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Lecture – 17
Dyson's equation and disorder in electronic systems

So, let us do the Dyson’s equation for the Matsubara greens functions.
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So, this is in line with what we have done for the 0 temperature greens function. So, from

the discussion so, far  it is evident  that the Matsubara greens function formerly looks

similar to that 0 temperature greens functions.

Excepting that, now we are talking about a complex time being bounded by minus beta 2

plus beta, and the information about the temperature enters through the quantization of

the frequencies. And in case of fermions the frequencies are quantized in odd multiples

of pi over beta and for the bosons they are quantized in terms of even multiples of pi

over beta.

So, we need to now write down a Dyson’s equation in which we want to avoid doing a

finite order perturbation theory and want to invoke all orders of H prime into the sum

and we have seen that this is quite a doable exercise.



So, consider the greens function G k the keys are vectors, but since we have not been

putting. So, let us just remove this and t tau is what we have seen it is a minus beta

omega and then there is a tress exponential minus beta k the tau an exponential tau k see

k sigma exponential minus tau k C sigma dagger and that is that is the expression for the

Matsubara greens function H to remind you that we are writing it with a calligraphic G

omega is the grand potential.

And K is given by K is given by H minus mu N and exponential minus beta omega is

equal to trace of exponential minus beta K. So, this is something that we have seen and K

equal to H 0 minus mu N plus V, where V is the potential which typically represents a 2

body interaction term say it can represent an electron electron interaction of the coulomb,

type which is what we have been most familiar with. So, now, so, the K 0 problem that is

this part has already been solved. So, this is the K 0.

So, suppose we have been able to solve this exactly that is without the interaction term it

is been solved exactly. And also that our these H 0 commutes with the number operator

and so, does the total H which includes H naught plus V with the number operator that

commutes.  And  so,  the  eigenstates  of  eigenstates  of  the  number  operator  are

simultaneous eigenstates of both H 0 and H. So, let us write down the operators in the

interaction representation.
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And write those unitary operators which we have introduced earlier, but with real time as

exponential tau K 0 and exponential tau K if you remember that we have written down

similar operators with I T and with H 0 and so, this is not H, but I will write it as k. We

had written it earlier for the 0 temperature problem with tau as I T and k 0’s as H 0 and k

as H and so on.

Similarly we would have a u inverse tau which is equal to exponential tau K exponential

tau K 0 needless to say that K and K 0 do not commute, I mean rather there is a part of K

0 which does not commute there is a part of K which does not come out with K 0.

So, as we have written it earlier the operators can be written as C k sigma tau which is

equal to exponential tau k 0 epsilon k sigma exponential minus tau k 0, which is equal to

exponential  xi  k  tau  and the  C k sigma this  has  been proved earlier  that  is  the  tau

evolution of the or the imaginary time evolution of the operators.

And hence we can put them into the this G k tau which is equal to exponential minus

beta omega. And then a trace of exponential minus beta k 0 we have just introduced,

exponential beta k 0 exponential minus beta k. So, we have introduced this exponential

minus beta 0 and exponential plus beta 0. And then exponential tau k exponential minus

tau k 0 and again we have exponential tau k 0 C k sigma exponential minus tau k 0

exponential tau k 0 exponential minus tau k and C k sigma dagger that is our greens

function.

And this can be written as this can be written as we have a minus stress of exponential

minus beta  k 0 u of  beta,  see the  definition  of u here it  is  exponential  tau k 0 and

exponential  minus tau k. So, that is written here as u of beta.  So, the whole idea of

writing it into this then this particular form is to introduce this u operators and then you

have a u inverse tau and C k sigma tau and a u tau and C case sigma dagger and this is

divided by trace of exponential minus beta k 0 u of beta.

Ah just show in a moment that how this thing comes.
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So, we have u exponential minus beta omega that can be written as trace of exponential

minus beta k and now I will introduce this factor of exponential beta k 0 and exponential

minus beta k 0. So, this is stress of exponential minus beta k 0 and exponential beta k 0

exponential minus beta k and this is equal to trace of trace of exponential minus beta k 0

u of beta.

So,  a  similar  substitution  can  also  be  has  also  been  made  in  the  numerator  for  the

exponential minus beta k and that is how this exponential minus beta omega is replaced

by trace of exponential minus beta k 0 u of beta in the denominator. So, the equation of

motion, which in short will call as EOM can be for u of eta can be written as del del tau u

of  tau  will  have  2  there  are  2  factors  in  u  consisting  of  exponential  tau  k  0  and

exponential minus tau k.

