Introduction to LASER
Prof. M.R. Shenoy
Department of Physics
Indian Institute of Technology, Delhi

Lecture - 06
Line Broadening Mechanisms

(Refer Slide Time: 00:24)

Line Broadening Mechanisms
—s| Mechanisms which broaden an otherwise expected /ine spectrum
{of an atomic system; these mechanisms determine the nature of
|the /ineshape function g(v)
3 I : S 2
Tiliot 3@) 2 80) /
s -
E ! 1 "'LSM‘Pb = %&:hm
vy 1) '
El
¥
i E; : .
| i Vs v(ork)
N, s 1 _ER Bk *viandv, are called
(;) S ‘line-center frequencies.
HFTEL MR shenoy ; 2

Welcome to this MOOC on Lasers. Today we will discuss Line Broadening Mechanisms.
What are these? These are mechanisms which broaden an otherwise expected line spectrum
of an atomic system and these mechanisms determine the nature of the line shape function.
Please recall that in the last lecture we have seen that the gain coefficient gamma of nu is

almost proportional to g of nu.

That is the normalized line shape function which means that the amplification bandwidth and

the amplifier performance is essentially determined by g of nu which is the line shape



function. And therefore, it is very very important in the study of laser amplifiers that we know
the normalized line shape function g nu because that describes the interaction of radiation
with matter which leads to a certain bandwidth for the amplifier and therefore, let us look at

this.

So, we will try to understand this definition which I have written here that these are
mechanisms which broaden an otherwise expected line spectrum of an atomic system. If we
are we know that an atomic system is characterized by discrete energy levels E 1, E 2, E 3

etcetera.

Transition between these energy levels would result in a line spectrum which means if you
plot nu then at different frequencies corresponding to the transition as shown here nu 1 is
equal to E 2 minus E 1 by h and nu 2 is the frequency higher frequency corresponding to the
higher energy difference E 3 minus E 1.

And therefore, we expect a line spectrum if ideally E 1, E 2, E 3 where energy levels with a
fixed energy value then we should have got a line spectrum like this. But as discussed in the
last class when we observe the emission and absorption spectrum when we observe in the
emission spectrum emission or absorption spectrum absorption spectrum then we see a finite

width over which emission or absorption takes place.

And that is shown here that if you see the spontaneous emission spectrum or the absorption
spectrum this is an emission spectrum then you see a finite range of frequencies or
wavelengths over which emission takes place or the light intensity is distributed over a range
of frequencies centered around the frequencies nu 1 and nu 2. Now, what are the mechanisms
which are responsible for this? So, these are the mechanisms which we call as line broadening

mechanisms.

So, the definition again is mechanisms which broaden an otherwise expected line spectrum of
an atomic system. Now these mechanisms determine the nature of the line shape function

gene. So, we will discuss these mechanisms in a little bit more detail.
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So, types of line broadening mechanisms. So, line broadening mechanisms can be broadly
classified into two categories called homogeneous broadening and inhomogeneous
broadening. Let us try to understand this, this is a broad category. So, what is homogeneous

broadening?

Homogeneous broadening when the response of each atom or groups of atoms in the atomic
system is identical then what we have is homogeneous broadening. For example, this is an
atomic system. The color is just to indicate the groups. So, this is this is a chamber or a

container or a volume in which atoms are there.

But there can be different groups of atoms. Groups could be qualified by different different
properties. We will discuss this ah as we go further. At the moment assume that there are

different groups of atoms in the atomic system then the response of each atom or each group



of atom if it is identical then what we will have is if nu 0 is the line center then the response
will be spread around nu 0 for all groups of atoms and therefore, more the number each group

of atom contributes to the same spectrum.

And therefore, if more and more number of atoms contribute then the response goes on
increasing it becomes stronger and stronger, but all the while centered at one frequency nu 0
that is what we mean by the response is identical, the shape the response. What is this
response we are talking of? Response here refers to the strength of interaction. So, strength of
interaction is emission or absorption. So, the response here refers to the strength of

interaction.

So, strength of interaction with nu interaction with frequency with nu and that is what we call
as the response. If the response of each atom is identical; identical means it is centered around
the same frequency and the distribution is also same that is what we call as identical. And
therefore, more the number of groups of atoms contributing to the response then stronger will
be the response, but all centered around the same frequency nu O and such broadening

mechanisms are called homogeneous broadening.

