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Lecture – 16
Finite temperature Green's function and Matsubara frequencies

We shall  now talk  about  Finite  temperatures  because  the  experiments  for  condensed

matter  systems are  always done at  finite  temperature.  And an  important  goal  of  the

physics that we are doing is to explain experiments or experimental data and for that we

need to go to  finite  temperatures.  So,  far  we have been talking  about  0  temperature

greens function.
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And now we shall talk about Finite temperature greens functions.

So, what happens at finite temperature is that all quantities get wetted by the factor. So,

by exponential minus beta e where beta equal to 1 over k t, which is called as the inverse

temperature and k is the k with a subscript b is called as a Boltzmann constant. So, now,

what happens to the operators at finite temperatures? So, which means that the operators

have to be weighted by this operator where H is the Hamiltonian of the system.

So, now so, at finite temperatures the operators that we need to write down the greens

function  they have to  be weighted  by this  quantity  or the weighting  factor  which is



exponential  minus beta  H beta  being the inverse temperature or 1 over k t  H is  the

Hamiltonian for the system.

So, we write down a greens function as. So, greens function will write down later, but it

is written down as the trace of exponential beta H C k sigma t and C k sigma t prime

divided by trace of exponential minus beta H.

So, this is the a form of the greens function and the trace implies the T r is actually the

trace, which implies that we have to take the trace over the complete set of states n.

(Refer Slide Time: 03:42)

.

And the operators this is pretty much we are still at 0 temperatures. So, the operators are

written as exponential i H t C k sigma 0 and exponential minus i H t H being the H 0 plus

H prime right.

So, this we have seen and so, H prime now appears at two places. So, remember that we

have done perturbation theory with in powers of H prime, now H prime is occurring at

these plus minus i  H t  we have dropped a H cross the Planck’s constant and it  also

appears at exponential minus beta H. So, this appears at both places we were writing a

curly H does not matter. So, so H prime appears at both these places.

So, the perturbative expansion in terms of H prime was earlier included in this term. And

should we now again do a perturbation expansion in terms of H prime with this. So, that

is the question? Now the answer to this question was given by Matsubara in the year



1955 in which he realized that beta equal to one over k T can be considered as complex

time.

So,  if  you consider  this  as complex time this  beta  then these two factors  which are

written here and here they can be combined together. And so, basically if they can be

combined together, then we can do a single perturbation theory with respect to H prime

and can write down the complete brains function or the full greens function in terms of

that.

But what finally, was done is exactly the opposite time is regarded or treated as complex

temperature; this is an important concept in the finite temperature calculations that will

see henceforth. Another motivation of the Matsubara formalism so, we henceforth we

call  this  as  a  Matsubara  formalism  is  that  the  occupation  numbers  for  bosons  the

occupation numbers which are the distribution.

So, these are bosons and fermions and this you know that this is written as exponential

one divided by exponential beta H cross omega q minus 1, where omega q are the boson

energies and this is written as exponential beta epsilon k plus 1 and where epsilon ks are

the energies. So, these are the occupation numbers.
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 Now these occupation numbers can be expanded in a series and let us call this 1 as n F

let us call 1 this as n F and let us call this one as n B.



So, n F is written as which is as we have written earlier it is plus 1 this is written as a

series half plus 1 over beta, sum over n equal to minus infinity to plus infinity and this is

1 divided by 2 n plus 1 i i pi by beta minus xi k and the n B for the energies omega q,

which as we have written it down minus 1 this is equal to a minus half plus a 1 by beta n

equal to minus infinity plus infinity divided by 2 pi n i by beta minus omega q or we can

keep this H cross here or we can drop it later.

Now, these are the expressions for the occupation densities of the occupation numbers

for the fermions or bosons, we will not provide proof for that a rigorous proof for that,

but definitely we will tell you that it looks like that there are poles or singularities, if you

are familiar with the complex analysis or the complex integration these are called as the

poles.