So, one has to be kept constant the other will be differentiated and vice versa will have to

be done and in which case we can write this as exponential tau k 0 with a k 0 minus k

exponential minus tau k and we know k 0 minus k is nothing, but it is equal to minus of

H prime and this is equal to minus of exponential tau k 0 H prime exponential tau k. So,

del del del del tau of u tau which is the precisely the equation of motion can be written as

exponential tau k 0 H prime exponential tau k 0, exponential tau k 0 and exponential tau

k.



So, this part has been introduced and such that we can write this as a minus H prime T

sorry not T, but this will be tau this tau and u of tau. So, so we have seen this kind of an

equation,  we can  write  down the equation  of  this  differential  or  the solution  of  this

differential equation as t tau exponential minus 0 to tau H prime tau d tau prime.

So, this  is  the solution of the unitary operator that we have introduced and all  these

discussions are simply complementary to the 2 the ones that we have done for T equal to

0.

So, this is the solution for u of tau.
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Similarly we can write it for the S matrix S tau 1 tau 2 equal to T tau exponential minus

tau 1, tau 2 d tau prime H prime tau prime. So, that is the definition of S matrix other

properties of S matrix that includes that S tau 2 tau 1 can be written in terms of the U

operators like u inverse tau 1.

And also the tau 3 tau 2 and multiplied by tau 2 tau 1 will combine to give tau 3 tau 1 all

these properties we have seen for the S matrix. So, with all these inputs we can write

down the greens function as k tau this is equal to minus trace of exponential minus beta k

0 T tau S beta tau C k sigma tau S tau C k sigma dagger tau and sorry this will be 0.

And, that the denominator comprising of exponential minus beta k 0 S of beta and so on.

So, at the end what is going to happen is that the disconnected diagrams as we have seen



are going to cancel with the denominator and will be left with only the numerator and in

which case the G k tau is equal to a minus n equal to 0 to infinity minus one whole to the

power n 0 to beta d tau one and so on 0 to beta d tau n and we have a T tau C k sigma tau

H prime tau 1.

And all the way till H prime n C k sigma dagger 0. So, that angular bracket is closing.

So, this is the expression for the full greens function including all the all orders of the

interaction term H prime. As we told that the H prime could be of the coulomb type or

for  that  matter  any  other  type  and  we  are  uncommitted  about  the  nature  of  the

interaction, but if there is an interaction electron electron interaction in the system the

full greens function Matsubara greens function will be like this where as u n equal to 0

will be the 0th order 0 and 1 will be till the first order and so on. So, we can take do a

perturbation  theory in  terms of  H prime and can  write  down a greens  function  to  a

particular order that is desirable to us.

Now, the question is that if for a given problem doing a perturbation theory up to a given

order  is  not  a  satisfactory  treatment  of  the  problem.  It  could  happen  that  there  are

suppose one takes care up to second order of H prime, and then it turns out that the H

third order is equally important as the second order and the fourth order could be as

important or at least halfway as important as the third order and so on.

In which case we have to go to higher orders and in principle we have to include all

orders of H prime and write down a like equation and this is what we are planning to do

here.

So, just to say that in this particular things only the connected diagrams survive all right.
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So, now using the Fourier transform G k i omega n this is equal to 0 to beta d tau and

exponential i omega n tau and G k tau. So, will use this Fourier transform and of course,

knowing fully well that my omega n is 2 n plus 1 pi over beta. So, that is the how the

frequencies are quantized in odd multiples of pi over beta.

So, we write down Dyson’s equation as G k i omega n this is now we do a Fourier

transform of this and then this is written as G 0 k i omega n divided by 1 minus G 0 k i

omega n and the sigma k i omega n. So, it is exactly a similar expression we have seen

which we have derived for the 0 temperature greens function.

Sigma being the self-energy and for a particular case we have also seen how to compute

the self-energy all these rules of writing down the diagrams or rather you know sketching

down the  diagrams and  getting  out  information  about  the  scattering  process  follows

exactly in the same manner that we have seen. So, the rules just to give you once again

the  rules  is  that  with  each  electron  line  attached  G  0  the  interaction  interaction  is

represented by a wiggly line.

Conserve  momentum  and  frequency  at  each  vertex  and  also  do  not  forget  that  the

fermion frequencies are odd multiples of pi by beta whereas, the for boson frequencies

are even multiples of pi by beta or we can write it as i pi by beta.