So, this is called homogeneous broadening this leads to homogeneous broadening. What are
its characteristics, we will see shortly. So, the response of different groups of atoms is

identical centered around the frequency nu 0.
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Now, let us see in homogeneous broadening, what is inhomogeneous broadening. Different
atoms or groups of atoms respond differently to the incoming radiation. So, the same different
groups [ have shown here. Now, the response of this group here is different from the response

of this group.

So, what is different, it will be clear. So, let me take an example. So, why the response of
different groups of atoms in the same atomic system or in the same container should be
different. For example, you take Doppler broadening. What is Doppler broadening? So, we
have an atomic system these atoms are of course, need not be in a perfect periodic

arrangement, but if it is a crystal then it will be in a periodic arrangement.

Now, the atoms are vibrating. For example, if it is a crystal then the atoms are vibrating about

their mean position. Now, the vibration for example, the at one particular atom which is



shown here this one is vibrating in this direction or it could be vibrating vertically or it would
be vibrating in different any possible direction. Now, let us see consider incidence of a

radiation nu 0 radiation of frequency nu 0.

It may be easier if we and if we consider a gas. For example, in the container instead of the
crystal we will come back to this later. If you consider a gas with atoms groups of atoms
travelling in all possible directions randomly traveling in all possible directions and there is

an incident radiation here of frequency nu 0, which is incident on the atomic system.

Then atoms which are travelling for example, atoms are in a state of motion. So, atoms which
are traveling in this direction and the atoms which are travelling in this direction and atoms

which are traveling in this direction will see this incident frequency nu 0 as different.

For example, atoms travelling in this direction towards the radiation will see the frequency nu
sean will be higher than the actual frequency because of the Doppler Effect. So, it is given
here. So, if we look at this expression here nu here represents the frequency seen by the atom
observed by the atom, nu 0 is the actual frequency which is incident atoms which are

travelling towards the light because of doppler effect we will see it as a higher frequency.

Therefore, it will see it as nu 0 into 1 minus v z by c. This is higher because please see that
we always take the direction of propagation as z. So, v z is the velocity component in the z
direction v z and a atom moving in this direction has minus v z that is why 1 minus, minus v

z will give a new higher.

And therefore, the frequency seen by atoms here moving in the towards the radiation will see
it as a higher frequency, atoms which are travelling in a perpendicular direction will see no
change and atoms which are travelling in the direction of the radiation will see it as a lower
frequency. And therefore, the same atomic system which has let us say it is a 2-level system
characterized by a certain resonance frequency. The actual resonance frequency let us say nu
0 is the actual resonance frequency. Therefore, the incident radiation if it has a resonance

frequency nu 0, it should have all of them should have responded to the incident radiation.



That is emission or absorption should have taken place, but because the atoms are moving in
different directions they see the incident radiation nu O as different frequencies. If thus
observed, the frequency seen is different from the actual resonance frequency it will not

interact or the strength of interaction will be different for different groups of atoms.

So, what is shown here? Let us come to the graph here. So, nu 0 is the actual atomic
resonance frequency. So, that is here atomic resonance frequency and nu 0 is also the incident

frequency.

Those atoms which are travelling in a perpendicular direction here will not see the Doppler
Effect because v z is 0 and therefore, they will interact strongly with the incident radiation
because the incident frequency matches with the atomic resonance and therefore, this group

of atoms which are here.

So, this response is because of the group of atoms which are travelling in a direction
perpendicular or which do not see the Doppler Effect which do not see the Doppler Effect

because they do not see any frequency shift. These ones will see it as a lower frequency.

So, those atoms which are traveling away from the radiation or in the direction which is away
from the radiation or in the direction of the radiation will see it as a lower frequency and they
would not interact with this radiation or their strength of interaction would be lower. And
those groups of atoms which travel towards the radiation will see it as a higher frequency and
therefore, the if we have a relatively broadband source different groups of atoms will interact

with different frequencies.

Or if we have a near monochromatic radiation nu O then different groups of atoms will
interact with different strengths. Those centered around nu 0 are the ones which will not see
Doppler effect or for which v z is equal to 0. So, it is the same atomic system, but different
groups of atoms are travelling in different directions. And therefore, they will see the

incoming radiation as different frequencies. Apparent frequency is different and therefore,



they will decide whether they would interact with the incoming radiation or not and the

strength of interaction for different groups of atoms will be different.

