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Second quantization I

To summarize what we have learned so far, we have defined what is a propagator which

propagates a wave function from an initial time which could be at t equal to 0 or may be

from a finite time t equal to t 1 and it propagates to a different time which is at t 2 which

where t 2 is greater than t 1 and that is called as a propagator and we have also calculated

the  propagator  or  rather  have  related  the  propagator  to  the  Green’s  function  for  a

particular problem. Now, we have to learn, how to compute a propagator for a given

problem and we take the simplest possible example that is a free particle in continuum.

So, we are going to calculate the propagator or the Green’s function.

(Refer Slide Time: 01:25)

So, Green’s function or equivalently the propagator for a free particle is what we are

going to  compute.  So,  just  for  your  information  free  particle  means  that  the  energy

momentum relationship is given by equal to p square over 2 m it is equal to h cross

square k square over 2 m for a free non relativistic particle.

So, we are going to write the for this the basis function is a plane wave. So, it can be

expressed in plane wave states and hence if you remember the basis states that we have



written down earlier which now we can write it as A exponential i k x or which is equal

to in terms of the momentum explicitly. It is i p x by h cross and hence, we shall replace

this n index here by a u p of x where p is the momentum of the particle which is a well-

defined quantity and the quantum number corresponding to the momentum is a good

quantum number.

So,  if  we have these as  the basis  states  the basis  states  also obey this  orthogonality

relation and. So, this is equal to delta of p minus p prime and my if I if I write down the

in terms of the energy eigenstates then my u E x is equal to m over 2 E whole to the

power one fourth and one divided by 2 p pi h cross and exponential plus minus i root

over 2 m E by into x divided by h cross where if you note that this is the normalization

factor and this is well. So, this is the normalization and this is the plane wave part written

in the energy basis.

So, we will take this as the basis states and calculate the propagator or equivalently the

Green’s function.
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So, this will call it as equation one and now let us write down also the orthogonality

relation for the basis states as u E u E prime or rather u E and u E x prime and there is a d

x. So, this has to be erased. So, this is written as u E x u E prime x d x this is equal to

delta e minus e prime ok.



So, these are the orthogonality  relation  that  the basis  states  will  follow and then the

propagator or the Green’s function can be written as d E and a u E x u E. So, there is a

start over here and there is a exponential minus i e t by h cross and then we have if we

put the values that we have or rather the expressions that we have taken in equation one

then in this expression which is 2, then we get this as g x x prime t this is equal to a d E

and there is a m over 2 E whole to the power half there is a one by 2 pi h cross and there

is A exponential plus minus i root over 2 m E x minus x prime by h and exponential

minus i e t by h cross.

So, this is the Green’s function or the propagator for the free particle and we have solved

this integral and to solve the integral one can make a substitution as k equal to root over

2 m E by h cross and that gives me a d k that is equal to root over 2 m by h cross 1 by 2

root over e d E and following that I can write down the g x x prime t which is equal to a

1 over 2 pi d k exponential i k x minus x prime exponential minus i h cross k square p by

2 m and this is the form that I have and I have to evaluate this evaluate this integral and

this integral can be evaluated easily and one can write down g x x prime t.
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So, which is equal to m over 2 pi i h cross t and exponential minus m x minus x prime

square divided by 2 i h cross t. So, this is my equation 4 and this is the final form of the

propagator. So, as we have said that for a particular problem such as this a free particle in

a continuum, if we find this quantity this will take a wave function say from x equal to at



t equal to 0 to t equal to some finite t by the operation of this propagator provided that

my psi at x equal to 0 is known for all possible values of x.

So, just to repeat that is psi of x t is g of x x prime t and a psi of x prime 0 and we also

have an integral  over d x prime. So, for a given problem that  is  a free particle  in a

continuum g x x prime t denotes the propagator. So, g is the propagator and we also

know how to link it to the Green’s function and in particular we have learned for the

retarded Green’s function, but we can also write it for the advanced Green’s function in a

similar manner where we just need to write the advanced Green’s function as x x prime t

which is equal to g x x prime t and a theta of minus t. 