So, there are poles at odd multiples of i pi by beta and these have poles at even multiply

even multiples of pi over beta a this we will prove and we simply say that this comes

from a theorem and the theorem states that, that any Meromorphic functions; please see

the definition of meromorphic functions maybe expanded as a as a summation over it is

poles and residues at the poles.

Let me box this thing I am simply taking the statement and using it to know more about

this you can look at a complex analysis book by Churchill. So, what it says is that the

boson occupation functions?

So, n B has a poles at poles at even multiples of pi over beta in the along the imaginary

axis. So, let us n f it has poles at odd multiples of pi over beta, but which lie on the

imaginary axis ok.

So, these are even things are 2 2 n pi i by beta and this is 2 n plus 1 pi i by beta.
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So, both the summations it is apparent that can be written as 1 sum over n 1 divided by i

omega n minus omega q this is for bosons and this is again a sum over n i omega n

minus xi k, this is for or xi q does not matter I mean the momentum index does not

matter for fermions. So, this is for bosons and these are for fermions.

So, for fermions they are odd integers of pi over beta and for bosons there even integers

of pi over beta. Now it is interesting to note that at this form either of the forms they

correspond to a non-interacting greens function, function is of the form 1 divided by i

omega n minus xi k and this non interacting greens function is called as the Matsubara

greens function. Matsubara is a Japanese physicist.

So, now, in the Matsubara formalism as we have said the time is a complex quantity and

it is actually written as it is actually an imaginary quantity if you, it is a and which is

written as tau equal to i t and the greens functions these greens functions the Matsubara

greens functions are functions off of tau and bounded between minus beta 2 beta 2 plus

beta.

So,  that  is  the  range of  tau  for  the Matsubara  greens  functions  which  are so,  tau is

nothing, but the time, but it is just that it is a complex time and these greens functions are

functions of these tau bounded between minus beta 2 plus beta. Now let us take any

function which is a function of tau and 1 bounded between these values minus beta and

plus beta we can always do a Fourier series.
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So, take an arbitrary function f tau, which can be expanded in Fourier series of the form.

So, f of tau equal to half of a 0 plus n equal to 1 to infinity we have a a n cosine n pi tau

over beta and plus b n sine n pi tau over beta.

So, where the coefficients a n and b n are defined by a n equal to 1 over beta minus beta

2 plus beta as we said that is bounded by minus beta n plus beta. So, this is f of tau and a

cosine of n pi tau over beta whereas, the be n is exactly the same thing, but with the sine

term f of tau and the sine n pi tau over beta. Look at Arfken mathematical physics book

or kreyszig for information on these Fourier series.

So, in a compact notation we can write f of i omega n this is equal to half of beta a n plus

i b n. So, this is the rather the so, this is f as a function of these frequencies that we had

talked  about  and which  can  be  obtained  from the  Fourier  transform of  f  tau  in  the

following fashion.
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So,  f  tau  is  related  to  the  f  i  omega  n  as  n  equal  to  minus  infinity  to  plus  infinity

exponential minus i n pi tau by beta f of i omega n, such that our f of i omega n is

nothing, but it is equal to half of minus beta 2 plus beta d tau f of tau exponential i pi n

tau over beta.

So, these are the properties of these functions, we shall later show that these functions

are nothing, but the greens function the Matsubara greens function that we are going to

talk  about  and  as  said  earlier  that  these  functions  are  needed  in  order  to  have  the

experimental quantities, which are always done at finite temperatures.

So, there are further simplifications possible and for bosons the simplifications are like

this that we have an additional property, which is equal to f tau equal to f tau by tau plus

beta for minus beta to be in the range for tau to be in the range minus beta and 0.

And so, this is a sort of periodicity of the function tau we are going to show that and for

fermions, we are we have an anti-symmetric situation in which we so, this is in again in

the limit tau to be between minus beta and 0 and let us show this for bosons.
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So, f of i omega n equal to half of 0 to beta d tau I am splitting the minus beta 2 plus beta

integral from 0 to beta and minus beta to 0. So, this is the first term f tau and exponential

i pi n tau over beta and plus a minus beta to 0 d tau f tau exponential i pi n tau over beta.