And that is illustrated by this graph here where which is centered with there are responses or
different groups of atoms are centered around different frequencies. Now, as you go to higher
frequencies or lower frequencies the number of atoms contributing to this for example, here
this resonance is much smaller because the number of atoms with the higher velocity or lower

velocity are much smaller.

This distribution of course, is given by the Maxwell Boltzmann distribution we will discuss
this in detail in the next class line the Doppler Effect will be discussed in detail in the next

class.

But today I just wanted to illustrate that how the same atomic system different groups of
atoms in the same atomic system can respond to radiation of different frequencies ok. Let us

continue.
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Another very common example is when we have inhomogeneities in the lattice in
homogeneities. In homogeneities means, the density of atoms could be different at different
places in the atomic system. For example, there could be more clustering in some place. This

particularly happens when you have a doped crystals.

For example, in solid state lasers such as Nd:YAG laser, in Nd:YAG neodymium atoms are
doped in YAG Yttrium aluminum garnet or erbium silica that is erbium ions are doped in
silica matrix. So, in such cases the because of in local in homogeneities the energy level
instead of having discrete energy levels which is characteristic of the pure crystal or pure

atomic system, it spreads into a large number of layers.

There are different number of energy levels or multiplicity of energy levels. So, this leads to

multiplicity of energy levels. So, multiplicity because of in homogeneities when multiplicity



of levels. In homogeneities local inhomogeneities cause in homogeneities; if the density
fluctuations takes place then the energy levels corresponding energy levels are different at

different locations.

And therefore, they respond to different frequencies. The atomic resonances are different at
different locations within the same atomic system. And therefore, they respond to a range of
frequencies again as illustrated here. And the envelope in both the cases here as well as in the
previous case that is Doppler broadening, it is the envelope here. The envelope shows the

average or net response. Envelope shows the net response of the atomic system.

So, that is what is shown here. So, this is about inhomogeneously broadened line shape

function.
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So, what is the implication of these? We will see the implications of both, homogeneously

and inhomogeneously broadened line shapes when we discuss about lasers.

But as an amplifier if we consider WDM that is Wavelength Division Multiplexed
communication systems which is widely used in optical communication optical fiber
communication different wavelengths or different frequencies travel through the same optical
fiber and then they pass through the same optical amplifier. We are currently discussing

optical amplifier that is laser amplifier.

We will come to the laser itself a little later. Then, if the bandwidth that is the amplification
bandwidth. So, this is the net response is net g of nu and therefore, this is amplifier
bandwidth. So, this is amplifier response which means gain is provided over a range of

frequencies.

Now, if this amplifier response which is directly proportional to g of nu, therefore, you can
say that this response is nothing, but g of nu qualitatively it is proportional to g of nu. So, if g
of nu has a response a broad response like this it is because there are different groups of

atoms contributing to different parts of the gain spectrum.

So, this is the amplifier response. This is the gain spectrum. Gain versus frequency is called
the gain spectrum. We will discuss the amplifier again in a little bit more detail later. But
right now, one of the important implications of inhomogeneously broadened line shape is that

different parts of the gain spectrum are contributed by different groups of atoms.

Therefore, if I draw energy at a particular wavelength lambda 1 or frequency nu 1 which
means, [ am loading the amplifier that is called loading the amplifier loading the amplifier.
Loading the amplifier means, you input to the amplifier a particular frequency and you will
load depending on the signal strength. Higher the signal strength the amplifier will be loaded

more. So, that is called loading the amplifier.



So, if we load basically loading means we are inputting. So, if we input different frequencies
or different wavelengths if you load the amplifier at one frequency nu we will see that
because the gain is saturated gain coefficient. Loading means, the signal strength I nu here.
The signal strength I nu increases. Therefore, the gain will decrease and therefore, if I put a

signal nu 1 then this gain profile will definitely come down at the frequency nu like this.

What I have shown is a dip at nu 1, but I have not shown a dip elsewhere. Suppose in the
amplifier please try to understand if 1 had only one frequency nu 1 at the input of the optical
amplifier. This is a the gain spectrum of the amplifier which means, it is a broadband

amplifier.

