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Lecture – 19
London penetration depth, Type I and II superconductors

So, to continue with the discussion on superconductivity.
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I will repeat a few things for your convenience and so, the sudden drop of resistivity

below a certain temperature is called as a superconducting phenomena or this gives rise

to superconductivity and the temperature below which the resistance vanishes is called as

a critical temperature, which is a property of a particular material and so that T C the

superconducting  transition  temperature  is  usually  of  the  order  of  few Kelvin  for  the

conventional superconductors. 

Now,  this  we  had  discussed  yesterday  that  there  are  classes  of  unconventional

superconductors which are also known as high temperature superconductors and they are

not as extensive knowledge about them as they exist for the conventional ones.

However the T C is really vary from ah few Kelvin to about twenty 3 Kelvin for this is

for Nb 3 Ge and the features are one 0 electrical resistance or resistivity and no change in

crystal structure and this is verified by x ray diffraction both below T C and above T C



that is in the normal state and in the superconducting state and third is that it is the state

the superconducting state is characterized by a conductivity to be infinite B the current

density to be still finite c is that the electric field goes to 0 and B is that the magnetic

field is constant and this cannot be explained by classical electrodynamics because ohms

law says that j equal to sigma E for j to be finite j is the current density.

For j to be finite sigma has to go to sigma tends to infinity then E has to be equal to 0 0.

So, this is the third there is a c condition and also that curl of E curl of E equal to minus

del B del t that gives you B to be constant this is number d. So, these are some of the

features of the superconducting state.
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Let us now look at Meissner effect. So, the expulsion of the magnetic field from the bulk

of  the  superconducting  material  is  called  as  Meissner  effect.  So,  this  complete  and

sudden vanishing of the field or rather as the system goes into a superconducting state is

really something that is that distinguishes it from an ideal or a perfect metal, let us see

that.

So, Meissner and it is usually known as Meissner effect, but it is also said as Meissner

and Ocshenfeld in 1933 they discovered that there is a complete exclusion of the field

lines magnetic field lines. So, the way the experiment can be done is that one can take a

superconducting sample and then put a lot of iron filings around that sample and then

apply a magnetic field and along with that cool the temperature of the specimens.



So, that it enters into a superconducting state as it enters as it is in a superconducting

state then the magnetic fields will be pushed outside the sample and then the iron filings

would get lined up in a regular fashion outside the sample. So, let us think that this is

what the sample is like. So, the flux lines will go through this if it is t is greater than pc

and as t becomes. So, the iron filings are all scattered in around this superconducting

sample and now as t goes below T C, then these flux lines the magnetic field lines are

pushed out like this and because of that the iron filings will nicely aligned around the

superconducting sample.

So,  this  is  the  tabletop  experiment  for  seeing  Meissner  effect  and  it  is  seen  for

superconductors such as lead and team and so on. So, now in certain materials it is only

above a certain critical magnetic field which is of the order of a few or states there is no

expulsion of the magnetic flux. 

So, whence the superconducting super conductivity disappears the material reverse into

the normal resistive state and the magnetic field fully penetrates through it and so, there

are materials in which magnetic field can penetrate up to a certain extent beyond that if

you increase still the value of the strength of the magnetic field then it gets pushed out

and this is called as a type 2 superconductors which allow some magnetic for some range

of magnetic field for the magnetic field to penetrate inside the sample.
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Now, let us do a thought experiment of to show the difference between perfect conductor

and superconductor this has been told yesterday or rather in the last discussion through

slides I just wanted to make it a little more clear by drawing the diagram. So, this is a

typical superconductor and this is a perfect conductor and so, say the state a is that this is

a  superconducting  materials  and  this  is  cooled  below  T  C  and  then  it  becomes

superconducting and then magnetic  field is  applied and then there are you know the

expulsion of the magnetic field as we have said and then magnetic field is withdrawn

field  withdrawn superconductor  goes  back to  its  original  state  no memory and what

happens to a perfect conductor.

So, this is a perfect conductor and. So, there is an external it is in an external field. So, it

is  cooled  below T C the flux still  penetrates,  but it  is  resistance less in presence of

magnetic field now when field is withdrawn it goes into a state which is. So, this is

magnetic field turned off of and it has a memory. So, because the perfect conductor does

not have Meissner effect this is what happens.

So, if you compare. So, this is a, this is b, this is c, and this is d, and now we have this let

us call it as e, this is f and this is g. So, if you compare d and g, it is easy to see that a

perfect conductor depends on its history and Meissner effect does not happen in perfect

conductor and that is what distinguishes perfect conductors from superconductors. So,

the  total  exclusion  of  the  magnetic  field  from the  inside  of  the  superconductor  is  a

property which is called as diamagnetism and you can understand this as follows.
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So, we have B equal to mu 0 H external plus M H external is the externally applied

magnetic induction, we have not written in vector form, but they are vector equations.