So, having done this formally let us try to do 1 example with the Matsubara function and

see that how it enriches our understanding of problems in condensed matter physics? In

principle disorder or defects is indispensable in condensed matter systems. So, these are



necessarily present and even if 1 tries to make an ultra-clean sample these are always

there  and they  constantly  affect  the experimental  results  depending on the  degree  at

which they are present. Sometimes they are necessary like in quantum hall effect they are

absolutely necessary to have the hall plateaus to be quantized either in integer or in some

chosen rational fraction of the quantity e square over H.

And sometimes they are non-desirable altogether in any case will do an example of this

kind, but before that let us do the equation of motion of the Matsubara greens function.
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 all right. So, we can we can take this k k prime and tau we can we can keep 1 index for

the momentum or we can keep 2 indices it does not matter, let us just for generality let us

take 2 indices and these are T tau C k tau just dropping the spin index for the moment 1

can put it back and a C k dagger 0 C k prime dagger 0 and the angular bracket closes

here. Now differentiating with respect to tau we have so, d d T equal to a minus d d T of.

Now, this time ordering as we know that can be easily replaced by the theta function. So,

will do that theta of tau C k tau C k prime daggers 0 and minus theta of tau, we have

been writing it as capital theta let us write it a little neatly here and of minus tau and we

have a C k prime dagger 0 C k tau this thing closes and the bracket closes is well. So,

this is this is these are the 2 terms.



Now, to remind you that the derivative.  So, this is not d d T this is d d tau and the

derivative of a theta function is a delta function. So, we have a minus delta tau delta k k

prime, now that comes because delta tau gives me tau equal to 0 in which they become

equal time greens function.

So, they will have to have delta k k prime otherwise this angular bracket will become

equal to 0 this is all what we have learnt, when we were dealing with fermion operators

minus theta of tau and these are I am writing down for the time derivative to be in terms

of the equation of motion of each of the operators, which are H this C k tau C k tau and a

C k prime dagger 0 this and then there will be a term which is minus theta of minus tau

and this we have a C k prime dagger 0 and H C k tau and so on.

So, we have used d C k tau d T to be the equation of motion for which is H C k tau where

H is the total Hamiltonian for the system including the there is H 0 and v.

We have not taken for no particular reason though we have not taken the k here, but we

could you could just write down k instead of H without any difficulty. So, minus i so,

there are 2 minus signs. So, we will absorb that and write down the left the left hand side

with a minus sign. So, this is k k prime tau it is equal to delta tau delta k k prime plus a T

tau H C k tau C k prime dagger 0 0 and this with another bracket closing here let me just

do it.

So,  the important  thing is  that  if  H or k for that  matter  contains  interaction term as

coulomb term ok, which is a 4 operator term or a 2 body term and then this side that is

this one will involve. So, H contains a 4 operator term and we are taking commutation

with C k. So, this will involve higher order greens functions such as 2 particle greens

function. So, when you try to write down the equation of motion for 2 particle greens

function here, it goes and demands that knowledge of a larger particle greens function

that is a 3 part of the greens function etcetera that should be available.

And then a 3 particle the equation of motion for a 3 part of the greens function would

require even higher particle greens function. However, there is a way to terminate that

series we are not going to discuss that here, for our case it is sufficient to talk about that

let us suppose.
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H  is  only  quadratic  having  a  form.  So,  we  are  not  talking  about  interaction  terms

immediately let us just start with the free particle once. So, it is quadratic in electron

operators and it has a form which is H equal to sum over k k prime and H 0 k k prime C

k prime dagger C k C k.

So, this gives that the H acting on C k tau gives me that minus k prime H 0 k k prime and

a C k prime tau, that is the that is what is given by the commutation of H with C k tau

which you can chec k easily let us do that here. So, H C k tau minus C k tau h so, this is

the meaning of H and C k tau.

So, this is equal to secret tau H and this is equal to this is equal to C k dagger C k C k

and a C k C k dagger C k that kind of a term and of course, this is equal to 0, because

there are 2 annihilation operators while 1 can write this down change the order and write

it as 1 minus C k dagger C k C k C k. So, C k will multiply with 1 and give me a C k and

again seek a dagger C k C k will give me 0 and this will give me a simple C k and that is

what is written there. So, the equation of motion yields.

So, will  write  it  as u M as a as an abbreviation for the equation of motion.  So, the

equation of motion is d d tau of G k k prime tau, which is equal to delta tau delta k k

prime plus sum over k double prime H 0 k k prime G k prime k double prime k prime

and tau. So, that is the form of the greens function of the equation of motion of the

greens function, the first term contains just the delta function which is operative at tau



equal to 0 and it is a diagonal terms that if k becomes equal to does not become equal to

k prime, then that term cancels out and the other 1 is the off diagonal term.