It can amplify all these frequencies as shown here nu 1, nu 2, nu 3, nu 4, but if I input only
one frequency nu 1 then the gain at nu 1 will be pulled down. Why it will be pulled down?
Because of this expression here, saturated gain coefficient which we discussed in the last
class. The gain will be pulled down here, but the gain at other frequencies will not be affected

because the gain at other frequencies is contributed by different groups of atoms.

The gain at nu 1 that is this curve here is contributed by a particular group of atoms. So, if the
gain has gone down here, it will not affect the gain at other frequencies because gain at other
frequencies is contributed by different groups of atoms. So, that is what we have written. Here
the contribution of different groups of atoms to the gain curve is centered around different

frequencies.

Therefore, the depletion of gain at one wavelength due to loading that is due to an input does
not affect significantly the gain at other channels or wavelengths. This is very important in

WDM communication system.

Otherwise, if you if it was homogeneously broadened then if you pull down the gain at any
frequency the entire gain curve will go down that way it will disturb other frequencies. The
gain of other frequencies will also be disturbed. This is very important in communication that

other channels the frequencies do not disturb any of the any channel does not disturb the



frequency or the gain of other channels. So, inhomogeneously broadened amplifiers are very

useful in such situations ok.
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Let us now continue with our discussion; the types of line broadening mechanisms. So, I had
discussed what is homogeneous broadening and what is in homo. Within this there are

different types of homogeneous broadening can happen due to different mechanisms.

So, what is shown is lifetime broadening, collision broadening, thermal broadening. These all
of these mechanisms contribute to a to homogeneous broadening. Whereas, Doppler

broadening as i already explained to you qualitatively and broadening due to inhomogeneities.

Again I explain to you qualitatively leads to inhomogeneous broadening. We will discuss the

ones which are shown here in red in detail how lifetime broadening leads to a what is the line



shape function g nu in the case of lifetime broadening. And similarly I will discuss in the next

class in detail Doppler broadening, what kind of g nu function it will give.
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So, let us take up the first one that is lifetime broadening. So, far I discussed qualitatively
about the line broadening mechanisms and now let us see with the simple classical approach
see how to get the line shape function g nu, which again remember determines the amplifier

bandwidth and the response of the amplifier ok.

Spontaneous transitions; transitions when an atom makes a downward transition from an
excited level the energy difference E 2 minus E 1 could be given as a photon of radiation
given as a radiation of energy h nu or it could this is what we had discussed so far that is

radiative transitions.



Radiative transitions are transitions which involve emission or absorption of a photon.
Radiative transitions are transitions which involve emission or absorption emission or
absorption of a photon that is why the radiation is involved, hence, the name radiative

absorption of photons photon.

Non radiative transition as the name indicates does not have involvement of radiation which
means, there are no photons involved. A transition from an upper level to a lower level

without emission of photons is also possible which is called non radiative.

How does this occur? There are different mechanisms by which non radiative transitions can
occur. One of them is for example, an energy an atom colliding with the walls of the
container. In a gas particularly when an atom collides with the walls of the container then it
could lose energy because of collision. There could be phonon transitions that is a atom can
make a downward transition by giving out phonons. Phonons are quanta of lattice vibrations.
So, phonon transition means energy is given to the lattice. Let us discuss more about that a

little later.

But, so, non radiative means phonon photons are not emitted. Now, recall we had this
expression d N 2 by dt that is if we have N 2 number of atoms here and N 1 number of atoms.
At tis equal to 0 if N 2 of 0 is the number of atoms then we know that d N 2 by dt that is rate
of change of atomic number N 2 is proportional to N 2 and A is the proportionality constant
and we have already seen that this A is 1 by tsp. We have considered spontaneous emission.

Emission means, emission of a photon.

And therefore, tsp is the spontaneous emission lifetime. However, in the presence of non
radiative transitions which means radiative plus non radiative the equation will be modified
like this. It is minus A times N 2 this is the radiative part the first one and minus S times N 2,

where S is the non radiative transition coefficient.



So, if we write that this is equal to T times N 2, where T is equal to a plus S then we have TN
2 is equal to AN 2 plus SN 2. We have already shown that A is equal to one by tsp, where tsp

is the spontaneous emission lifetime.