So,  since B equal  to  0 inside a  superconductor  the induced M M exactly  cancels  H

external. So, susceptibility chi equal to M by H external becomes equal to minus 1 and

the as we have said earlier that nothing is more diamagnetic than a superconductor. 

In fact, in best of the diamagnetic metals have susceptibility which is extremely small of

the order of 10 to the power minus to 10 to the power of minus 5 to 10 to the power

minus 6. Now, let us a look at the electrodynamics on superconductors and particularly

we are going to talk about the penetration depth.

So, let us look at penetration depth and before we do any calculation let us say that ah.

So, we have claimed several times the magnetic field is totally expelled, but the fact is

that that it enters only up to a certain distance which is called as the penetration depth

now  consider  the  following  geometry  to  compute  the  distance  through  which  it  it

penetrates. So, this is the superconductor and one has applied an external magnetic field

here and lets call this direction B x and this direction B y ok. 

So, this is the geometry of the sample now the Maxwell’s equations can be written as

curl of B equal to mu 0 j s plus del d del t and curl of B these are the last 2 Maxwell’s

equation minus del v del t ok. So, this is the equation Maxwell’s equation that we all are

aware of this is classical electrodynamics we are simply doing classical electrodynamics



and on super conductors and trying to get some information on how much magnetic field

can penetrate inside a sample.

Before it gets completely ex expanded. So, there is a certain critical depth up to which

the magnetic field can penetrate and this by no means contradicts the statement that we

have  made  earlier  that  in  superconductor  the  classical  electrodynamics  laws  are  not

strictly valid. We are simply trying to get some information out on a quantity called as

penetration  depth  and  to  tell  you  a  priori  the  reason  is  that  that  this  is  one  of  the

important  length  scales  of the problem and this  length  scale  along with another  one

called as the coherence length determines the material to be of type one or of type 2. So,

what happens is that since the displacement current.
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So, let me go through it again curl of B is the curl of the magnetic field this is mu 0 is the

permeability  J  s  is  the  super  current  density  and del  D del  t  is  the  variation  of  the

displacement current density or displacement current and this is that E and B are the

electric and the magnetic fields respectively.

Now, the displacement current variation or displacement current rather this is a, which is

the time derivative of the displacement vector. So, the displacement current is far smaller

than the super current. So, in this term you can neglect this one. So, neglect this and

write the Maxwell’s equations as a curl of B equal to mu 0 J s and J s is nothing, but it is



equal to ns E v s which is the super current density is the density of the super electrons

multiplied by the electronic charge.

And the velocity  of these super electrons  and the equation of motion of these super

electrons  can be written as in an electric  field to be mv s dot which is  nothing, but

Newton’s law mv s dot equal to charge times the electric field in an external electric field

that we are talking about. So, if we call this as one this as a 2 and this as 3 and call these

equations may be as A and B. So, what happens is that if you put 3 or rather if we have if

we take differentiate 2 with respect to time. So, J s dot equal to ns e v s dot and I can

replace v s dot from this equation 3 so, n s E square E over m from 3.

So, that is the equation for j s dot. So, this is equal to dj s dt this is how the super current

varies with time now if I put 4 let us call this as 4 if I put 4 in B putting 4 in B, I will

have del v del t which is equal to minus m by n s e square, curl of del j s del t and this is

nothing, but now I will use 4 to replace dj s dt as this is equal to minus m over ns E

square mu 0 curl of curl of del v del t.
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So, that is curl and curl off for this and hence what we have is that the dB dt. Now, I can

write it as a complete differential is equal to minus alpha times curl of curl of dB dt. So,

this is the equation for dB dt and alpha is given by m divided by mu naught ns E square

that is what this is defined as alpha. So, now, this is written as the right hand side is

written as curl of curl of dB dt.



So, this is a gradient and divergence of dB dt and minus del square dB dt now this term is

equal to 0 because one can swap the order of space and time derivative and can write this

as ddt of divergence of B which one knows by the second Maxwell’s equation that this is

equal to zero. So, this term becomes equal to 0 and hence my curl of curl of B or dB dt

rather it is nothing, but equal to minus del square times dv dt. So, if you put this into the

equation number let us call it as 5 putting 6 in 5 dB dt is equal to alpha and this and dB

dt. So, doing a time integral this can be written as B equal to alpha del square B.