And now if we change the variables in this term in this term if we change variable from

tau to tau plus beta, then I get f of i omega n to be half of 1 plus exponential i n pi from 0

to beta d tau.

So, both of them can be combined to write it in this thing 1 should check this n pi tau

over beta. So, because of this first factor here f of i omega n equal to 0 for n to be n to be

odd thus for bosons we can write it as f of i omega n equal to 0 to beta d tau, exponential

i omega n tau f of tau and for omega n to be even number because for odd it is equal to 0.

So, 2 n pi by beta. And similarly your f tau becomes equal to 1 over beta sum over n, but

now n is denotes only odd sorry only even integers and this is minus i omega n tau, n

integer means the omega n will correspond to even factors or rather even multiples of pi

over beta that is what. So, n is restricted in that sense.

F of i omega n so, this is for fermions; So, we have used this property which is because

the tau going to tau plus beta, then we have used that f tau of beta equal to f tau and have

written down this second term; here and this second term becomes equal to 0 if n is equal

to odd and that is why the Bosonic frequencies are even multiples of pi over beta. Let us

see these for fermions.
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For fermions we have this odd property and then I will again split up the sum or rather

the integral into 2 terms, which is half 1 minus exponential i n pi. Again I will do the

same trick of writing down the minus beta over 0 to will change the variable from tau 2

tau plus beta and use the anti-symmetric property of f of tau with respect to f tau plus

beta and this is equal to; So, d tau f of tau exponential i n pi tau over beta all right.

So, now it says that f of i omega n equal to 0 if n is even for n to be odd we have f i

omega n. So, we have omega n to have only odd values of pi over beta.

So, this is going to be 0 to beta d tau exponential i omega n tau f of tau and f of tau, the

Fourier transform of that is equal to 1 over beta sum over n exponential minus i omega n

tau f over i omega n and for these things omega n equal to 2 n plus 1 pi over beta ok.

So, these are things that we have learned now we have written down that f is an arbitrary

function, but; however, that arbitrary function having some symmetry it tells us that there

are these the frequencies for fermions and bosons they get quantized or rather they are

discrete in terms of either even multiple for pi over beta for bosons and all multiple odd

multiples of pi over beta for fermions.

So, these Fourier these functions will be shown these arbitrary functions f will be shown

as the greens function. And the merit of the Matsubara greens function is that it directly

leads to physical results such as the electrical properties such as conductance or transport



properties  such  as  conductance  or  you  know  magnetic  properties  such  as  magnetic

susceptibilities etcetera and they are complex functions of i omega n as you can see here.

And now if you need to go to 0 temperatures, then 1 can do an analogy continuation. So,

will write this limit to 0 temperatures can be taken by analytic continuation of i omega n

to omega n plus i eta this is eta.

So, eta goes to 0. So, you need to a plus or minus depend on whether we want to go to.

So,  this  is  for  the  retarded  greens  function  and  which  are  directly  related  to  the

experimental data. So, we have extended the 0 temperature formalism for an arbitrary

function to finite temperature and found that, the there are restrictions or conditions on

the frequencies for bosons and fermions and these show up in the form of poles of the

Matsubara greens function and we shall now define the greens function themselves.

So, let us write down the Matsubara greens functions.
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So, let us write start with the electron Matsubara greens function, but as we know that

the only difference comes in the way the frequencies are quantized. So, we would only

write down for the electron or the fermions,  let  us write down for the use the word

fermion rather than electron.

So, the fermions we write it  down for, but essentially  you can write  it  down almost

similarly very similarly for the bosons as well. Here we will use a curly G a calligraphic



G to  denote  the  greens  function  and  to  distinguish  it  between  with  this  with  the  0

temperature greens function.

So, we have a 2 time involved and which is written as a minus t tau and a C k sigma tau

and a C k sigma dagger tau prime. So, now, the 2 times are involved or rather complex

times are involved and we have taken 1 k 1 can taken a k and a k prime and write the 2

operators fermion operators with k and k prime that would not change anything.