A corresponding lifetime for non radiative transition if we define it as tau nr, nr standing for
non radiative then S will be equal to 1 by tau nr. Please note that A and S must have the same
dimensions. A is 1 over time, therefore, S is also 1 over time a non radiative life time which

we designate as tau nr. Then we have 1 by t is equal to 1 by tsp plus 1 by t nr tau nr.
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So, let us see here. So, T is equal to therefore, S plus A is equal to 1 over tau nr plus 1 over
tau sp which we designate as 1 over tau | say where tau 1; T is equal to 1 over tau 1 is called

the lifetime of the level.



Why is it called as the lifetime of the level? Because d N 2 by d t here is equal to minus t
times N 2 that implies N 2 of t is equal to N 2 of 0 into ¢ power minus t capital T into small t.
So, capital T is the spontaneous transition rate, it is the coefficient for spontaneous transition
rate and small t is time and therefore, N 2 of t is equal to N 2 of 0 is equal into e to the power

minus t by tau 1 because T here is equal to 1 over tau 1.

What does this mean? This means at time t is equal to 0, if there are N 2. So, this is time. If
there are N 2 of 0 number of atoms here in the excited state then with time it will drop down
exponentially where it drops down to 1 by e of its value is called the lifetime tau 1. This is 1
by e of N 2 of 0. So, this is called the lifetime. So, tau | is a parameter which is characterizing
the lifetime of the upper level. So, it is illustrated more clearly now here. Please see that N 2

of 0 if there was if there were no non radiative transitions.

All of them are only radiative transitions, which means all of them are only spontaneous
emissions. Then we would have had the first curve here. So, if we had only spontaneous
emission then N 2 of 0 will decay with time as N 2 of 0 into € power minus t by tsp and tsp is
defined as where it where the number drops to 1 by e of its original number at t is equal to 0.
This we have already seen, the first graph. In this we had assumed that no non radiative

transitions no non radiative. We did not talk of radiate non radiative transitions at that time.

We said that every spontaneous emission brings down one atom and gives out one photon
transition. If there was no radiative transition and all of it is only due to non radiative
transition only due to. So, then we would have had again atoms coming down decaying by

non radiative transitions; so, only non radiative transitions only non radiative transition.

Then we would have had the second curve. And if both of them were present then; obviously,
the rate will be faster because atoms will decay because of radiative transition and because of
non radiative transition. And then we have this the blue curve which is shown here in the

presence of both.



So, in the presence of both of both type of transitions and the lifetime in the presence of both
is called the lifetime of the level. So, lifetime of a level is the average time that an atom takes
that atoms take to make transition to the lower level or it is an average time that atom spend
in the excited state that is called the lifetime of a level. So, the contribution to the lifetime of
the level comes from both spontaneous emission which is radiative emission and non

radiative emissions ok.
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So, let us take up life once. Now that we understand what is lifetime. So, let us take up
lifetime broadening. Consider a 2-level system with N 2 of 0 number of atoms in the upper
state at t is equal to 0. This is due to some instantaneous pulse. We had a instantaneous burst
or a pulse which had lifted let us say one million atoms or one billion atoms to the excited

state here E 2.



Instantaneously so many atoms were put there and then there is no more pulse or no more
burst and therefore, the atoms will start decaying. They will start coming down to the lower
level to the ground state and therefore, the number of atoms will decrease. N 2 with time will

be N 2 of t is equal to N 2 of 0 into e power minus t by tau .

Every atom which is coming down here also gives out radiation and non radiation. Maybe
both are present, but the intensity of radiation therefore, coming out will be proportional to

the number of atoms.

So, I of t I of t the intensity of radiation which is coming out at any instant is proportional to
N 2 of t. And therefore, I of t is equal to I 0; some intensity initial intensity at N 2. If I call this
as I 0 then this curve will be I of t is equal to I 0 into e power minus t by tau I that is what is
shown here, the intensity. This is observable and measurable. Intensity of radiation coming

out of an atomic system of an excited atomic system.

An instantaneously excited atomic system will be exponentially decaying as I of t is equal to I
0. If this is the case we use a heuristic idea that we know that I of t the intensity is
proportional to mod E square. So, we know that where E is the electric field, this is the
electric field. And therefore, we can write the electric field as E of t is equal to E 0 into e to

the power of minus t by twice tau 1.

