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In the next few classes, we will describe how to handle the dynamics of the elementary

particles.  For  this,  we  have  to  consider  a  relativistic  quantum mechanics.  What  we

usually study in the introductory quantum mechanics classes is a non-relativistic picture,

which  is  suitable  to  study  the  properties  of  atoms  etcetera.  But  when  we  consider

scattering of high energy electrons or high energy protons on either protons or electrons

or other particles, we need to actually consider the relativistic effect. 

It  is  not  enough  to  actually  just  consider  the  Schrodinger  picture  and  then  make

corrections  to  the  Schrodinger  equation  and  other  mathematical  formalism  by

considering some aspects of relativistic effect, rather it is needed to find out a formalism

suitable to the relativistic systems that is what we will first understand in the first few

lectures from now on.
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First  question in  the case of scattering  as  non-relativistic  system like  the Rutherford

scattering, what we had considered in the previous one or two lectures is the transition

amplitude from initial state to a final state is essentially equal to psi f H interaction psi i,

where psi i and psi f are the initial and final wave functions of the electron or whichever

particle is being affected by the interaction Hamiltonian given by H i. In particular, if an

electron is scattered off a proton or any other nucleus etcetera, then we can in the non-

relativistic picture consider H interaction the electrostatic potential experienced by the

electron which is basically e phi x or minus e phi x depending on how you take that this

thing phi. Now, question is what is the corresponding thing in the relativistic case? so

that is what we have to deal with.
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Now, let us start from the beginning in the non-relativistic case the equation of motion is

basically the Schrodinger equation which is it can be written as h cross square over 2 m

grad square psi for a wave function psi which essentially gives you the kinetic energy

term plus the potential energy term v x psi x is now a three-dimensional vector equal to i

h cross dou by dou t the energy operator acting on psi.

This  is  the non-relativistic  Schrodinger  equation  why cannot  we take this  relativistic

equation,  because  if  you look at  the  kinetic  energy term del  square  is  essentially  in

Cartesian coordinate system second derivative with respect to x plus dou square by dou y

square plus dou square by dou z square. So, the position is taken or the operator with the



partial  derivative  with  respect  to  the  position  coordinates  is  quadratic  second  order.

While the right hand side of the Schrodinger equation tells us that the time derivative is

first order, but in special theory of relativity, we say that we cannot actually have much

distinction between x and t or the spatial coordinates and the time coordinate.

In fact, when you go from one frame to the other, they mix together; so their identity as

time coordinate and spatial coordinate is a little vague there, we have to take them in the

same footing,  then only we will  get  the kinematics  correct.  Whereas,  in  Schrodinger

equation, this is not the case Schrodinger equation is quadratic with respect to the spatial

derivative while first order with respect to the time derivative, this is a problem. So, this

how do you actually treat x and t at the same level and get a dynamical equation.
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One approach is to rely on the relativistic energy momentum relation, which says that the

energy of the particle is related to its momentum in a quadratic way E square is equal to

p square c square plus m square C power 4. The operator corresponding to E is i h cross

dou by dou t, and the operator corresponding to p is minus i h cross grad. So, this tells us

that  we can in the operator from write this  as i h cross dou by dou t  square energy

operator acting on psi equal to minus i h cross grad square acting on of course, there is a

C there. So, let me squeeze that in minus c i h cross grad square acting on psi plus m

square c four acting on psi. Or other words, we can just square this and then you will get



minus h cross square dou square by dou t square psi equal to minus h cross square of c

square del square psi plus m square C 4 psi.

Or I can write it as h cross square dou square by dou t square plus minus h cross square c

square grad square plus m square C 4 as the operator acting on psi equal to 0. And this is

one of the ways to overcome the difficulty of the Schrodinger equation to get an equation

which dictates the dynamics of the relativistic particle represented by a wave function psi

with mass m. So, the equation is known as Klein-Gordon equation after applying a Klein

Gordon. Let us look at some notations in relativity relativistic dynamics kinematics that

we will consider which will simplify a lot of writing.
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So, let us start with the relativistic notations and other things, let me call it just notation

here. First thing is the position coordinate. As I said we will take the time coordinate and

spatial coordinate together, and write it as a four vector instead of three spatial vector

three vector which denotes the spatial coordinates and time coordinate separately. We

will club them together as entity having four coordinates now.

Let us denote this by x with an upper Greek index mu. Mu can take values 0, 1, 2 and 3;

and in components I will then write this x mu having four components as x 0 as the

zeroth component, x 1 as the first component, x 2 as the second and x 3 as the third

component. When we interpret this as the four-dimensional coordinate of a particle then

we will consider x 0 as c t, where c is the speed of light and t is the time parameter or



time  coordinate,  so  that  c  t  together  has  the  dimensions  of  length.  And  then  the

coordinate x, y and z the normal position coordinates in Cartesian coordinate system x, y

and z. So, x, y and z together with c t gives us a four vector. We call this a four vector,

four vector representing position coordinate.

