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So, we named this as equation 1.
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And to remind you that we have this factor which is 1 divided by root over of N factorial.

And then there is a product of n lambda factorial  and lambda really goes from 0 to

infinity. So, this is our normalization factor and these normalization factor normalizes the

many  body wave function  psi  which  is  written  in  equation  1;  the  left  hand side  of

equation 1.

And  the,  this  quantity  which  is  P to  the  power  1  minus  S  g  n  K divided  by  2;  it

symmetrizes the wave function. So, what we mean by symmetrizing the wave function is

that as been told earlier that for the Fermions any change in the position of the particle or

transposition of two particles would bring in a negative sign. And if that is done twice

then it brings back another negative sign which means it becomes positive whereas, for

Bosons it is always positive no matter how many times the transposition is done.

So, this is our many body wave function that we are going to talk about now let us look

at a typical many particle state as this.
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So, we are giving an example of a many particle states let us say that it is written with a

ket which is 1, 1, 1, 1 and then 2, 2 and then 3, 3, 3 and then its 4 and then it is 6, 6 and

etcetera. So, what is meant by this notation is that at the real space that is i equal to 1 as

the position space ah; for i equal to 1 there is one particle the for i equal to 2; there is

another one again one particle then at i equal to 3 then there is another one particle i

equal to 4 one particle, i equal to 5 two particles i equal to 6 two particles and so, on.

Now, this notation for a many particle system can be simplified; if we simply write this

as 4 and then 2 and then 3 and then 1 and 0 and 2 and so, on. So, in going from this many

particle state on the top from in the written in the position basis we have gone to a many

particle  state  where we have simply  written  down the number  of  particles  that  is  at

position. So, so these are there are 4 number of particles at the first 4 positions rather. So,

there are 4 occupancy in the first 4 sites or locations and then it is 2, then there are 3 and

4 1 and there is no 5. So, if we put a 0 and then there is there are 2; 6 and so, on.

So, now this is written in a basis which is called as the Forck basis. So, what is the Forck

basis; so, we have written down this many particle state or the wave function in. So,

telling that how many particles occupy. So, occupy position i; so, for Fermions of course,

we know by the exclusion principle Paulis exclusion principle. 

So, the numbers will take values the numbers that is written here the numbers will take

values  0  and  1  and  for  bosons,  they  can  be  any  because.  Bosons  do  not  have  any



exclusion principle embedded there. So, as many as possible or as many as number of

particles are there,  they can occupy the same energy level unless it  is been or rather

constrained by any other principle or any other you know symmetry argument.

Now, this writing it in the occupation basis or the particle number basis is called as the

Forck basis. And we will call this as a occupation representation and this is same as the

Forck basis or Forck representation. And this is after the name of Russian scientist after

Russian scientist of V. A. Forck.
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So, now, we will write this Forck basis as. So, this is written with a curly F a curly F like

this and so, the many body state would be written as in this occupation number is this I

am writing it with a ket we could have written this with the ket as well. So, so this is

equal to some n 1 n 2 and so, on and then there is a n n and this C n 1 n 2 and all of that

and then its n 1 n 2 and so, on.

So, that is some many body state where C n 1, n 2 etcetera are the coefficients and these

are the Forck basis. So, the occupation number basis. So, we have occupation n 1 at a

given side and then occupation n 2 and occupation n 3 and so, on. So, n 1 and n 2 will all

be equal to either 0 or 1 for Fermions whereas, for Bosons there could be any number.

Now, in the; so, in general we have n i equal to N. So, the total number of particles is

equal to N; however, in a grand canonical sense we can relax this constraint and we can



say that we have a Hilbert space which is large enough to accommodate infinite number

of particles. So, then the total Forck space is written as Forck space is written as it is

equal to a notation that I will use I will just tell in a while its n equal to 0 to infinity and

this is equal to the power N where this is known as the direct sum.