So, to remind you the theta function when minus t is greater than 0 then that is this theta

function is equal to one and if it is not satisfied otherwise the theta function will give us

0. So, this is the definition of the advanced Green’s function.
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So, to summarize we have so far, whatever  we have done is that we have defined a

propagator and from the propagator we have learned how to calculate Green’s function

and how this propagator or the Green’s function can talk about time evolution of wave

function of psi of x t in quantum mechanics and then we have solved it for a for an easy

problem  rather  easy  problem  here  that  is  on  the  free  particle  and  calculate  it  the

propagator for the free particle.
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So, the next thing that we have on the cards is to talk about second quantization and we

would first define what is second quantization and then what do we do with this. In fact,

we would write all the Hamiltonian in the second quantized formalism for us to attain to

a problem in solid state physics. So, the second quantization is formalism or a technique

which  is  different  than  the  first  quantization  which  is  we all  know as  the  quantum

mechanics. 

So, what happens in first quantization or rather, the conventional quantum mechanics ah?

So, in quantum mechanics we have observables which are represented by observables are

represented by operators and the state functions or the eigenstates states are represented

as by functions which have continuous functions say that of the space variable x or x y

and z or r theta and phi.

So, this is what we have learned in quantum mechanics recall your discussion that you

have for the either the hydrogen atom or the harmonic oscillator in either of the cases we

have written down a Hamiltonian in terms of operators which are the Laplacian operator

and operators that go as it depends on space such as either x square in one dimension for

the oscillator or it says one over r for the hydrogen atom and then when we solved a

second order differential  equation which goes by the name Schrodinger equation and

then we have got the energy eigenvalues for the harmonic oscillator problem the energy



eigenvalues came out as n plus half h cross omega where omega is equal to root over k

by m and in the hydrogen atom problem.

The energy eigenvalues came out as minus 13 point psi 6 by n square electron volt and in

both the cases n is the quantum number for the problem and n is quantized as either 0, 1,

2, etcetera for the harmonic oscillator and n equal to 1, 2, 3, etcetera for the hydrogen

atom problem and the Eigen states  that  were computed  from solving by solving the

Schrodinger equation they are simple functions of r which are in the case of hydrogen

atom they are known as polynomials in the name in the case of the harmonic oscillators

they are known as Hermite polynomials.

So, this is what we are talking about that the states are represented by functions now in

the second quantized formalism. So, second quantization we are going to represent the

observable  anyway  by  operators  which  were  done  in  quantum  mechanics  as  well;

however, the states are now going to be represented by are represented now by operators

as well operators and these operators are known as a creation and annihilation operator,

they  are  also  called  as  creation  and  destruction  operators,  but  this  destruction  and

annihilation they are used interchangeably we will also probably do that.

So,  the commutation  and the  anti-commutation  of  the  creation  and then  annihilation

operators will define the property of the wave function and in the case of fermions this is

an anti-symmetric wave function and whereas, in the case of bosons that is a symmetric

wave function.
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So, the commutation or the anti-commutation, rather, I will write and anti-commutation

relation  of  the  operators  and  what  we  mean  by  operators  of  the  creation  and  the

annihilation operators which you have seen in some form when you did the operator

methods in quantum mechanics and so, we extend that to many particle system you have

used it for the harmonic oscillator problem.

So,  these  are  these  operators  they  obey  certain  commutation  relations  or  anti

commutation relations which we are going to learn and these commutation or the anti-

commutation relations they fix the nature of the wave function of the behaviour of the

wave function; whether the wave function would be anti symmetric or symmetric with

respect to interchange of particles that is known as anti-symmetric or symmetric property

and these relations will actually decide that decide the symmetric as I said that is for

bosons and anti-symmetric which is for fermions nature of the wave functions basically

the typical state is made up from a vacuum where a state like this is made of from the

product of the single particle states and where.

So,  these  are  the  creation  operators  the creation  operators  are  always written  with a

dagger here and to the power m which is acting on vacuum. So, vacuum is a null state

which has no particle. So, a lambda successively operating on this m times will create

that many that is capital n number of particles. So, these are going to give me single

particle states and I am going to get a full wave function starting from a single particle



states  by  successively  multiplying  or  rather  operating  the  creation  operator  on  the

vacuum.

So, the vacuum is also written with a 0 and we can write it like this. So, that is my state

and as I said that in the second quantized notation the states are formed by the creation

operators or the annihilation operators the annihilation operators i have not written, but

one can define the property of the annihilation operator as one which is not written with

a dagger and which it acting on the vacuum gives me 0 which means that vacuum has no

particles.