Why twice tau 1? Because if we take mod square this term would go, this term is the phase

term because with time there is a phase e to the power of i omega t or i 2 pi nu 0 into t.

And this is the exponentially decaying envelope because when you take mod square this will
become e to the power of t by tau 1 and mod E 0 square is 1 0. So, if we say mod E 0 square as
I 0 then we can write E of t is equal to this fashion, where E of t represents the electric field
associated with the radiation which is coming out of the atomic system. So, it looks like a
damped oscillation. This if you plot it would look like a damped oscillation. The envelope is
given by E to the power of minus t by twice tau | and oscillation. So, that is why oscillation

with frequency nu 0.



But we know that whenever the, so, this is amplitude modulated electric field which is
amplitude modulated and therefore, there must be a finite spectrum associated with an
amplitude modulated carrier. If nu 0 was the carrier frequency and if it is amplitude
modulated there would be a finite spectrum associated with this. And how to find out the

spectrum associated with this?
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We take the Fourier transform. So, Fourier transform gives us the frequency spectrum. If we
have a signal f of t then if we take Fourier transform then we will get the frequency spectrum
associated with the signal. And we are making use of this classical concept to determine what

is the frequency spectrum associated with this spontaneous transition.

So, the frequency spectrum therefore, here is given by E of nu is equal to E 0. So, this is the

function. E of t is this function here and you can see the same function is here. E 0 is a



constant amplitude which is taken out; e power minus t by twice tau | into the oscillatory
function e power 1 2 pi nu 0 into t into € power minus I 2 pi nu t d t from minus infinity to

infinity gives you the Fourier transform.

This is Fourier transform of f of t is E of nu is equal to minus infinity to infinity f of t e to the
power minus 2 pi i nu into d t i nu t into d t. So, that is what we have written here and
therefore, E of nu is equal to E 0 because this the electric field only starts at t greater than 0.
Therefore, the integration limit is from 0 to infinity. E nu is equal to E 0 into 0 to infinity e

power now we have combined this 2 pi into nu 0 minus nu into t into this.

So, we can simply integrate this and you see that it is a definite integral which can be

integrated to get the frequency spectrum E nu given by this expression.
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Now, the intensity distribution the intensity frequency spectrum of the intensity is I nu is
proportional to mod E nu square. That is the intensity spectrum is proportional to mod E nu
square which means that I nu is proportional to. So, we have taken simply mod of this. So,
you can see this expression. We simply have taken mod square. When we take mod square E
0 here would become I 0. We can mod E 0 square if we designate we can designate itas 1 0, a

constant.

But more importantly I nu is proportional to 1 divided by 4 tau 1 square into 2 pi into nu
minus nu 0 mod square. I nu is proportional. What is I nu? Intensity spectrum. You remember

we had plotted this I of lambda or I of nu for any source or any transition which.

So, this is the intensity spectrum and this intensity distribution is because tells us the strength
of interaction at different frequencies strength of interaction. Interaction refers to emission
and absorption and therefore, I nu is proportional to g nu because strength of interaction is
given by g nu. g nu gives us the strength of interaction. The intensity spectrum is proportional

to the strength of interaction.

And therefore, g nu must be proportional to I nu or g nu is equal to some constant 1 into the
term which is here, where L is the proportionality constant. Now, how to determine L? We
can determine L by using the definition of normalized line function. L is to be determined
using the normalization condition because the normalized line shape function is defined by
this equation; O to infinity g nu d nu is equal to 1. That is the strength of interaction if we

integrate over all the frequencies is 1 or probability of interaction over all the frequency is 1.

So, if we simply integrate this that is substitute this expression here for g nu and integrate
then we will get an expression for L. L is equal to 1 divided by tau L. So, the slide says show
this, please work out this. Simply substitute in this expression. The expression g nu in the
integral and integrate equate it to one you will get the proportionality constant L as 1 divided

by tau 1.
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So, what do we get? If we substitute one by tau | for L, so, we have this expression here or it
can be simplified to this expression here g nu. So, that is written here. g nu is equal to 4 times

tau | into 1 plus 4 pi tau I the whole square into nu minus nu 0 the whole square.

A very simple mathematics and this distribution is called a Lorentzian distribution. A
Lorentzian distribution as you can see from the expression is a symmetric distribution
centered around nu is equal to nu 0 because you can see in the denominator all are positive

quantities.

