sigma z.

So, this is equal to 4 and interestingly this denominator which contains this term the

product of j and j prime both less than i and a minus 1 whole to the power n j and a

minus 1 whole to the power n j prime. So, it gives rise to four possibilities for n j to be 0

and 1 and n j prime to be 0 and 1. So, if you look at this then n j equal to 0 and n j prime

equal to 0, then this term that the above term gives 1 and similarly for n j equal to 1 n j

prime equal to 1 again the above term gives 1 and for n j equal to 1 and n j prime equal

to 0 again the above term gives 1, and n j equal to 0 and n j prime equal to 1 the above

term again gives 1. So, these four ones will actually cancel with the four that you are

seeing here and I will finally, get the commutation relations that.
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We want that is C i C i dagger should be equal to 1. So, the Hamiltonian takes a form

which is equal to which is as we have written it down earlier. So, we will simply write

down one of the terms which is sigma i plus and the sigma i 1 and now this thing would

be written in terms of the fermionic operators and the fermionic operators are a product

for j less than i minus 1 whole to the power c j dagger c j, I want to write down the

fermionic operators explicitly we could have written it n j as well.

So, there is a C i dagger and then there is another bracket of this thing and which is a j

prime is equal to i plus 1 and a minus 1 whole to the power c j dagger c j prime and c j, c

j dagger prime daggers c j and this is with C i plus 1. So, this is the term if you recognize

that  this  term is  there  in  the  Hamiltonian  as  written  in  equation  let  us  call  this  as

equation. So, this is an equation 5. So, so let us call this equation as equation 6 and we

have checked. So, this is one term in the Hamiltonian that is written there. 

And this if you simplify it becomes equal to C i dagger minus 1 whole to the power C i

dagger C i and C i plus 1. So, this is what comes and this can be rewritten as C i dagger 1

minus 2 C i dagger C i and a C i plus 1 as you know that this is equal to either plus 1 or

minus 1 which is written by these 1 minus 2 C i dagger C i because C i dagger C i can be

either 0 or 1 and this can be hence written as C i dagger C i plus 1.

So, now it becomes a fully Fermionic Hamiltonian and the Hermitian conjugate as we

have seen in equation 5 will come out as C i and C i plus 1 dagger. So, we will write



down the full Hamiltonian completely now in fermionic terms with a J by 2 and a sum

over i and a C i dagger C i plus 1 plus a hermitian conjugate and so, this is the called as

the  tight  binding Hamiltonian  which  we have  already  seen  earlier.  So,  tight  binding

Hamiltonian now we do not have any spin index so, these are for spinless fermions in

one dimension so, spinless fermions in 1 D. So, this is up the problem that it boils down

to starting from the Hamiltonian one as we have seen it here or rather to which is a

simplified version of one and written in one dimension.

So, this is the spineless fermions and there is a it  can be exactly  solvable.  So, exact

solution exists.
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And why I write is that, it is quite unusual for an interacting problem or of many body

Hamiltonian to have an exact solution, even if it is the case in one dimension. So, we will

solve it using those. So, you rerun the whole thing in momentum space. So, that we can

write down a C i equal to 1 by root over N and this is in one dimension. So, we can write

it as exponential i k x i and a C k. So, k belongs to you know mind I mean in this range

rather. 

So, minus pi to pi which is the first Brillouin zone and if you do this momentum space

transformation one gets that J by 2 N and i, k and k prime to be equal to exponential

minus i x i k plus i k prime x i plus 1 and a C k dagger and the C k prime and plus the

Hermitian conjugate that is going to be there and this is equal to j over 2 N and i, k, k



prime exponential minus i x i k minus k prime and exponential i k prime and the C k, C k

prime and plus a Hermitian conjugate as will be there and this is is basically the lattice

spacing and this is.

So, this is equal to you are the definition along with this 1 over n is the definition of delta

k k prime. So, this is becoming it becomes equal to J and there is a. So, this will give me

a J and the sum over k cosine k a and this is equal to a C k dagger C k. So, this is simply

J sum over k cosine k a n k. If you like take a equal to 1 the lattice spacing equal to 1 that

does not cause any problem, but this is the exact solution of the Hamiltonian that we

have started with equation 2 and what does this Hamiltonian tell you? That this tells me

that the spectrum is like this and these are these points.
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So, this is the Fermi energy so, 0. So, this is my E versus K let me write it neatly this is

equal to your epsilon and this is K and these are the points. So, this is that corner of the

Brillouin zone. So, minus pi to plus pi and this is it cuts the Fermi energy at this is at pi

over 2.

So, we have the Fermi points are at minus pi over 2 and plus pi over 2 so, the ground

state. So, in the ground state of the Hamiltonian one gets Fermi it should be in three

dimension,  it  should  be  Fermi  surfaces;  however,  in  one  dimension  these  surfaces

actually boil down to point. So, we will write as Fermi points at k equal to plus minus pi

by 2. So, what it tells you is that there are gap less excitations so, which means that



another fermion or one extra fermion can be added without any cost of energy at the

Fermi level.

So, when you want to add a particle at in a system in a system of fermions because all

the states all the way up to 0 to k by 2 are filled which are inside this parabola they are

completely filled all the way up to k by 2 plus k by 2 and minus k by 2. So, if you want

to  introduce  one  Hamiltonian  then  sorry  if  you  want  to  introduce  one  fermion  that

fermion has to be added at the Fermi level, and it costs no energy because the excitations

are  gapless;  however,.  So,  it  is  known  that  the  quantum  x  y  model  gives  gapless

excitations that is one can what I mean is that one can add one more fermion without any

extra cost of energy.

However this situation will change if we add the z term. So, if we have a term which is z

and z plus 1, this inclusion of this term of this term makes the spectrum gaped ok. So, we

are really talking about a Magnetic Hamiltonian in one dimension which has an exact

solution  and this  solution  seemed to  give  us  a  magnetic  metal  or  a  kind  of  gapless

excitations and in the event that you want to add a z component of the spin interaction

along with the already the terms that appear in equation 2, this gapless situation will

vanish  and  you  will  have  a  gapped  situation  which  would  be  corresponding  to  an

insulating scenario.