Important thing is that we shall show that the greens function identically depends on tau

minus tau prime and not tau and tau prime individually, thus at the end 1 can drop 1 of

the time indices and can write the resultant greens function as a function of 1 time only

will have to come to that.

So, let us write down k tau and tau prime. So, as we said that this will be written down in

terms of the trace and this t tau is again the time ordering operator, which orders the time

that is earliest time tau earliest tau to be closest to minus beta.

Now, this is the difference between the 0 temperature greens function that we do not

have a minus infinity here, if the tau is bounded between minus beta to plus beta which is

why all these properties symmetry properties of the bosons and the fermions came.

So, will write this once more that let us before we write down the greens function let us

at least define the T tau a time ordering operator which arranges, which arranges the

fermionic operators such that the earliest tau, tau closest to beta closest to minus beta is

put at the extreme right.

So, this is a definition of the time ordering operator and so, it serves the same purpose as

the time ordering operator in 0 temperature formalism excepting that that was pushed to

minus infinity or plus infinity, here it is pushed towards the 1 extremity which is beta I

mean minus beta in this particular case.

So, we keep using the calligraphic greens g for denoting Matsubara greens functions. So,

we have the left hand side is written with 2 time indices the tau indices will see that how

these 2 time indices can eventually be dropped? For that let us write down k as tau tau

prime the so, the time ordering can be trivially taken into account by the theta operators,

which we have learnt that tau is greater than tau prime this is equal to 1 this function is



equal to 1 else it is equal to 0. And trace of exponential  minus beta k minus omega

exponential tau k C k a sigma exponential minus tau minus tau prime k i will tell you

what k is.

And there is another term which is equal to so, this and there is another term which is

equal to tau prime minus tau trace of exponential minus beta k minus omega all these ks

omegas will be said just in a while k and then C k sigma dagger exponential tau minus

tau prime k C k sigma exponential minus tau k you should write this neatly and see for

yourself.

Now this k is an operator. So, k equal to H minus mu n where H is the Hamiltonian of

the system and we decide to  work in  the grand canonical  ensemble that  is  why this

chemical  potential  has been used mu is  the chemical  potential  and is  the number of

particles. 

And this omega is called as the grand potential and this grand potential is the basically

the just like the free energy in canonical ensembles. So, the k t log z would give us a free

energy and this is actually the k t minus k t log Z G, where Z G equal to just write it

where Z G is the partition function in the grand canonical. So, this G corresponds to this

G corresponds to the grand canonical ensemble.

So, remember that this is an operator while this is a scalar quantity and this distinction

will  be needed in the subsequent discussion. So, now, we shall  use a theorem of the

cyclic  variation.  So,  it  says  that  the  trace  is  unchanged  by a  cyclic  variation  of  the

operators.
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That is so, trace of A B C is equal to trace of B C A is equal to trace of C A B and so on.

So, these are cyclic cyclically changing the traces the trace remains invariant. So, what

we  why  we  said  is  that  we  want  to  use  the  exponential  minus  beta  tau  term  or

exponential minus beta tau term tau prime term push it to the left. So, that G k there is

another thing that has been achieved is that the right hand side is completely a function

of tau minus tau prime.

So, we can start writing down the left hand side to be a function of tau minus tau prime

and this is equal to a minus theta tau minus tau prime, it is just mathematically a little

cumbersome, but there is nothing very difficult about it you can have to just do it 1 once

by yourself to get convinced.

And there is a trace that is there exponential minus k exponential minus beta k minus

omega exponential k this tau k and then there is a C k sigma I should have written it in 1

line exponential minus tau minus tau prime k and the C k sigma dagger and then there is

this plus theta tau prime minus tau and trace and exponential minus tau, k exponential

beta k minus omega an exponential tau prime k and C k sigma dagger exponential minus

tau prime minus tau k C k sigma.