So, when nu is equal to nu 0, the second term here is 0 and therefore, we have g of nu 0. So,

we have g of nu 0. nu at nu is equal to nu 0 we have maximum value g of nu 0 is equal to 4



tau 1. So, its centered around nu is equal to mu 0. The maximum ats and it drops down a

Lorentzian function is of this form.

So, it drops down at nu is equal to around centered at nu equal to nu 0 and on both sides it
drops down symmetrically. It is a symmetric function centered at the resonance atomic
resonance nu 0 equal to E 2 minus E 1 by h and such a line shape function is called

Lorentzian line shape function.

So, the lifetime broadening which is a homogeneous broadening is characterized by a
Lorentzian which means, the shape of g of nu is a Lorentzian function. Now, we are
interested of course, in finding out the full width at half maximum of the Lorentzian that will
give us an idea because the bandwidth is proportional to this. Bandwidth will depend on the

full width at half maximum and let us see the full width at half maximum.
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So, what are the characteristic of the Lorentzian? g nu is given by this is the Lorentzian. The

maximum value as | have already written.

At nu equal to nu 0 gives us g of nu 0 equal to 4 tau . It is symmetric a nu and the full width
at half maximum is called line width of g of nu. If we designate delta nu as the full width at
half maximum then the full width at half maximum is given by this denominator becoming
equal to 1. This will become clear for if you have not if it is not clear just let us look at this.
Here is the maximum 4 tau 1. At full width at half max half of the maximum means this is tau

2 times tau 1.

At 2 times tau 1 if the frequency bandwidth; so, let us say this is nu 1 and nu 2. So, this is nu 1
this is nu 2 then nu 2 minus nu 1 is equal to delta nu. nu 2 minus nu 1 is equal to; maybe it is

there in the next slide. Let me show the next slide yeah.
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The full width at half maximum of the Lorentzian is given by this term equal to 1. Why is
that? Look at this term. If this term becomes 1 this term here becomes 1 then we have in the

denominator 2.

So, 4 tau 1 divided by 2 is half of its value. So, whenever a Lorentzian is given it could be
given in different form. For example, it could be given as 2 tau 0 divided by some number
here I do not know some number delta nu divided by 2 pi into some number I am writing nu

minus nu 0 the whole square. This is also a Lorentzian.

So, what you should do first is put this in this form that is divide by this throughout so that
this is just an example. Then you can if you divide then twice tau 0 divided by delta nu by 2
pi here and then in the denominator we will have 1 plus some number that is 2 pi by delta nu

into actually this is square because dimensionally 2 pi by delta nu square into nu minus nu 0



the whole square. Now, this must be equal to 1. I have taken an independent example where

because the Lorentzian could be described in a general form like this.

But, if you want to find out the full width at half maximum divide the denominator. So, that
you write it in the form of 1 plus some quantity here and that some quantity must be equal to
1 at full width to get the full width at half maximum. Because half maximum means whatever

when this is 0 at nu is equal to nu 0 the second term is 0.

We see in this example, at nu is equal to nu 0 second term is 0 and the maximum is given by
the numerator because there is only 1 here. And that half of that maximum would come when
the entire denominator is 2, which means the second term here is 1 that is what is mentioned

in this slide here.

So, the full width at half maximum is given by 4 pi tau | the whole square minus nu minus nu

0 square equal to 1. This will give two solutions; nu 1 and nu 2 and nu 1 minus nu 0.

So, this is what I was drawing in the previous here. So, this is the Lorentzian and at half
maximum if you solve that equal to then we will get two solutions. At half the value there are
two solutions; nu 1 and nu 2. nu 1 minus nu 0 is delta nu by 2 because delta nu is the full
width at half maximum. nu 2 minus nu 1 is delta nu. So, nu 1 minus nu 0 equal to nu 2 minus

nu 0 equal to delta nu by 2 that is why it is written like this.

So, the important point is to see that there are two solutions and delta nu is the separation nu
2 minus nu 1. So, therefore, this is equal to delta nu by 2 and therefore, delta for nu minus nu
0 if we now substitute this then we get delta nu is equal to 1 divided by 2 pi tau L. This is the
full width at half maximum; FWHM of the Lorentzian of the Lorentzian. So, line width what
is this, why this delta nu has come? This spectrum has come because of the finite lifetime of

the level.