Now there are two ways to write this when we represent it with an index mu, I can write

it either as a subscript or as a superscript. And what is given here we have written it as a

superscript, and therefore, this is basically called a contravariant vector with upper index.

Now, the vector when we write with the index as a subscript it  is called a covariant

vector x mu, and I can write it as x 0, x 1, x 2, x 3 conventionally we will take this as c t

same as x with upper index 0 or superscript 0, but the spatial coordinates remain changes

sign. So, x 1 with a subscript one is minus x. So, between the upper index and lower

index, x mu and x mu lower superscript, there is a relative sign and difference between

the time coordinate and the spatial coordinates, and this is an important convention that

we had to keep in mind.
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.

Now, this will become apparent why we are considering this when we consider say dot

product bit of two such vectors. In three dimension case, we have x dot x equal to x

square plus y square plus z square. And similarly in four dimension, we have x mu x mu

c t x y z dot c t minus x minus y minus z equal to c square t square minus x square minus

y square minus z square. There are two things that you should notice here one is that



when I write this mu in this fashion, I sum over this index mu; the other thing is that

when I take a dot product I have taken one vector as a covariant vector, the other one as

contravariant.  It  does  not  matter  whether  I  take  first  the  covariant  and  then  the

contravariant or first the contravariant and then the covariant. They will both give you

the same result c square t square minus x square minus y square minus z square in this

case. So, convention is that repeated indices are summed over. This is convention that we

will keep so that we do not have to write the summation sign symbol everywhere all the

time.

Once we have an agreement that whenever there are two indices one upper index and one

lower index, then we will sum over them. If so, this is what we will have in these lectures

as well. And whenever we have two indices which we do not want to sum over we will

explicitly make a statement regarding that this thing. So, until I say something like x mu

is not summed over you can assume that if they are repeated in a term then they are

summed over. This x mu x mu is equal to c square t square minus x square minus y

square minus z square,  this  one main thing that we had to keep in special  theory of

relativity. This is basically an invariant quantity when we change from one frame to the

to another thing.

I am assuming that you have some familiarity with special theory of relativity. And you

know what is the meaning of going from one frame to the other, but what is the relation

between two different moving frames. So, what is the difference, what are the relations

of  coordinates  and between two different  Lorentz  frames as  they  are called.  So,  the

Lorentz transformation as it is called gives you the relations. And then I assume that you

are somewhat familiar with that.

And it says that there is an invariant quantity if you take x mu x mu this is similar to an

invariant quantity called x square plus y square plus z square under rotations. We will

come to this in a moment in a little illustration later. But otherwise the invariance is of

the quantity with a relative sign between the spatial and the time coordinates not c square

t square plus x square plus y square plus z square. This can be brought out by kinds

considering an covariant vector and a contravariant vector in the manner we have just

mentioned. There are other conventions that we can follow to get the same results; for

example,  it  is  also  equally  possible  to  consider  the  time  coordinate  changing  sign



keeping the other ones positive in the case of covariant and contravariant, but we will

consider this convention throughout our discussion.
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Now that we have said there is a covariant and contravariant vector, how do we convert

from contravariant to covariant, is that possible or covariant to contravariant? For that,

we consider what is called a metric g mu nu with two indices; x mu can be written then

as g mu nu x nu covariant, and the other way around x mu covariant can be written as g

mu  nu  lower  indices  x  nu  contravariant.  Here  again  the  repeated  index  nu  in  both

expressions is summed over. So, let us take x mu or x nu the covariant thing that is x mu

0 x 0 plus g mu 1 x 0 upper index x 1 upper index g mu 2 x 2 plus g mu 3 x 3. So, this is

the meaning of this x mu equal to g mu nu x nu.

Now, consider mu equal to 0 case that will give you x 0 equal to we know x 0 is equal to

x 0, because let me write it here, x mu for us is equal to c t, x, y, z; x covariant is equal to

same c t, minus x, minus y, minus z all right. So, let me keep that in mind. And therefore,

x mu x 0 with 0 lower index is the same as x 0 upper index, so that will give you that g 0

0 is equal to 1; and g 0 1 equal to g 0 2 equal to g 0 3 equal to 0; otherwise x 0 would be

related to x 1, x 2, x 3.