So, this is the equation that gives the space variation of B and now since the variation

according to this diagram the variation can be in the x direction. So, let us convert this 3

dimensional equation here by to one dimension because we can safely assume that del B

del y and del v del z to be equal to 0 and hence we can write it down as a being equation

7.
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We can write it down as ah B x equal to alpha and d 2 d x 2 B x this is really ah partial

differential if you like it is like del del and so on and this has a simple solution which is

equal to B external well this is like let us not write be external. Now we can write it as

the  solution  of  this  can  be  written  as  A exponential  minus  x  over  lambda  l  plus  B

exponential x over lambda l where lambda l is nothing, but. 

So, alpha is lambda l square and one can easily see that that these because as x goes to 0.

So, this superconductor is say from 0 to some d that is the width of the superconductor in



that case at x equal to 0 B is equal to B external and so on. So, this can be written as B of

x equal to B external x minus lambda l plus B exponential lambda l and of course, this

will blow up as x becomes large. So, we can simply. So, this is again sorry B external.

So, we can only talk about this term and this term says that the B which is inside which

exists inside the super conducting sample falls off as exponential minus x over lambda l.

So, at x equal to lambda l B x equal to B external divided by E so, which becomes equal

to E minus 1. So, this is called as lambda l is called as the penetration depth lambda l is

of the order of about 500 angstrom in ordinary or conventional superconductors all right.

So, we will come back to this discussion when we talk about the other energy scale for

the superconductors namely the coherence length and distinguish between the type 1 and

2 superconductors; meanwhile let us do the thermodynamics.
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So far,  we have  been doing electrodynamics  now let  us  do  thermodynamics  of.  So,

thermodynamic route is usually the simplest route to study phase transitions and so, let

us consider Gibbs free energy of a superconductive.

So, if the magnetization is m and the magnetic induction is H then the work done in

bringing the superconductor into a region where the magnetic induction H external from

with the magnetic induction is H external; that exists from a region which is far away

where the H external is equal to 0 is given by the work done expression which I am

going to write let me write this because these are important points. So, the magnetization



is M M and magnetic induction is H the work done in bringing a superconductor from

infinity where H external equal to 0 to a region where H equal to H external exists is

given by w equal to minus mu 0 0 to H external md H which is equal to mu 0 H external

square over 2.

So, that is the work done in order to bring it from infinity to a place where H external

magnetic  field or magnetic  induction exists.  So,  we have m equal  to minus H for a

superconductor. So, let us write down the Gibbs free energy ah. So, Gibbs free energy

per  unit  volume is  given by g let  us write  it  with a g small  g.  So,  g s s  stands for

superconductor in T and at a temperature T and a magnetic induction external which is

equal to g s T 0 and then plus this extra energy that it acquires because of because of the

H external which is what we have shown here.

So, or g s the same statement if you want to put it in terms of the magnetic field it is just

there will  be a this  B external square divided by 2 mu 0 because of the relationship

between H so, your B external equal to mu H mu 0 H external. 
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So, in the normal state the magnetization is very small thus the magnetic work done is

also vanishingly small.

Hence g n th external equal to g n t 0. So, in the superconducting state g s t and at a given

magnetic field or magnetic induction there is a extra term B external square by 2 mu 0 or



mu 0 H external square by two; however, in the normal state the magnetization is known

to be very small and we do not have this magnetic energy contribution as it is seen here.

So,  now, this  tells  that  equation  one  tells  you that  there  is  a  B dependence  for  g  s

whereas, there is no B dependence for or B or H dependence for g n. So, g n t H external

it  increases  quadratically  with  H  external.  So,  it  increases  quadratically  we  take  H

external.  So,  for  some  H  external  equivalently  B  external  the  normal  and  the

superconducting states have same energy have same Gibbs free energy.

So, what it says is that if you plot the Gibbs free energy. So, this is Gibbs free energy as a

function of either B external or H external does not matter they just get scaled by this

and. So, for the superconducting state it is like this and for the normal state it is like this.

So, this crossing point is called as H C or bc depending on which language you want to

use ah. So, below H C this is of superconductor SC and this is normal. 

So, the sc state the superconducting state has lower energy for all  values of external

fields or induction below H C or bc and as the external field crosses this H C, then the

superconducting state has higher energy and the normal state has lower energy as you

can see it is here.

So, then beyond that the normal state stabilizes. So, what one can look at is that we can

call this as equation one or rather and this as equation 2 and if we equate one and 2 at H

equal to H C.
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H external equal to HC, then g n t 0 minus g s t 0 equal to H C square over 2 mu 0 ah.