So, these are the 2 terms where we have used the cyclic variation of the trace.  Now

consider the commutation of these 2 operators. Now there is the operator in these 2 terms



the 2 exponential  a k only because as I said omega is  a scalar quantity. So, these 2

operators are both k in the 1 is with the exponential minus tau t the other is with minus

beta k. So, they should commute. So, commutation says that exponential minus tau prime

k exponential beta k minus omega and same with tau or tau prime does not matter in

either of the terms the first term there is a tau prime

So, we have written down here an exponential minus beta k minus omega an exponential

minus tau prime k. So, these are the commutation and now we can use this commutation

relation and can push the exponential k minus omega to the other side.
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And write down the G as k tau minus tau prime minus theta of tau minus tau prime and

the trace of exponential minus beta k minus omega exponential tau minus tau prime k C

k C k sigma exponential minus tau minus tau prime k C k sigma dagger and there is

another term, which is theta tau prime minus tau trace of exponential minus beta k minus

omega exponential  minus tau minus tau prime k k C k sigma dagger exponential tau

minus tau prime k C k sigma.

So, that is the greens function and since as we have been saying that they depends upon

tau minus tau prime on both the sides drop 1 index 1 variable rather.

So, now that tells us that k tau it is equal to minus T tau C k sigma tau and C k sigma

dagger 0, because we are talking about just  1 time which is equal to minus trace of



exponential minus beta k minus omega, T tau of exponential tau k C k sigma tau tau C k

sigma tau exponential minus tau k C k sigma tau a 0 I am sorry 0 and so on.

So, this is the form of the greens function finally, which is what we have been trying to

get at it is a Matsubara greens function a function of I mean we have taken this to be k it

could be any suitable quantum label for the problem. And now consider these additional

symmetry properties that we have so, considered tau to be between minus beta and 0;

that means, consider tau to be negative and use the property f tau to be minus f tau plus

beta.

We have been telling this that those arbitrary functions can actually be like our greens

functions, which are relevant for us and in this limit of minus beta less than tau less than

0.
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Then we can write down the G k tau to be equal to trace of exponential minus beta k

minus omega and C k sigma dagger exponential k C k sigma exponential minus tau k

and that is the form of the greens function. And now 1 can use that cyclic property of

trace several times and can write it down as.

So, will write this give this clue here use cyclic invariance of trace G k tau equal 2 equal

to  trace  of  trace  of  exponential  beta  omega  exponential  tau  k,  tau  k  C  k  sigma,

exponential minus tau plus beta k and C C k sigma dagger and so on.



And so, exponential beta omega is not recycled, because it is not an operator. Recycle

means it is not just the way the trace of a b C and b C a that it has not been done it has

been kept, where it is it has not been recycled and then finally, I mean one can do a

regrouping by adding a adjusting exponential plus minus beta k, we have written down

as G k tau equal to trace of exponential minus beta k minus omega exponential tau plus

beta k remember K equal to H minus mu n.

So, this is our Hamiltonian now and this and then C k sigma exponential minus tau plus

beta k C k sigma dagger. And so, this is the form of the greens function and that the term

so, the term in the right that is this term is equal to nothing, but equal to minus G a k tau

plus beta for we have taken that from 0 less than tau less than or rather minus beta less

than minus beta less than tau less than 0. And so, this is the property that we were talking

about  and so,  this  equality  is  satisfied  by  as  the  same equality  was satisfied  by  the

function the arbitrary function that we had talked about.

And the, I this above identity this allows the greens function to be expanded in a Fourier

series of the type.
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That G of k i omega n equal to 0 to beta d tau exponential i omega n tau and G k tau and

the G k tau is written as 1 over beta sum over n, exponential minus i omega n tau and k i

omega n. So, these properties are exactly save as that arbitrary function with omega n to

the odd multiples of pi over beta.



So, your i omega n are odd multiples of pi over beta. So, this is formally representing the

greens function the Matsubara greens function will do some examples with this and let

us do 1 example and it is right down example.
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So, we write down the non-interacting greens function Matsubara greens function non

interacting Matsubara greens function ok.