 Now this Hilbert space must necessarily include F 0 which is vacuum means that it does

not contain any particle and it necessarily should be to include in the family of basis

states. So, now, we have a state which is given by this and written in the occupation basis

or the Forck basis and in the Forck basis; the total Forck space is written in terms of the

this F to the power N and written as a direct sum for from n equal to 0 to infinity. And we

do not have this constraint of this one any longer that is sum over N i which is basically

the occupancy of each state has to be equal to some finite number n that is not there any

longer.

So, what is this occupation number representation useful for? So, what is the benefit

derived from starting from a representation which we have written in the position basis.

And then we have tried to go on to the occupation number basis or the Forck basis what

is the benefit of doing that. In fact, it of course, as you can see that this looks much more

simpler as compared to the representation that has been used earlier that is the position

representation.

However, in the position representation there is an enormous summation involved here in

equation 1 which is a sum over K and then there is a P to the power 1 minus S g n k by 2;

it is been told earlier and its written here as well that S g n k is either equal to k plus 1 or

minus 1 and when it is equal to plus 1 then there is no sign that is this factor is equal to 1.

However, when there is a S g n k is equal to minus 1 then we have sign. So, that is the

becomes P equal to 1 where P is equal to plus 1 for Bosons and P equal to minus 1 for the

Fermions.

And from there we wanted to go to this occupation number basis and even though it

looks simpler, but this enormous sum that appears here how is it going to be taken care

of. And remember that this sum is important for the symmetrization of the state and this

symmetrization gives the slater determinant for the Fermions which is the anti symmetric

property of that matrices are encoded in transposition of particles; for Fermions which



would pick up a negative sign. As one does a transposition or changes the position of one

particle.

So, how that is going to be encoded into this occupation number basis? And in principle

we are need to be worried because we are talking about 10 to the power 23 number of

particles and transposition of them leading to the right symmetrization for a particular

wave function need to be taken into account. So, this is done very elegantly in the using a

second quantized formalism.
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So,  this  is  where  the  second  quantization  is  important  and  will  tell  you  how  it  is

important. So, let us define a creation operator which is acting on a many particle system

such as this. So, a i dagger acting on n 1 n 2 etcetera and that by definition we are now

using a definition that we are going to we are introducing introducing it for the first time.

And this is n i plus 1 and then there is a P si and then there is a n 1 n 2 and n i plus 1.

And so, what it does is that a i which is a creation operator. So, this is the definition of

operation of a creation operator. So, creation operator acts on the ith particle and raises

the occupancy of the ith particle from n i to n i plus 1; brings in a coefficient which is

root over n i plus 1 additionally to take care of the symmetrisation requirement brings in

another factor which is P to the power S i and where S i is equal to summation over j

from 1 to i minus 1 and n j. So, we will have to sum over all the occupancies up to that

ith side just before the ith side and that ith side of course, the occupancy is raised by one.



Now, it is important to note that; so, in a fermionic system. So, for Fermions this n i is is

modulo 2; so, what we mean by modulo two is that when you divide a number a by n it is

called as a modulo n and what it means is that; when you divide a by n the answer is the

remainder of this division. So, for Fermions the division will leave a number which is

either 0 or 1 because i am dividing by 2. So, n is equal to 2 here and so, n i is modulo 2

means that automatically it means that it can acquire values 0 or 1. And that is the reason

or rather that takes care of the fact the that the occupancy of Fermions at each side could

be either 0 or 1 and so, that emphasizes the Paulis exclusion principle.

Now, let us take a; so, basically; so, P to the power S i; it makes accommodates or rather

incorporates the symmetrisation, the proper symmetrization of the many particle state.
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So, let us give an example take a many particle state which n 1; n 2, n 3 and so, on. And

let us operate by a creation operator which operates on this third occupation and then we

can write this as root over of n 3 plus 1 and P to the power n 1 plus n 2 and we have n 1,

n 2, n 3 plus 1 and so, on ok.