So, there is no way that one can annihilate a particle from there now one important thing

is that that a m dagger and a m are Hermitian conjugate to each other Hermitian rather

Hermitian  adjoint  to each other  and they are distinct  operators and they are not self

adjoint.  So,  not  a  self  adjoint  and  they  are  distinct  operators.  So,  now,  with  this

background let us go back and compute or rather at least initially define the states for

both fermions and bosons and how they look like. So, we will the method of second

quantization is what we are going to discuss.
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Now, keep in mind that there are a lot of books which they do this method of second

quantization or write the Hamiltonian or any operator in the second quantized formalism.

So, you need to actually focus on any one book because the notations that are used from

one book to another very like which will be sometimes difficult for a reader to follow.



So, follow these notes along with a book that is going to be prescribed and then you will

learn this thing better.

So, what we are trying to say is that lets take a single particle Hamiltonian H where H

acting on a state lambda gives me a epsilon lambda and returns me the same state. So,

this lambda can in principle be any quantum number for that which is suitable for that

particular  problem  which  could  be  momentum  or  energy  and  so  on.  So,  we  are

uncommitted about that at this point and we write this as the eigenvalue equation now we

can write for the wave function say for 2 particles and they could be. So, 2 particles, we

want to generalize this equation and these 2 particles can be fermions or bosons.

So,  and then  one can  write  down psi  for  a  fermion at  two.  So,  these  are  say space

variables x 1 and x 2 which is equal to one by root 2 and I can I will use both 2 notations

which is x 1 lambda 1 and x 2 lambda 2. So, whatever that state lambda is. So, we are

writing it in terms of the space variable. So, it is a. So, this would represent a state in the

position space and this is equal to and there is a minus sign and there is an x 1 lambda 2

and there is a x 2 lambda one and that is the state and as I said that I will use another

notation for that.

So, we can also write this as this is equal to psi 1 x 1 psi 2 x 2 minus psi 1 x 2 and psi 2 x

1 possibly this is a more simple notation for you because we are writing down the wave

function psi is the quantum mechanical wave function and it is expressed in the position

space and so, x 1 and x 2 refer to the positions of the 2 particles or the 2 fermions that we

are talking about and there is a necessity and necessarily, there is a negative sign in

between because we have swapped particle number one and particle number 2 while

writing the second term as compared to the first term; however, this will not be there for

a boson.
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And one can write down the wave function for a boson equal to a 1 by root 2 and x 1

lambda 1 x 2 lambda 2 and there is a plus x 1 lambda 2 and the x 2 lambda 1 and this as

earlier can be written down as psi 1 x 1 psi 2 x 2 plus psi 1 x 2 psi 2 x 1.

So, we can write it with. So, either for fermions or bosons we can write it with a in a

more compact notation, we can write it with a psi 1 x 1 psi 2 x 2 plus p psi 1 x 2 psi 2 x 1

and this p equal to minus 1 for fermions and it is equal to plus 1 for bosons and in a

similar fashion we can write down a many particle wave function.

(Refer Slide Time: 27:39)



Let us now write it with a big psi which is nothing, but a lambda 1 lambda 2 and all the

way for n particles and that is equal to.

So, there is a normalization that is used here which is n factorial and there is a lambda

equal to 0 to infinity and n lambda factorial. So, this and there is a sum over k and there

is a P which is 1 minus I will write it in S g n k divided by 2 and this is equal to all these

single particle states lambda k 1 and product with lambda k 2 and product and all the

way up to lambda k n as I said that this there is a particular index or the quantum number

that is used here which are k 1 k 2 k n which can be either momentum or spin or position

or energy depending upon the suitability of the problem.

So, the question is what is this p to the power one minus s g n k? So, just to say that that

when we actually swap particles that is if we make transposition of particles that is move

particles from one place to another which are these things are being swept this lambda

one lambda 2 indices being swapped and in that case we have S g n k is equal to it is

equal to one or minus 1. So, the 1 is plus 1 is for even number of transpositions number

of transpositions and minus one is for odd number of transpositions.

So, it is clear that for sign of if it becomes plus 1, then I have p to the power 0 which

means it is equal to 1. So, if you trans or rather swap particles even number of times then

one does not pick up a sign for the fermionic wave function; while if it  is done odd

number of times, then one picks up a negative sign. However, this is only for fermion for

bosons it is always equal to 1.


