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Today we will look at structure of the nucleus in the sense that we have been talking

about the nucleus and then later on to the nucleons, the protons and neutrons. Further we

went on to the sub structure of the protons and neutrons and then discussed the quark

model which tells  us that it  is possible to consider quark as the basic constituents of

firmata along with the electrons of course.

And especially considering the nucleus, nucleus is made of quarks and these quartz can

form bound states or they are found only in bound states in for that matter no free quarks

are found. And quarks can be formed in two different type mean different types of bound

states  one  is  basically  consistent  consists  of  3  quarks  which  are  called  baryons  like

protons and neutrons, and then we also said there are particles which nonbaryonic which

means that he is slightly different from the protons and neutrons etcetera. They are made

of  quarks  and antiquarks,  one  quark  and one antiquark  and they  are  called  mesons.

Examples are pions, kaons etcetera.

So,  we had all  these  theoretical  description  and we had a  consistent  picture  and we

introduced  ourselves  to  this  notion  of  quarks,  how  do  we  actually  test  our  ideas

experimentally. At some earlier stage we heard in fact, mentioned that it is basically the

scattering experiments that gives us information about the structure of the nucleus and

structure of the sub nuclear particles and even particles inside the nucleons which are

quarks. We also said that the scattering experiment is basically the kind of experiment

that Rutherford and his collaborators had performed giving us the information about a

hard nucleus consisting of all the positive charged positive charges in an atom.



(Refer Slide Time: 03:30)

So, we have to in understanding the 7 sub structure the quark level picture of the protons

or other hydrons we have to rely on again scattering experiments. So, first we will spend

a little time discussing the structure of the nucleus or how do we actually come out with

the  interpretation  that  the  nucleus  itself,  I  mean  going  beyond  the  Rutherford’s

experiment, going beyond Rutherford’s force experiment say that there are actually sub

structures in the nucleus like protons and neutrons.

So,  let  us  look at  this  the Rutherford’s let  me just  remind you what  the  Rutherford

experiment  cross  section  is.  So,  let  us  consider  Rutherford’s scattering.  Now, let  us

consider electron scattering on the nucleus rather than alpha particles just for somewhat

giving a little simpler picker. We define what is called the scattering cross section. Let

me call in this particular case this Rutherford scattering cross section d sigma or d omega

which is related to the number of particles that you will observe at an angle theta in a

solid angle d omega. This is basically in the case of electron nucleus with a z number the

atomic number Z, we have Ze square whole square 4 pi epsilon 0 square 1 over 4 kinetic

energy of the electron square sin 4 theta by 2, and theta is essentially the scattering angle.

So, if you have a nucleus and electron sent towards this one it will see the electrostatic

potential and scatter at an angle theta. So, this is the theta angle and corresponding cross

section is given by this and solid angle just to remind you in case some of you do not



have forgotten what is the solid angle its basically sin square theta d theta d phi in polar

coordinates or it is basically the area of a cap of radius r divided by r square.
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Now, let us have some theoretical understanding of this, whole thing. Basically let us

consider the initial electron wave function as, k is a wave function is psi i let me denote it

by that and then final electron wave function after the scattering let me denote it by psi f.

And between  these  two the  electron  undergoes  an interaction.  So,  interaction  of  the

electron  with  nucleus  let  me  denote  that  by  a  Hamiltonian  power  H interaction,  so

interaction  Hamiltonian  the  potential  essentially  in  quantum  mechanics  the

corresponding operator.

So, we can say that the probability amplitude for an electron in psi i wave and state to

interact with H, in a H interacting interaction to transform to stage psi f is let me denote

that by T fi initial to final as basically H int sandwiched between H i and H f this is the

quantum mechanical probability amplitude for this particular thing to happen. And the

corresponding probability itself for let me write that down for psi i to go to psi f through

H interaction is equal to now, T fi squared.

So, this is basically the quantum mechanically schematic way of writing the transition of

the electron state when it scatters off a nucleus or encounters any such nuclear potential

or inside potential in fact. Now, usually in an experiment you do not have a particular

electron which is sent on a particular nucleon. Rather you will have a beam of electrons



like beam of alpha particles sent to a target, system of a target nucleus a nuclei many

such as thing like alpha particles into a gold foil.
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So, let us connect with experiment like others where we have a beam sent to a target and

then we observe these scattered particles. So, in that case what is detected a number of

particles which are scattered into certain areas or you go over around the whole of the

target and then get the all of the target having the scattered particles or if you keep a

detector at some particular angle it will detect the particles coming scattering into that

angle.