So,  this  is  positive  and  because  this  is  positive  and  because  this  is  positive  the

superconducting state is more stable than the normal state below H equal to H C. So, let

us give an example for lead at t equal to 0 H C equal to 0.08 Tesla, thus at t equal to 0 the

superconducting state is stabilized by 4.25 into 10 to the power minus 25 joule per mole

and this is really a small energy. So, it is quite amazing that such a small energy actually

stabilizes a superconducting state, but that is true of the order of 10 to the power minus

25 joule per mole, let us now talk about the critical.
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Fields which is what we are just introduced and the variation of the critical fields with

temperature is given by we give this without truth is H C of t it is equal to H 0 will tell

you what H 0 is it is 1 t 1 minus T by T C whole square where H 0 equal to H external at

T equal to 0.

So, this is the external lea applied magnetic induction at T equal to 0. So, that is H zero.

So, it is clear that at t equal to T C this term vanishes. So, H C of t goes to 0. So, there

are many things that are important in this particular context and we have talked about

electrodynamics  and we have talked about  thermodynamics  and we found that  some

important information is encoded in both of them, now let us talk about. 

So,  another  interesting  comment  from  Pippard  which  is  encoded  in  Pippards  local

electrodynamics or rather non-local electrodynamics and let us see what it says if you



look at this equation j s equal to ns e v s this is what we have written this looks like that J

s at r is related to v s at r.

So, it is a local equation. So, J s at r is simply determined by the v s of at that point r

what Pippard say that the current density at a point r depends on. So, J s at r it depends

on E the electric field at r prime. So, which is centered around r in a radius say l ok. So,

at a given point r the electric field the current density at this point will depend upon

electric field in the region which is spread all over r prime where r prime is centered

around r with a radius which is l. 

So, every point inside this circle is r prime and all of that those r primes will contribute to

the  current  density  at  r. So,  this  is  the  non-locality  which  Pippard  thought  i  s  more

relevant and realistic and this can be you know thought of to be a spread over a region of

radius l and. So, this l is actually related to the characteristic dimension of the electron

wave function and so, this l is related or rather let us write it.

The wave function of electrons should also have similar characteristic dimension that is

extent which is called as let us call that at psi which is called as a coherence length. So,

electrons within an energy range K T C where T C is the transition temperature play a

major role in pairing. So, this is pairing of electrons.
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So, the moment of these electrons have an uncertainty of the order of delta p which is

equal to delta E by H this is v f which is nothing, but K T C over v f thus the position

uncertainty.  So,  we  are  just  using  a  Heisenberg’s  uncertainty  relation  the  position

uncertainty is a delta x is equal to H cross by delta p H cross v f by K T C thus psi equal

to a H cross v f by K T C.

Where a is a number which is of the order of 1 and a equal to 0.8 in BCS theory. So, this

introduces and others in length scale for the problem which is known as the coherence

length. So, a coherence length is the second length scale in addition to the penetration

depth that we have introduced earlier. So, Pippard suggested that. So, basically that j s at

R should be written as an integral rather than writing it as n s into E into v s.

So, this is equal to some constant which is not so, important. So, this is R; R dot a R

prime this is that R prime that we were talking about an R and this is the R by psi d R

prime. So, this is how the non-locality in the super current density comes that the super

current  density  at  a  given position  R depends  on the  electric  field  in  this  particular

fashion that there is a region which is centered around R prime that every point in that

region contributes to the electric field and ah characteristic length scale comes out of it

and we have introduced this earlier.

Now, we can talk about dimensionless introduce a dimensionless parameter kappa which

is equal to lambda by psi and these are. So, for typical superconductors lambda equal to

500 angstrom as we have already said psi equal to about 5000 angstrom.
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So, kappa is typically less than 1, but; however, in 1957 Abrikosov found that for some

class  of  superconductors  this  kappa  can  be  greater  than  1  and  this  is  used  as  a

distinguishing feature of type 1 and type 2 superconductors. So, to remind you in type 2

superconductors  the  flux  lines  penetrate  the  sample  till  some threshold  value  of  the

magnetic field and if we increase it beyond a certain threshold then superconductivity

disappears.

So, a threshold value of value of kappa for which such flux penetration occurs or starts to

occur is kappa its say that value of kappa is called kappa c which is equal to 1 over root

2. So, I mean this is in terms of that so, ok. So, this says that at this value of at this value

of kappa the flux penetration starting at  a lower critical  field H C one H C one and

reaching an upper critical field.
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So, the scanning tunneling microscope data STM data confirms penetration of magnetic

flux which are called as vortices and these vortices actually line up in the form of a

hexagonal lattice in a regular lattice in the form of an hexagonal lattice and they arrange

in hexagonal lattices and which are called as called as Abrikosov lattice. 

So,  we  have  studied  mainly  the  electrodynamics  and  thermodynamics  of

superconductors.  So far,  and have  gotten  quite  a  few information  useful  information

about  superconductors  and  the  next  thing  would  be  doing  BCS  theory  which  is  a

microscopic theory of superconductors.