Now, let us imagine that H 0 k k prime contains diagonal part which is epsilon k delta k

k prime and plus an off diagonal part, which is given by v k k prime which means this is

the diagonal term and this is the off diagonal term. Why we are doing this we want to see

the  disorder  effects,  which  would  be  included  through  the  second  term which  is  of

diagonal and the kinetic energy is actually the diagonal term.

(Refer Slide Time: 35:10)

Now, the equation of motion is written as minus d d T or rather tau minus xi k and k k

prime tau, this is equal to delta tau delta k k prime and plus v k k double prime and G k

prime k tau. So, that is the equation of motion for the Hamiltonian to have a diagonal

term as well  as an off diagonal  term as I  told the diagonal  term corresponds to  say

operators such as kinetic energy whereas, the off diagonal terms can denote quantities

such a disorder or defects in the problem.

So, this is my equation of motion now this differential equation can be converted into an

algebraic equation into an algebraic equation by using Fourier transforms and what do I

mean by that that is so, I have G k k prime tau it is equal to 1 over beta sum over omega

n exponential minus omega n tau and a G k k prime i omega n.



So, this is the the Fourier transform that we have and the inverse Fourier transform is k k

prime i omega n equal to 0 to beta d tau exponential i omega n tau G k k prime tau.

So, you see the G k k prime tau is has a Fourier transform in terms of the G k k prime i

omega n omega n 2 pi n i pi over beta. So, now, what we can do is that we multiply both

sides multiply both sides by exponential i omega m tau and integrate tau, from 0 to beta

which yields i omega m minus xi k or it could be here as we have not introduced the mu

explicitly we can write it as epsilon k, G k k prime i omega m equal to delta k k primed

as the first term. And there is a second term which consists of the off diagonal terms

which is v k double prime k and G k double prime k prime i omega m.

So, that is what comes when you multiply it by exponential i omega m tau and integrate

from 0 to beta and then we have used here.
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G 0, rather we have used 1 over beta 0 to beta d tau exponential i p m minus p n tau

equal to delta m n and exponential beta d tau exponential i p m tau delta tau which is

equal to 1.

Now, we know that G 0 k i p m which is here we are writing it as omega m equal to i

omega m minus xi k. So, then the full greens function is written as G k k prime i omega

m equal to G 0 k i omega m delta k k prime plus G 0 k i omega i omega m.



Ah And there is a sum over k double prime and there is there is a v k k double prime and

there is a G k double prime k 1 i omega m there is a sum over. So, there is a k double

prime and the k i prime. So, this is the form of the greens function when we have the

Hamiltonian contains a term which is diagonal in k and there is also an off diagonal

terms in k.

Though we are saying k we really mean any quantum numbers which is suitable for the

which forms suitable basis for the problem will have. So, there could be a lambda and

lambda prime in principle, which would the calculation would go through exactly. Now

you see that both the sides depend on i omega m since both sides depend on a single

variable  at.  So,  at  that  at  a particular  value of the variable  they will  all  i  mean this

equation will be valid.

So, that tells that I can actually drop i omega m it is not required to keep it. So, in both

the sides and we can write down this as an infinite series. So, drop i omega m and write

down G k k prime equal to G 0 k delta k k prime plus G 0 k v k k prime k k double prime

G 0 k prime k i omega m.

So, that is the greens function that we write.
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we can propose a solution of the type in terms of an infinite series and which is of the

form that G k k prime equal to sum over n equal to 0 to infinity G n k k prime.



And so, if all the off diagonal elements vanish so, this is the first approximation if all the

off diagonal elements vanish. Then we have the G k k prime equal to G 0 k delta k k

prime. So, when we have no of diagonal elements only diagonal elements the solution of

the greens function is purely the unperturbed greens function so the solution.

So, now if we insert this solution that we have written here into the equation that is here.

So, if we insert 1 into another, then we can iterate the solution and take out the zeroeth

order because we have already written the zeroeth order. So, H a G a G n k k prime equal

to a G 0 so, this is the full solution I am writing it down it is k and then there is a k

double prime v k k prime G n minus 1 k prime k k double prime k prime and this is for n

greater than equal to 1.

So, n equal to 0 is taken out. So, if we iterate this then what we get is the following. So,

the first order k k prime equal to G 0 and k and a v k k prime G 0 k prime. And a G 2 k k

prime equal to a sum over k 1 G 0 k v k k 1 v is the the term that we have taken as the off

diagonal term here.