So, we can now, think about reaction rate which means the scattering rate. So, per target

particle per beam particle yeah let me denote that by what is called a letter W is equal to

T fi square the probability into what is called the number of or density of final state

which is available and 2 pi over h cross. This is an expression which can be actually

derived considering the quantum mechanical process of scattering. We will not go into

the details of how to get this because that is that will take us away from our discussion,

rather I will point you to where you can read this and understand it if you are not already

familiar  with this.  You can take  any book on quantum mechanics  to  understand this

usually  there  is  a  discussion  on  scattering  in  any  basic  quantum  mechanics  book,

specifically if can you look at the quantum mechanics by the classical book by Schiff.



So, where the; here rho is basically the number density, number of states density of final

states  that  this  beam  can  go  into  number  of  available  states  density  of  final  states

between energy E and E plus dE. So, with the T fi described in the earlier slide we can

write. Now, W as 2 pi over h cross 2 pi over h cross psi f, H interacting psi i square dn by

d which is basically E, rho E, fine. Now, we will see what is this number of final state

that we are talking about. Let us consider a particular particle and what is the minimum

space that it will occupy in a way in its phase space.
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When I say phase space that is the space spanned by coordinates position coordinates let

us say or the position coordinates and momentum of momentum. So, it is an 3 dimension

for the coordinates and 3 dimension for the momentum together 6 dimensional space, 6

dimensional. Idea is, idea in why we are talking about phase space is because essentially

when we talk about a particle the kinematics of the particle what we need to know is

where  the  particle  is  and what  the  energy of  that  particle  or  the  momentum of  that

particle is.

This is  what basically  we do when we say that  go back to the Newtonian mechanic

classical mechanics or any such other thing there also when we say that we understand

what the dynamics is  basically  to understand where are the particle  is and how it  is

actually traversing in space and with what momenta at any time. So, therefore, the phase

space is one of the important things to know. So, if you know where the position what



the position of the particle, position meaning where the particle is in the momentum and

coordinate  space  together  which  is  called  the  phase  space  then  we know what  it  its

kinematic, I mean what its energy is, what its position is etcetera. So, that is what and the

trace  of  this  will  give  you the  evolution  of  the  particle  and then  give  you a  lot  of

information about the dynamics again.

Now, let  us consider a particle in quantum mechanics the particle momentum can be

determined  with  some  minimum  and  certainty,  you  cannot  go  on  to  determine  the

position to finite very extra infinite accuracy and the uncertainty principle tells us what is

the  accuracy  with  which  we  can  actually  go.  So,  it  is  essentially  that  delta  p  the

uncertainty in the momentum times the delta x the uncertainty in the position for any

particle  is  of the order of H minimum.  So, that  is  the minimum space needed for a

particle if we consider a one-dimensional system and in three-dimension it becomes 3

such a coordinates and 3 such momentum components.

So, the space, phase space volume per particle or needed for a particle is about H cube in

6  dimensional  phase space.  Now, consider  a  particle  scattered  into  a  volume spatial

volume V and has momentum between p and p plus dp and this will tell you the phase

space available in this particular case is equal to V times 4 pi p square dp, 4 pi p square

dp is the volume in the momentum space for momentum between p and p plus dp. That is

only the magnitude that we are considering.  So, we had to integrate  over the spatial

angles and then that will give you a 4 pi factor 4 pi p square factor.

So, this is the volume phase space available for available total. So, per particle now, or

the number of final state particles or number of final state available for which means that

which means how many particles can be accommodated in this volume as what we are

considering dn is  basically  available  phase space divided by the phase space volume

occupied by one particle which is H cube.

So, we can actually write it in terms of energy by considering the fact that p is equal to E

by c  relativistic  relation.  So,  that  will  give you dn equal  to  4 pi  E square p square

becomes E square by c square. So, we will take into account what c the factor of c will

come down dp is dE divided by c. So, there are 3 c factors c H cube into V or I can write

dn over dE which is what we considered as rho earlier which is basically the number

density between energy E and E plus d is equal to 4 pi E square let me write H in terms



of h cross which is 2 pi h cross c cube into volume spatial volume. Keep that in mind we

will take that information at a later stage all right.

So, we have, we will now connect this with the cross section.
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So, what is this? Let us consider again the rate of reaction rate in the solid angle d omega

per target particle per beam particle this is basically W, but not the whole thing only in do

solid angle d omega.

So, what we mean here is, what is the rate of reaction there is only one particle coming in

into a solid angle d omega and at angle say theta, whatever. So now, if number of particle

in a beam if this is equal to N b and number of particle in target is equal to N t when I

say a number of particles in the target it is in the within the cross sectional area of the

beam which is what is relevant. So, basically the region here, the region here, well all

through that thing.