Because of the finite lifetime of the level the intensity was dropping down like this if you
recall and then we said therefore, the electric field must be damped oscillation. It must be

representing a damped oscillation like this. And when the electric field is a damped



oscillation it means you are modulating the electric field. And whenever you modulate the

amplitude there will be a corresponding bandwidth here.

So, simple in by classical approach we have seen that this corresponds to a line width and the
line width is due to finite lifetime of the level. Note, delta E is equal to h times delta nu

because E is equal to h nu.

So, delta E is equal to h delta nu which is h divided by 2 pi tau 1 because delta nu is 1 by 2 pi
tau | which can be written as h cross by tau 1. h cross is h by 2 pi. I suppose you are familiar. h
cross is h divided by 2 pi and therefore, this implies that delta E into tau I is equal to h cross

and this is the uncertainty principle in quantum mechanics.

We have not used anywhere quantum mechanics. We have done only the classical approach
and simple frequency spectrum approach associated with modulation, amplitude modulation
and we get an expression which is consistent with the uncertainty principle in quantum
mechanics, where delta E into delta t is equal to h cross. This comes out because tau | is the

uncertainty in the lifetime of the excited atoms.

Recall what is tau 1. Tau | is the average time an atom spends in the upper level; average time.
Some atoms may come immediately come down some atoms may come after a long time. So,

the average time is tau 1.

This is the average time that means, for any given atom there is an uncertainty in the decay
time that is it may come immediately or it may come after a long time, the average. Therefore,
tau | represents the uncertainty and that is consistent with the uncertainty principle delta E

into delta tau is equal to h cross.
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Now, the implications of this is further. Here an atom making a downward transition has an
uncertainty delta t associated with it. Whenever there is a delta t then we have a
corresponding delta E and what is this delta E? Delta E is this width here. Equivalently we

can see that there is a finite width for inters finite spread in energy.

This is spread in energy spread corresponding to an uncertainty delta t. It is not one level, it is
not one level like this. We started with discrete energy levels E 2 and E 1, but now we are
seeing that an uncertainty in the lifetime of atoms is equivalent to having a finite spread in the

energy spectrum or energy associated with any given level.

So, if we are having a transition from here to here then there is a uncertainty associated with

this. So, there is a finite delta E. If you are looking at a transition here between 2-levels then



there is a delta E 3 here and there is a delta E 2 here. Therefore, the uncertainty is double
now. Delta not double that sum of this delta E 3 plus delta E 2.

(Refer Slide Time: 56:38)
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And therefore, I come to the last slide that is lifetime of a transition. We discussed about
lifetime of a level which is tau 1. So, we had the delta nu or h into delta nu delta E is equal to
h into delta nu is 1 by 2 pi into tau [ this is delta E, where tau | is the lifetime when you are
making transition from an excited state to the ground state. But, if you are looking at a
transition between two excited states then there is a finite spread delta E 3 and finite spread

delta E 2.

Therefore, there is a spread in the photon spectrum which is coming out in this transition.
And therefore, now we have the delta nu is equal to lifetime if I call tau I 2 is the lifetime of

the lower level because there is a further level which is here that is the ground state.



So, if tau 1 2 is the lifetime of the lower excited state tau 1 3 is the lifetime of the upper
excited state. Then the lifetime of the transition, this is not lifetime of the level lifetime of the
transition is 1 over tau which is the sum of these three because the frequency spread in this

transition is delta nu 2 plus delta nu 3.

Delta nu is the spread associated here. Delta nu 2 is the spread associated here. And therefore,
please see an atom sitting here can come down to the top. This will give the smallest energy
difference and an atom sitting near the top coming down to the bottom here will give the
largest energy spread. And therefore, the total spread will be delta E is equal to delta E 3 plus
delta E 2 or equivalently delta nu is equal to delta nu 2 plus delta nu 3 and this is called

lifetime of the transition.

We will stop here and in the next class we will take up inhomogeneous broadening. So, this is
homogeneous broadening. We have seen lifetime broadening and we have also introduced the
concept of lifetime of a level and the lifetime of a transition. And in the next lecture we will
see inhomogeneous broadening. We will take up the specific example of Doppler broadening

and find out what is the kind of line shape we will get in Doppler broadening.

Thank you.