So, this the operation of the creation operator acting on n 3. So, as usual a P takes a value

P takes plus 1 for Bosons and minus 1 for Fermions and so, this P s i here n 1 plus n 2

this takes care of care of symmetrization of the state; which means that if n 1 plus n 2 is

equal to 1. Then we have an anti  symmetric  state because for Fermions it  is an anti

symmetric state because it is minus 1 whole to the power 1; however, if n 1 plus n 2 is



equal  to  0  then  we have  a  symmetric  state  or  n  1  plus  n  2  equal  to  2;  we have  a

symmetric state. And so, this is how the in this Forck basis; the symmetrization of the

many particle  state is encoded and it  is very elegantly done in the second quantized

formalism you will get more glimpse of it as we go along.

So, now let us then write down a wave function many particle wave function in the Forck

basis as this which is a product of and this is a n i factorial and there is a a i; n i acting on

a vacuum let us call this as equation 2. And if you remember that we have insisted of

having this  vacuum or that  F 0 that  we had written  which is  null  state or a  particle

without any particles as an important element in the family of the of the Forck basis.

And this is we actually create a many particle state by successively operating the creation

operator on the vacuum and so, this complicated permutation entanglement;  which is

there in equation 1; here by this summation over K and P 1 minus S g n k by 2; now that

is  encoded  here  and  how  would  it  be  encoded?  It  will  be  encoded  through  the

commutation  relation  of  these  operators.  And  that  is  why  this  formalism  of  second

quantization is so, helpful for dealing with many particle systems. So, so, this basically

tells you that there is an enfold application of this operator a dagger on the vacuum state

to build a many particle state.

Let us try to understand that how the symmetrization is built  in by the commutation

relation of this operators; let us take only two particles to begin with. So, we have two

particles and say they are located at a i or rather i and j and they are; so, we just write

them as a i dagger and a j dagger as the creation operator for these two particles. So, as if

they are acting on vacuum.

So, a i dagger and a j dagger acting on vacuum gives me that state which is what I want

to consider. Let us call it just a two particle state and let us look at the commutation

relation of these two particles. And needless to say here that i is not equal to j because for

Fermions it is anyway forbidden to have i equal to j you cannot have two particles being

formed at the same side or being created at the same side. 

So, let us define the commutation relations by this a i dagger, a j dagger minus P a j

dagger; a i dagger and equal to 0. So, what I have done is that; I have written them as i

and j and then in the next term; I have written with a minus i mean with a j and i in

addition to that we have a minus P.
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And so where P is  equal to where P equal  to  1 will  stand for denotes  commutation

relation and P equal to minus 1 denotes anti commutation relation.

Let us see clearly; what it means is that we have a i dagger a j dagger and I will write a P

sub script here which is equal to 0. So, the notation is that if I have two operators A and

B and written with a P as a sub with a square bracket and this is equal to A B minus PBA.

So, for commutators; this relation is P equal to 1 which is equal to A B minus B A and for

anti commutation.

So, this is the commutation relation of A and B and this is the anti commutation relation

for A and B. So, if this commutator is equal to 0 then we say that this two operators

commute. And when two operators commute it is usually correct that they have same set

of Eigen functions they have common Eigen functions. And if they do not commute then

that  does  not  hold  and  these  this  is  the  anti  commutation  relation  of  since  the  anti

commutation relation ok. And if we go back to our a i dagger a i dagger then that is equal

to 0 because the identical operators would commute.
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And so, if we summarize; here these relations for all i and j a i dagger; a j dagger equal to

P equal to 0. So, ah; so, similarly we have we can write this as. So, for both P equal to 1

and  P  equal  to  minus  1  and  just  like  the  similarly  if  we  want  to  write  it  for  the

annihilation operator; just like that a creation operator takes N component Forck state

from this to this F N to F N plus 1; we can also talk about annihilation operators on

which we will take my Forck state N to N minus 1. 

And  we  have  relationships  similar  relationships;  commutation  relationships  for  the

annihilation operators as well and they are written in a compact form by this relation

which is equal to this and a i; a j P equal to 0 and a i dagger a j dagger P equal to 0.

So, the enormous complex the complexity of the of the many particle  space and the

complexity that is related to symmetrization of the many particle wave function; is taken

care of in the Forck basis by choosing or rather from the commutation relations or the

anti commutation relationships of the operator. And this is a phenomenal improvement of

the situation as we can see in the next discussion.