So, H H equal to H 0 which is equal to sum over k epsilon k C k sigma dagger C k

sigma. Now here k is same as k 0 which is same as H 0 minus mu n, which is a k and a

sigma and we have a xi a k C k xi k C k sigma dagger C k sigma where the xi k is

nothing, but epsilon k minus mu. So, the tau evolution of the operators can be written as

is  that  the C k sigma tau it  is  equal  to  exponential  k 0 tau k 0 and the C k sigma

exponential minus tau k 0 we just proved this in a while and this is equal to minus xi k

tau C k sigma.

So,  this  is  the  tau  evolution  tau  is  remember  tau  is  complex  time.  So,  the  tau  tau

evolutions of these are like this and similarly the tau evolution of the creation operator is

like this.

And this can be proved using what is called as the Baker Hausdorff Theorem, which says

that exponential A C exponential minus A equal to C plus C plus A C plus 1 by 2 factorial

A A C and 1 by 3 factorial A A A C and so on.
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So, this can be applied to our case where we have an exponential tau k 0 C k sigma and

exponential minus tau k 0 this can be written as C k sigma plus tau k 0 C k sigma and

plus so on. And tau xi k which is k 0 is H H 0 minus omega n. So, k 0 is equal to sum

over k xi k C k sigma dagger C k sigma where thus. So, this is a tau xi k will come out

and I will have a C k sigma dagger C k sigma with C k sigma, which is simply equal to

tau xi k C k C k sigma C k sigma.

And hence we can write down a C k sigma to be equal to C k sigma minus a xi k tau C k

sigma plus a xi k tau square by 2 factorial C k sigma and so on. And this can be actually

written down as an exponential tau xi k C k sigma and so on. So, that is how we can

write down the greens function for the non-interacting problem, which for which I have

introduced this 0 and this is written as a minus theta of tau an exponential minus xi k tau

and a C k sigma dagger C k sigma and plus the other term theta tau exponential minus xi

psi k tau C k sigma dagger C k C k sigma, we have written it somewhat sloppily it has to

be here and so on.

And this can be written as exponential minus xi k tau and a theta tau 1 minus n F xi k we

have shown that this is equal to this angular bracket is equal to 1 minus n F and theta of

tau to be a minus tau to be here there is a minus tau here, which is n f xi of k. So, the the

2 combined so n F is nothing, but equal to n F of xi k is nothing, but a C k sigma dagger

C k sigma, which is equal to 1 divided by exponential beta xi k plus 1. It is easy to obtain



the frequency dependent greens function, which is equal to k and i omega n which is

nothing, but a 0 to beta d tau exponential i omega n tau G 0.
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And a k tau minus 1 minus n f 0 to beta d tau exponential i tau omega n minus xi k and

this is written as 1 minus of 1 minus n F and exponential beta i omega n minus xi k

minus 1 divided by i omega n minus xi k.

Remember  that  the  second  term in  the  numerator  here  can  be  simplified  if  we  use

exponential i beta omega n to be equal to minus 1 for i beta n to be 2 n plus 1 i pi, and

then I can write down the greens function the zeroeth order greens function as k i omega

n which is equal to 1 minus n F exponential beta minus beta xi k plus 1 divided by i

omega n minus xi k it is equal to i omega n minus xi k, because my 1 minus n F equal to

exponential minus beta xi k plus 1.

So, the temperature information is encoded in the frequencies omega n. So, now as we

said that the 0 temperature result would be obtained by analytic continuation of i omega

n going to omega n plus i eta to the real axis and in the and so, in the same spirit as the 0

temperature the minus the plus sign would relate it to retarded greens function and the

minus sign would be an advanced greens function.

So, this is how the 0 temperature limit is taken from the finite temperature and the reason

that the 0 temperature limit is relevant is that, because the benchmarking temperature



scale in Fermionic system is given by the Fermi temperature. And the Fermi temperature

for metals it is of the order of 70 80000 Kelvin.

So,  even  a  temperature  which  is  room  temperature  300  Kelvin  can  be  taken  as  0

temperatures. So, sometimes in fermionic systems, we may need or we can get by with 0

temperature  properties  or  0  temperature  formula  that  is  relevant  even  when  the

temperature of the system is or the experiments are done at room temperature.