So, v k k 1 there is a G 0 k 1 v k 1 k prime G 0 k prime and so on. There will be G 2 and

G 3 and so on. 
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So, for a general n, one can write G n k k prime equal to k 1 k 2 and all that excepting the

k will reserve. So, these are all will be summed over and there is a G 0 k then there is a v



k k 1 G 0 k 1 and going all the way up to all these G zeroes k n minus 1 v k n minus 1

and k prime and now you have a G 0 k prime.

So, at the order we are simply able to write this as n non interacting greens function. So,

that which are solvable or which can be found out or we have already found them out

which is like i omega m minus i k so, all these things. So, depends on which order 1 once

one can find out this greens function till the order, if you want it till the first order or the

second order you simply need to plug in this v k k 1 or v k k 2, whichever the diagonal

terms are and these are the non-interacting greens function which we have already have

learned how to write them.

So, this is the pretty much the solution for this problem in which we are simply talking

about still not talking about the interaction term, but talking about the Hamiltonian being

quadratic in terms of the operators, what are these calculations good for let us apply them

to a disorder potential.

So, what it means is that at every lattice site there is a potential which could be randomly

varying from 1 lattice site to another lattice site. So, and which are which could be purely

random or which could be correlated, but this denotes an extra bit of potential at each

lattice site and this could be written as a v of R, which is equal to sum over j 1 to n U R

minus R j. So, what we did is that we have taken u to be the potential and there are j of j

such disorder sites where the potentials are present. So, which are given by all these are

R u R minus R j and then when we sum over all  these n sites which have all  these

disorder potentials we get the total disorder potential which is given by v of R.

So, v of R is the is the total impurity potential impurity or disorder whatever you want to

call  it  since we are talking about discrete lattice sites. So, it is a impurity is a more

appropriate word in this context from n static impurities distributed over G. So, clearly V

is not diagonal in the k basis ok. 
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And how do we know that we can write down V which is equal to a k k prime a k prime

v of r k and this would give me a C k dagger C k prime dagger C k. So, this is the kind of

potential that we were talking about in our previous discussion when we spoke about off

diagonal term in the Hamiltonian it is still non interacting, but there is an off diagonal

term in the Hamiltonian which is something similar to that.

So, what is this matrix element this matrix element is given by k prime v of r k now there

will be when you convert this expectation into integrations will have. So, 1 over volume

will have to normalize it with the volume and there are n such impurities and we are say

talking about 3 dimensions.

In principle we can talk about d dimensions here. So, it is a d cube r and an exponential i

k prime minus k now will have to all put the vectors there because it is a product there

so, U r minus R j and. So, let us assume that this is equal to a dummy r prime. So, if r

equal r minus R j is equal to r prime r becomes equal to r prime plus R j and then this

becomes equal to 1 by volume sum over j from 1 to n d cube r prime and exponential i k

prime minus k r.

You just removing the vector signs knowing fully well that let us put this just to have

completeness and U of U of r prime and an exponential exponential minus i k prime

minus k dot R j where R j are the impurity sites. This is of course, you see that this is

independent of j, which means the impurity sites and we can simply write this as you k

prime minus k rho k prime minus k where U of k is equal to 1 over volume and d cube r



1 minus i k dot r u of r. So, this is the Fourier transform of these impurity potential and

rho of k, which is simply equal to a sum over j equal to 1 to n exponential minus i k dot

R j which gives the concentration or the density of the impurity.

So, it is clear that.

 (Refer Slide Time: 56:08)

That in this problem in this problem we have a v k k prime equal to u k minus k prime

minus k rho k prime minus k, which is the off diagonal contribution. And in which case

we have G k k prime which can be written as n equal to 0 to infinity just like what we

have done before and k k prime that is a solution, and where G n k k prime that is the

order can be written as sum over k 1 and a G 0 u k minus k 1 rho k minus k 1 G 0 k 1 and

all that other terms with k 2 for the second order and for the third order and so on.

So, one can iterate the solution , but in the first order this is the contribution coming from

the off diagonal term which comes specifically from disorder. So, we have been able to

write down a greens function or Matsubara Greens function function for the impurity

problem ok.

So, this is one of the examples that we wanted to do for with the Matsubara greens

function rest of the calculations as we have said exactly follows that of the T equal to 0,

now the only difference being that there we have dealt with temperature and frequencies.

Now here we would deal with complex time and complex rather frequencies, which are



having  complex  values  and  the  temperature  information  actually  enters  through  the

frequency terms.