If this is labelled like the in bad (Refer Time: 23:49) we can say that the rate of reaction

or reaction rate into solid angle in this  case with N b particles in the beam and N t

particles in the target is W N b N t d omega and which means that if you have such a

reaction such a scattering experiment where there are N b particles in the beam and N t

particles in the target then scattering into an the number of particles  that is going to

scatter into the solid angle d omega per the rate of this particle the particle which is going



to  get  into  this  thing  per  unit  time  is  basically  W d omega which  is  essentially  the

reaction rate per target particle per beam particles. So, you have to multiply it with the

number of particles in the beam times number of particles in the target to get the actual

array reaction rate.

Now, let us connect it with cross section.

(Refer Slide Time: 25:11)

For that we had already discussed earlier what the cross section is etcetera in the when

we discussed the Rutherford experiment. So, let me remind you what we heard there if

you have a nucleus like this or take a hard sphere scattering we just what we considered

as an elementary scattering experiment. So, if the particle in a small cross section scatters

into a solid angle d omega at an angle k theta along with the beam direction. Then the d

sigma which is the cross section of the beam relevant portion of the beam times the flux

of the beam number of particles crossing cross sectional area in unit time, a per unit time

and per unit area of the beam cross section. Times the number of target particle is going

to be either a number of particles scattered into solid angle omega, a scatter angle solid

angle d omega.

Flux itself, k flux can be written as number density into the speed all right. So, that will

give you the number volume number density n b is the number of particles divided by

volume into v b is basically the speed of a particle. And so, this n b is what we had

defined earlier.



(Refer Slide Time: 27:42)

So, this now tells you that T sigma flux N b by V into v b into N t is equal to number of

particles scattering into solid angle d omega which is W d omega N b N T or we can

write d sigma over d omega equal to W V by v b.

Now, go to slides 3 and 4 to get W and write it as write then d sigma over d omega as 2

pi over h cross whether is this, there is W into psi f H interacting psi f square d N over d

E into V by v b and dn by dE was given in slide 4, and let us approximate v b to c. So,

that will give you V over c 2 pi over h cross psi f H interacting interaction Hamiltonian

this should be psi i psi i square 4 pi E square dn by d is 4 pi E square 2 pi h cross c q c

power 3 into V and the whole thing then becomes V square E square 2 pi square h cross c

power 4 and a factor of 4 pi psi which we will worry about later H interaction psi i

square. So, this is your d sigma over d omega what we call the differential cross section.

Unless we know what H interaction is we will not be able to proceed. So, let us look at

the case of electrostatic interaction.
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Electrostatic interaction between the electron and the nucleus say. In that case interaction

Hamiltonian is e times the electrostatic  potential  and in quantum mechanics  it  is the

corresponding operator file and we can write psi i as 1 over root V exponential i p dot x

over h cross and psi f the wave function in the final state as exponential i p prime let us

say the momentum is denoted by p prime in the final stage and that will give you psi i

sorry psi  f H interaction psi  i  equal to e over there are two under root 2 V’s in the

denominator  we will  give  you one over  V. And the  transition  matrix  element  in  the

coordinate representation is exponential i p minus p prime dot x over h cross phi x, d 3 x

or I can write this as e over V integral e power i q dot x over h cross phi of x d 3 x where

q is the momentum transfer, change in the momentum.

Now, we have to  understand what  this  phi is  or we will  actually  do some algebraic

manipulation to get it in a better form.
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Let us consider the del square operator acting on a power i q dot x over h cross this will

give you minus q square minus because of the i,  there in the exponent over h cross

square then, the same i exponential i q dot x over h cross. This then what we can do is to

write E power i q dot x over h cross as h cross over q square with a minus sign times del

square acting on the same object. That is what we will do to be, clear in a moment why

we are doing this.

So, I can write psi f H interaction psi i as minus e h cross square over V q square integral

del square well del is a vector operator sometimes I will put that vector sign sometime I

will not put it, but you just see that that is actually del is a gradient which is basically a

vector operator. So, when we say del square you understand that it is del dot del e power

i q dot x over h cross times phi x. So, this del square acts only on this phi x d 3 x.

Now, we will consider Green’s theorem which says that if you have two functions scalar

functions u and v then you del square v minus v del square u d 3 x over a volume v is

equal to surface integral of u some sort of a surface integral which will actually vanish if

u and v are 0s at the boundaries. So, let me say that again. The Green’s theorem says that

if you have two scalar functions which are functions of coordinates x then integral over

the volume u del square v minus v del square u d 3 x is equal to 0 if u and v vanishes at

the boundaries, bounding surface any volume is bounded by a surface closed surface and

if u and v vanish into the surface this right hand side of this is equal to 0.