Similarly, x 1 is equal to minus x 1 and that gives us g 1 1 is equal to minus 1 and 1 0, 1

2, 13 equal to 0. And x 2 equal to minus x 2 gives again g 2 2 equal to minus 1, g 2 0

equal to g 2 1 equal to g 2 2, 2 3 equal to 0. Now, x 3 equal to minus x 3 will give g 3 3



equal to minus 1, 3 0 equal to g 3 1 equal to g 3 2 equal to 0 that fixes all the g the

components of g mu nu.
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And thus we get g mu nu as let me write it as a matrix or the only the diagonal elements

whenever these two indices are the same then that is nonzero; whenever the indices are

different then that is 0. So, only diagonal elements survive and of this g 0 0 is plus 1, g 1

1, 2 2, 3 3 the special parts are minus ones. So, you will have a diagonal matrix 4 by 4

with 1 minus 1 minus 1 minus 1 as the diagonal entries, it is a fully symmetric matrix.

Similarly, g mu nu with lower indices also can be written exactly the same way we can

proceed exactly the same way as we did earlier. So, we can say that g 1 1 is equal to g 0

0 equal to g 0 0 lower index g 1 1, g 1 1 which is equal to 1, which is equal to minus 1. g

22 equal  to  g  22  equal  to  minus  1  3  3  equal  to  g  3  3  equal  to  minus  1,  all  other

components are 0s.

So, this is our metric. And this metric again can be different we can choose different

metric a different a metric which is different from this. Say for example, one case that we

said earlier is that instead of changing the sign of the special coordinates, when you go

from contravariant to covariant, we could change the sign of the 0th component and that

will still give you a relative sign between c square t square and x square plus y square

plus z square, and that is what is important in special theory of relativity. So, we could as



well have other metric which will work, but here we will stick to this in our discussions,

so that is about the four vector coordinates.
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.

Then  let  us  consider  the  four-momentum,  four-vector  momentum  or  for  short  four

momentum. p mu is equal to here we will consider the energy as the 0th component; and

for  dimension  to  be  correct  you  divide  it  by  c,  and  you  have  a  the  normal  three-

momentum as the 1, 2, 3 components. Again p mu p mu is equal to E square over c

square minus p square that is because p mu covariant is E over c minus p. This is equal to

m square c square that is what we mentioned in couple of lectures before that if you take

the square of the four-momentum then that is basically the mass square times c square.

Square of the four  momentum meaning dot  product  of the four  momenta  with itself

which means you have to take a covariant and contravariant this thing and this is what

we have.

And this  is  equal to m square c square because of the energy momentum relation E

square is equal to p square c square plus m square c 4. So, as we said we will be using

the so when we say p mu p mu which actually means p 0 p 0 plus p 1 p 1 plus p 2 p 2

plus p 3 p 3 and that is equal to m square c square and summation over repeated index is

as we have been considering as our convention.
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Now, let us look at the transformation of these objects coordinate transformations. Let us

consider  a  coordinate  transformation.  First  consider  rotation  in  two  dimension  2D-

rotation, rotation in two dimension. So, we will consider actually only two coordinates x

and y along x cap and y cap directions. So, let me draw that in a proper way. We have a

horizontal axis which we denote by x-axis; and we have a vertical axis which we denote

by a y cap, and a vector r position vector of point p is denoted by say r which is equal to

x x cap plus y y cap.

Question is if now we rotate the coordinate system, so that we have a new axis x prime

and y prime caps, how do you represent this point in x prime and y prime as theta?

Where; theta is the angle of rotation. So, we are only considering a rotation about the z

axis, the perpendicular axis perpendicular to the plane x y plane. Same vector r is equal

to x prime x prime plus y prime y prime cap. And we will see we know these thing that

coordinates if you look at x is equal to x cos theta plus y sin theta, and y is equal to

minus x sin theta plus y cos theta. I will leave this as an exercise, you must have done it

many times in your elementary classes or I can write in a matrix form x y equal to cos

theta  sin theta  minus sin theta  cos theta  multiplying sorry x prime y prime equal  to

multiplying x and y.
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Let  me  write  it  in  a  way that  will  be  more  suitable  or  generalized  easier  for  us  to

generalize. I will write it as a 11 a 1 2 a 2 1 a 2 2 x y. So, that x prime is a 1 1 x. So, there

are one and prime I will make a little distinction, so prime a 1 1 x 1 a 1 2 x 2. And y

prime this is at the moment just x and y x prime y prime is equal to a 2 1 x plus a 2 2 y.

And the whole thing gives us a 1 1 equal to cos theta which is  also equal  to a 2 2

diagonal elements. a 1 2 is equal to sin theta, a 2 1 is equal to minus sin theta.