In our  case  we have a  situation  where  we consider  everything happening in  a  large

volume.  For  example,  when  you  consider  the  tag  scattering  experiment  everything

happens in a in a small bound at in a small volume and then outside that all of these

activities can be thought of to be 0. The electrons beam, electron beams the electron

itself is present only in a finite volume and similarly the target, and the detection is also

done enough in that volume. So, in that case if you take a sufficiently large volume that

is what we have been considering when we said v as our normalization in psi and earlier

also, we had that in mind, that we are confining everything in a large volume v. And

outside that none of this or there is no probability for a particle electron or the target

particle to exist either initially or finally. And this is why, this is valid for any u and v the

only condition is that there should be 0 vanishing at the boundary surface.

So, look at the earlier expression for the probability amplitude. We have an integral del

square exponential i q dot x over h cross. So, u can be thought of as exponential i q dot x

over h cross and v can be thought of as phi x. So, I can actually swap this u and b and

write it as psi f H interaction psi i is equal to minus e square h cross square v q square

integral exponential i q dot x over h cross. Now, u del square acting on phi d 3 x this is as

per Green’s theorem.
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We are talking about electrostatics and therefore del square phi should be equal to minus

rho over the charge density over epsilon 0, where rho this rho is different from the rho



we considered earlier rho is the charge density electrostatic charge density. For example,

for a point particle this rho would be a delta fraction.

So, then we can write psi f H int psi i equal to minus sign in del square f cancels with an

already existing minus sign e over V, h cross over square over q square integral  del

square phi is rho x e power i q dot x over h cross d 3 x. Now, this is the electrostatic

potential, the phi was is the electrostatic potential seen by the electron and that is due to

the presence of the nucleus in our present case. And we know that the nucleus has a

charge Ze. So, rho of x is equal to Ze. Question is whether it is a point particle which

means it exists only at a particular point x equal to some x 0. In that case the density is

the  total  charge  times  the  delta  function,  otherwise  we  can  actually  associate  a

distribution function phi x with this which will tell you how the charge is distributed in

space. Since total charge is Ze f of x d 3 x over the old volume is equal to 1, which is the

normalization value.

So,  now look at  the earlier  integral  in  the  probability  amplitude,  that  is  that  can  be

written as e over V h cross over q square Ze integral f of x e power i q dot x over h cross

d 3 x.  This integral,  integral  f  of x e power i q x over h cross d 3 x is the Fourier

transform of f x and since x is integrated out it is a function only of q. So, we will write it

as psi f H int psi i equal to Ze square h cross square over V of course, I missed an epsilon

0 in all this. So, rho over epsilon 0 was there. V epsilon 0 q square integral over this

thing I will write as F q the Fourier transform of this. And this F q is called the form

factor of or basically this is the Fourier transform of small effects which is the spatial

distribution of the charge density.

And look at the form factor. We know the Fourier transform of delta function as I said if

it  is a point particle  the charge density is  Ze times delta  function in that  case f x is

basically delta function and Fourier transform of delta function is 2, integral delta x d 3 x

is equal to I mean times sorry integral delta x e power i q dot x d 3 x is equal to 1. So,

that is saying that in that case F q is equal to 1 and therefore, probability density comes

down to Ze square over h cross Ze square h cross square over V epsilon 0 q square and

the corresponding cross section d sigma over d omega is equal to V square over in E

square 2 pi square h cross c 4 we had a factor of 4 pi which can then the probability

amplitude square Z square e 4 h cross over power 4 divided by epsilon 0 square V square

q square F q square.



(Refer Slide Time: 45:10)

V factor cancels out h power 4 cancels out then and all this factors which will cancel out.

So, you essentially have this as E square over c power 4 2 pi square c 4 4 pi epsilon 0

square q square and Z square E 4, F q square. And if it is a point particle if you consider

it as a point particle then you will have F q equal to 1 and the rest of it will give you the

Rutherford  scattering  expression,  once  you identify  or  rewrite  the  q  in  terms  of  the

scattering angle. Remember q is p minus q this thing, so we can in fact, get that from

there is this initial momentum and final momentum and q is p minus p prime. So, it is p

minus p prime and from the reduction between these we will get q square actually equal

to 2 p, if we consider the elastic scattering that the magnitude of p remains the same then

you can take it will get that 1 over sin power 4 theta by 2 from q square.

I  will  leave  that  part  to you to work out,  but  essentially  we will  get  the Rutherford

scattering in amplitude scattering cross section expression if we put F q equal to 1. So,

what is F q? As we said it is evidently it is very clear that F q is basically the information

about the charge distribution.

Now, we had to do an experiment we do not know what that is say a priori and then we

do a scattering experiment d sigma over d omega can be experimentally determined and

we will have to fit this experimental result for a different momenta etcetera, to the a right

hand side of this expression and find out what is F q. And that will give you information

about what is the charge distribution. And if there are clumps, there is a clustering there



then  we  will  get  information  about  that  clustering  of  charge  distribution  inside  the

nucleus. So, that is the idea.

So, we will get to that in the next discussion.