Now, let us denote x as x 1, y as y 1 sorry y as x 2 and similarly x prime as x 1 prime or

y prime as x 2 prime x prime 2. This then leaves us a compact notation x prime alpha

equal to a alpha beta x beta, where alpha equal to runs from 0 to sorry 1 tend to it can

take values 1 and 2 and beta can also take values 1 and 2. So, if I take x alpha equal to 1,

beta is summed over. So, it is repeated and therefore, it is summed over. So, if I take x 1,

so x alpha equal to 1, x prime 1 equal to a 1 1 x 1 plus a 1 2 x 2. Similarly, for x prime 2,

this  is  a  compact  notation.  So,  we  will  we  have  a  compact  way  of  denoting  the

transformation of coordinates under rotation in two dimension.
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We  will  generalize  this  now  to  the  case  of  four  dimension.  Generalizing  to  four

dimension, we have we can write x prime mu equal to a mu nu x nu very similar to x

prime alpha equal to a alpha beta x beta. And here as we have mentioned we have to take

mu and nu values 0, 1, 2 and 3. For example, mu equal to 0, we have x prime 0 equal to a

0 1 x 0 plus a 0 2 x 2 plus a 0 3 x 3 plus a I missed the 0 0 a and 0 0 a 0 1 x 1 and a 0 2 x

2 plus a 0 3 x 3 similarly, four other values of mu.

And any four vector transform in a similar way in fact, in the same manner under a

particular special transformation coordinate transformation. If x prime x mu changes to x

prime mu which is equal to a mu nu x nu with a particular set of a mu nu then any vector

any object that transform in that way is with the same set of a mu nu are called vectors r

vectors. So, that is one way of identifying whether a particular object is a vector or not.

Whereas, the scalar quantities and the special coordinate transformation not in which or

do not transfer transform we know do not change.
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What is an invariant quantity that you can think of take again 2D-rotation. If you take r

square just go back to the earlier picture, if you take r square which is equal to x square

plus y square right, the vector we denoted by x x cap plus y y cap are the same thing in a

rotated coordinate system was x prime x prime cap y prime y prime cap. So, this is also

equal to x prime square plus y prime square, but x prime square is equal to x square plus

so all right. So, let us see this is the vector r let us say this is the I will denote this by r

prime it is also the same vector in case; write it exactly as x cos theta plus y sin theta

whole square plus minus x sin theta plus y cos theta whole square.

This is equal to x square cos square theta plus y square sin square theta plus 2 x y cos

theta sin theta plus x square sin square theta plus y square cos square theta minus 2 x y

cos theta sin theta adds up to x square plus y square. So, this is the same as this. So, this

is this preserves the length of the position vector; and this is an invariant quantity under

the special transformation which we consider which is rotation.
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Now, so we considered let us consider the four-dimensional case x prime mu x prime

covariant mu the dot product is equal to x mu is what we want to demand because we

want to consider the dot product of these two like r dot r r square is an invariant here x

square is an invariant quantity. We want to have that to preserve this length. Then we

write x prime mu x prime mu equal to the contravariant one a mu nu x nu, covariant one

there is nothing to really describe there, but you can see that they transform like a mu let

me take a second another index lambda x lambda. 

Since, nu is a dummy index which is summed over, I cannot take the same index in the

same term for another dummy index. Therefore, I use another index lambda here if I take

that as nu when I expand this give specific values to nu then that will be very confusing.

So, this is the right way to do this.

So, whenever you see a dummy repeated index or there should not be any more index

than that, but the other way is that in any term this is one particular term that we are

writing, there should not be more than two indices the same. Repeated indices cannot be

more than two in a term. And if there is a repeated index usually it is summed over, here

it is summed over for example. So, this is equal to a mu nu a mu lambda x nu x lambda

all right.

Now, this says that we have to have if you want this to be x nu nu or x lambda lambda

then we have to have a nu mu lambda mu nu a mu lambda equal to the Kronecker delta



nu lambda, which is equal to one for lambda equal to nu and 0 for lambda not equal to

nu. For example, if you consider delta 0 0 that is equal to or delta 1 1 delta 2 2 delta 3 3,

all these are equal to 1; delta 0 1 delta 0 2 etcetera all are equal to 0.
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So, let me club this together in a matrix form. So, what I mean is so let me write it down

as a mu nu a lambda mu lambda is equal to delta lambda in matrix form I can write it as

a mu lambda matrix  the corresponding matrix  a mu nu matrix  is  equal  to some unit

vector delta nu lambda. Which means and this gives you the mu lambdas component or

lambda mu component of the matrix a. 

So, write it as this is an inverse of this has to be these two are inverse of each other,

because  this  delta  fang  matrix  if  I  write  as  matrix  it  is  basically  a  unit  matrix  of

dimension 4 by 4 delta lambda (Refer Time: 46:13). So, we can say that a mu lambda

matrix is the inverse of a mu nu matrix. Or we can say that in proper way of writing it, a

inverse mu nu is essentially equal to a mu nu that is mu nu element of inverse matrix a is

the same as mu upper index nu lower index of the matrix a. So, this is something which

we will use to continue our discussion tomorrow.


